地理学报, 2023, 78(2): 334-350 doi: 10.11821/dlxb202302005

国家创新体系与科技全球化

中国城市知识合作网络结构演化的影响机制

戴靓,1, 曹湛,2,3, 马海涛4, 纪宇凡1

1.南京财经大学公共管理学院,南京 210023

2.同济大学建筑与城市规划学院,上海 200092

3.自然资源部国土空间智能规划技术重点实验室,上海 200092

4.中国科学院地理科学与资源研究所 中国科学院区域可持续发展分析与模拟重点实验室,北京 100101

The influencing mechanisms of evolving structures of China's intercity knowledge collaboration networks

DAI Liang,1, CAO Zhan,2,3, MA Haitao4, JI Yufan1

1. School of Public Administration, Nanjing University of Finance and Economics, Nanjing 210023, China

2. College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China

3. Key Laboratory of Spatial Intelligent Planning Technology, Ministry of Natural Resources of the People's Republic of China, Shanghai 200092, China

4. Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

通讯作者: 曹湛(1989-), 男, 湖北潜江人, 博士, 助理教授, 研究方向为国土空间规划、城市网络和创新网络。E-mail: 1989caozhan@tongji.edu.cn

收稿日期: 2021-08-16   修回日期: 2022-02-15  

基金资助: 国家自然科学基金项目(41901189)
国家自然科学基金项目(52008298)
国家自然科学基金项目(41971209)
江苏省自然科学基金项目(BK20190797)

Received: 2021-08-16   Revised: 2022-02-15  

Fund supported: National Natural Science Foundation of China(41901189)
National Natural Science Foundation of China(52008298)
National Natural Science Foundation of China(41971209)
Natural Science Foundation of Jiangsu Province(BK20190797)

作者简介 About authors

戴靓(1989-), 女, 江苏镇江人, 博士, 副教授, 硕士生导师, 中国地理学会会员(S110014330M), 研究方向为城市网络与区域发展。E-mail: 9120181027@nufe.edu.cn

摘要

城市知识合作网络的影响机制是创新地理的重要研究议题,已有研究大多关注外生动力(城市资源禀赋、多维邻近性等)的影响,而较少关注内生动力因素(择优链接、传递性等)。基于“Web of Science”中的论文合作发表数据构建中国城市知识合作网络,分析其2006—2016年空间结构和拓扑结构的演化特征,并通过加权随机指数图模型(ERGM)定量揭示内生和外生动力对该网络形成的影响。结果显示:① 从空间结构看,东密西疏的格局比较稳定,但整体由北京—上海双核结构向多中心发展,五大国家级城市群成为孕育多极的重要空间。以高能级城市为核心形成的节点区域愈发与规划的城市群范围一致,其发挥着知识资源邻近溢出和远程交互的双重作用。② 从拓扑结构看,知识合作的规模和密度显著增加,对大城市的择优选择效应明显。但随着多中心崛起,网络极化程度和异配性均在弱化;随着城际合作路径不断优化,网络聚合性提升,成为小世界网络。③ 从影响机制看,自演化与择优链接是知识网络的重要驱动力,其作用与城市等级效应相重叠;城市知识规模属性对知识流动的正向影响弱于多维邻近性和路径依赖性;高铁的存在有利于促进知识合作,而地理距离的影响不显著。

关键词: 知识网络; 论文合作; 影响机制; 内生结构变量; 加权指数随机图模型

Abstract

The study of influencing mechanisms of intercity knowledge collaboration networks is an important research topic of innovative geography. Most existing research focuses on the influence of exogenous forces (e.g., urban resources endowment, multidimensional proximity), whereas less attention has been paid to endogenous factors (e.g., preferential attachment, transitivity). This research constructs an intercity knowledge collaboration network of Chinese cities based on the co-publication data from the Web of Science, analyzes its evolving characteristics of spatial and topological structures from 2006 to 2016, and quantitatively explores the endogenous and exogenous forces underlying the network formation through exponential random graph modelling. The results show that: (1) From the spatial structure perspective, the intercity knowledge flows are dense in the eastern region but spare in the western region, which is stable during 2006-2016. The overall network has developed from a dual-core structure of Beijing and Shanghai to a polycentric structure, in which five national-level urban agglomerations have become important bases for nurturing multiple centers. The nodal regions centered on highly administrative cities have become increasingly consistent with the planned urban agglomeration, which plays the dual role of proximal spillover and remote interaction of knowledge resources. (2) From the topological structure perspective, the scale and density of intercity knowledge flows have increased significantly, and the preferential attachment to big cities is obvious. However, with the rise of multiple centers, the network polarization and disassortativity have been weakened. With the optimization of intercity knowledge collaboration paths, the network cohesion has improved, thus becoming a small-world network. (3) From the influencing mechanism perspective, self-evolution and preferential attachment are important driving forces of knowledge collaboration networks, showing an overlapping effect with urban hierarchy. The positive impact of urban knowledge-related attributes on intercity flows is weaker than multidimensional proximity and path dependence. The presence of high-speed railways promotes knowledge collaboration, while the influence of geographic distance is not significant.

Keywords: knowledge network; scientific collaboration; influencing mechanism; endogenous structural variables; exponential random graph model

PDF (3923KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

戴靓, 曹湛, 马海涛, 纪宇凡. 中国城市知识合作网络结构演化的影响机制. 地理学报, 2023, 78(2): 334-350 doi:10.11821/dlxb202302005

DAI Liang, CAO Zhan, MA Haitao, JI Yufan. The influencing mechanisms of evolving structures of China's intercity knowledge collaboration networks. Acta Geographica Sinica, 2023, 78(2): 334-350 doi:10.11821/dlxb202302005

1 引言

中国共产党“十八大”以来,中国大力推动创新驱动发展战略,加快创新型国家建设。在此背景下,《国家创新驱动发展战略纲要》于2016年正式印发,并对2050年国家成为世界主要科学中心和创新高地作出3个阶段战略部署。中国共产党“十九大”报告亦提出要强化基础研究,实现前瞻性基础研究、引领性原创成果重大突破。知识逐步替代传统生产要素,成为新经济时代城市重要的战略资源[1]。城市聚集着大量的专业化人才、高水平大学、科研院所和高新技术企业,是知识创新的孵化器。面对创新活动的加速复杂化、创新成本的上升和创新风险的增大,不同主体间跨组织跨地域的合作成为知识创新的重要方式,而城市知识合作网络则是不同微观主体跨地域知识合作联系在宏观尺度的空间表现[2-3]。这种合作可产出论文、专利、产品等“显性知识”(Explicit Knowledge),并伴随着信息、技术、智力、文化等“隐性知识”(Tacit Knowledge)的溢出和流动,对知识要素流的吸收、转化和扩散,是城市创新发展的内在动力[4-5]。在“流动空间”时代,城市节点在知识网络中的地位及其“借用规模”(Borrow Size)的能力,正加速着区域空间的重构,成为城市网络和创新地理研究的重要议题[6]

学者们从不同类型的知识出发研究不同尺度知识网络的空间格局与演化规律。就科学知识而言,Matthiessen等[7]基于自然、医药和工程科学领域的论文合作数据分析了全球城市知识网络的层级性与区域性;Ma等[8]采用中国知网(CNKI)中文论文合作数据揭示了中国城市知识网络的空间格局和拓扑特征。就技术知识而言,Berge等[9]通过专利合作申请网络对比了欧盟城市中心性和连接度的差异;段德忠等[10]基于专利转移数据分析了2001—2015年中国城市创新网络结构的时空演化。就企业知识而言,Neulandtner等[11]利用欧盟框架项目中联合申请的资助信息探讨了研发合作网络的空间结构与影响机制;黄晓东等[12]通过国家级创新企业部门间组织机构关联刻画了中国城市创新网络的联系特征。也有学者探索不同类型知识网络结构的异质性,如李丹丹等[13]对比了中国的论文合作和专利合作网络,而Lata等[14]则比较了欧盟的论文合作、专利合作、项目研发合作3种网络。3种知识间的逻辑关系层层递进,从学到研再转产进而促学,共同构成产学研协同创新的循环结构[15]。科学知识侧重于基本的科学原理,是技术知识发展的基础;技术知识以发明或技术方案的形式为主,可形成新生产过程或新产品;企业知识由项目、产品、商业理念、市场、企业等知识经济实体组成,是科技知识的成果转化[13,16]。由此可见,科学知识一定程度上是其他两种知识的基础和前提。同时,汪涛等[17]认为中国是世界上最适合研究科学知识网络演化的案例之一,因为中国在短时间内取得学术理论领域的迅速发展以及中央政策对知识生产系统产生的深刻影响。因此,本文侧重于从科学知识视角探讨中国城市知识合作网络。

就网络结构而言,学者们大多通过空间分析法、社会网络法和复杂网络理论,从节点、边、社群、整体4个层面分析城市的等级性(中心性)、城际联系的空间异质性、城市组团的区域性(社区探测、凝聚子群等)、网络结构的复杂性(小世界、无标度、度匹配等)、多中心性与核心—边缘性[17-20]。就影响机制而言,部分学者通过知识合作网络特征或演化规律,定性归纳择优链接、路径依赖和邻近性机制的影响[13,17 -18];也有学者通过空间交互模型、负二项式回归和引力模型、二次指派程序(QAP)回归模型等,定量解释城市自身特征和城市间多维邻近性对知识合作的影响[10,21 -22]。其中,城市自身特征包括其社会经济属性、知识创新本底规模等指标;而多维邻近性则包含地理邻近性、认知邻近性、社会邻近性、制度邻近性、组织邻近性、技术邻近性、经济邻近性等[23-24]。不论是基于城市的节点属性,或是基于城际关系的边属性,均只考虑了网络形成和演化的外生动力。随着对网络拓扑结构及其复杂性的关注,学者们亦发现知识合作网络具有明显的自组织自演化特征,即网络的生成与演化受到传递性[25]、择优链接[26]、互惠性[27]等局部网络构型(Network Configuration)内生动力的驱动。例如,与同一机构分别开展科研合作的两个机构之间,更容易形成直接的科研合作,形成数量较多且根植性较强的三元组(Triad)构型,即网络的传递性;已经拥有较多合作伙伴的科研机构,更容易吸引新的合作机构,呈现出一对多的星型(K-star)构型,即择优链接或择优依附效应;而对于非对称的网络,某一机构发起的对另一机构的联系,往往也更容易得到对方反馈的联系,即互惠合作关系。但是,相关研究集中在统计性描述或定性探讨上。因此,亟需将内生动力与外生动力相结合,进行中国城市知识合作影响机制的定量研究。

社会学领域的随机面向对象模型(Stochastic Actor-based Model, SABM)和指数随机图模型(Exponential Random Graph Model, ERGM),为城市网络的内外生影响机制探讨提供了有效手段。例如,覃柳婷等[28]通过SABM模型,将网络结构变量与多维邻近性和节点自身特征相结合加入模型,发现传递三元组内生结构变量对中国知识合作网络的正向显著影响。Broekel等[29]采用ERGM模型,集成网络构型、城市属性、城市间邻近性自变量分析德国城市研发网络的影响机制,也发现传递性具有显著的促进作用。然而,这些研究也存在一定的不足:一方面,SABM适用于网络面板数据,要求不同时期网络边的变化值不能太高或太低,太高不符合连续渐进式变化假设,太低则不能提供足够的信息以便参数估算与检验[30];另一方面,既有研究主要针对二值网络,加权网络在模拟前需要先二值化,即对两城市间的加权联系进行有(1值)或无(0值)的处理,这会带来不同程度的信息损失和拟合偏误[31]。因此,本文将适用于网络截面数据的加权指数随机图模型[32],引入到城市知识合作网络模拟中。一方面,在前人的基础上,纳入知识合作网络内生动力变量开展定量研究,可丰富网络影响机制的内涵;另一方面,将ERGM模型从传统二值网络模拟拓展到加权网络的模拟,可深化城市网络研究的实证。

基于此,本文以科研论文合作数据为基础,从空间结构和拓扑结构层面分析中国城市知识合作网络的演化特征,并通过加权指数随机图模型揭示外生动力(城市禀赋、多维邻近机制)和内生动力(网络构型)对知识合作网络形成和演化的影响,以期为政府制定区域创新政策等提供依据,并深化城市网络和创新地理方向的定量研究。

2 数据来源与研究方法

2.1 中国城市知识合作网络的构建

根据美国国家科学基金会(National Science Foundation, NSF)统计数据,中国科技论文发表量由1996年的33273篇上升到2018年的528263篇(图1)( 数据来源于美国国家科学基金会的《Science and Engineering indicator》报告(http://ncses.nsf.gov/pubs/nsb20206/publication-output-by-region-country-or-economy)。),年均增速高达13.40%,在全球总论文量的占比也由3.42%增至20.67%。2016年以来,中国更是取代美国成为科技论文发表总数最多的国家,且总量优势逐年扩大。因此,本文选取中国逐渐成为全球科技论文发表量第一位的2006—2016年为研究时间段,分析城市知识合作网络演化的影响机制。需要指出的是,本文涉及的城市为中国地级及以上城市,暂未包含港澳台地区。同时,由于论文合作与论文发表存在时间滞后效应,一般采用5年窗口以消除单一年份数据的偶然性与波动性,最终确定数据收集时间段为2002—2006年和2012—2016年,以使结果更具稳健性,后文简写成2006年和2016年的中国城市知识合作网络。

图1

图1   1996—2018年中美科技论文发表情况变化

Fig. 1   Changes of science and engineering articles for China and the United States, 1996-2018


与相关研究[2-3,33 -34]保持一致,通过Python爬虫技术,从“Web of Science”(WOS)核心合集数据库中获取2002—2006年和2012—2016年两个时间段内,作者单位在中国境内城市的所有论文信息,包括论文题目、期刊名称、研究领域、作者及其所属单位和城市等。选择WOS数据库主要考虑到其权威性、影响力强、质量高、覆盖面广以及中国学者的发文偏好和发文量的显著增加[18]。同时,Ma等[35]的实证研究中也发现WOS和中文期刊数据库构建的科学知识合作网络结构具有稳健性。构建中国城市知识合作网络时,首先,将独立作者和同城学者合作的论文数据予以剔除;其次,根据合作论文的作者归属单位所在城市,将作者间的合作投射到城市间的合作(城市内的合作不予考虑),从而每篇合作论文都涉及城际合作子网络;最后,将所有子网络进行叠加汇总即可得到中国城市间的知识合作网络,详细算法和过程参见戴靓等[2]。需要指出的是,数据中存在同一作者属于多个科研单位且位于不同城市的情况,也会被解译为城际论文合作联系。考虑到同一科研主体为多个单位服务时,也会促进其所在单位之间的资源互通和隐性知识流动,因此这类联系也具有合理性。

2.2 网络分析方法

本文分析城市知识合作网络的空间结构和拓扑结构演化,以对应外生动力和内生动力。空间结构主要通过边联系强度可视化分析知识流空间分布特征[36],通过节点区域分析提炼出“中心—腹地”的层级结构及其区域范围[37-38]。拓扑结构通过复杂网络指标测度对知识合作网络的拓扑属性作统计性描述,包括网络密度、节点度、度分布、度度相关性、平均路径长度和全局集聚系数[39-40],具体公式及其意义如表1所示。

表1   复杂网络指标解释

Tab. 1  Explanation of complex network indicators

指标公式解释
网络密度D=e/E网络密度D为实际边数e与最大可能边数E的比值。
节点度ki=jV(i)aijkii的节点度;aij为直接相连的两个节点;V(i)表示与节点i直接相连的节点集合,即i的邻居。
度分布P(k)=nk/nP(k)表示节点度为k的节点数nk占节点总数n的比例。
度度相关性K(i)=1kijV(i)kj
K(k)¯=1N(k)ki=kK(i)
K(i)为节点i所有邻居的平均节点度;N(k)表示度为k的节点的数量;K(k)¯表示度为k的所有节点的邻节点平均度。度度相关性分析节点度与其邻节点平均度间的相关关系和程度。
平均路径长度L=1n(n-1)i, j=1ndijL为平均路径长度,即网络中任意两个节点之间的距离dij的平均值。
全局集聚系数C=1ni=1n2Eiki(ki-1)节点i的集聚系数为邻节点内实际连接边数Ei与最大可能边数的比率;C为全局集聚系数,即所有节点集聚系数的平均值。

新窗口打开| 下载CSV


2.3 加权随机指数图模型

2.3.1 模型介绍与设定

指数随机图模型(ERGM)是一种生成性网络仿真模型,源自社会网络分析法。其以网络中边的相互依赖性为基础,综合考虑内生结构因素与外生属性因素,计算已存在的关系会影响未来关系生成的概率,并通过估计、诊断、仿真、比较等步骤实现对各种影响因素的参数估计与统计推断,从而解释网络的形成与演化机制[41]。标准ERGM是针对二值网络构建的[42],但近期指数随机图模型不断发展与完善,将网络边权重纳入模型,提高了模型对网络演化机制的解释精度[31]。加权指数随机图模型的具体公式表达如下:

Prθ; h, η, g(Y=y)=h(y)exp(η(θ)×g(y))kh, η, g(θ)

式中:Prθ; h, η, g(Y=y)为实现概率;Y为实际网络;y为仿真网络;g(y)为模型统计量;η(θ)拟合参数;kh, η, g(θ)是确保网络结构概率取值之和在0~1之间的归一化常数;h(y)为参考分布。

对于二值网络,参考分布为伯努利(Bernoulli)分布,即独立边产生的概率为0.5;而对于加权网络,通常有泊松(Poisson)分布、几何(Geometric)分布、二项(Binomial)分布、离散(Discrete)分布可选[31]。参考分布的设定主要依赖于实际网络的分布类型,本文研究的论文合作网络数值为非负整数且具有“过度分散”(Over-dispersion)的特点(即方差大于期望),因此预先设定二项分布作为模型的基准参考分布[38]

2.3.2 统计量构造与检验

ERGM统计量包含网络构型、节点协变量、边协变量3类,在城市知识合作网络中对应于网络结构变量、城市属性变量、城际关系变量,具体如表2所示。网络结构变量为内生变量,主要包括边效应(Edges)、互惠性(Mutuality)、受欢迎性(Popularity)、积极性(Activity)、传递性(Transitivity)。本文研究的是无向对称网络,无需再研究互惠性,所以针对加权网络选择加权边(Edges)、K星构型(K-star)、三元组构型(Triad)3个内生结构变量,以检验知识合作网络联系产生的基本效应、择优链接偏好、传递性与聚合性趋势是否显著。

表2   指数随机图模型统计量

Tab. 2  Statistic configurations in the exponential random graph models

变量类型统计量机制假设检验
网络结构变量加权边sum基础效应相当于回归模型的截距项
Knodesqrtcovar择优链接效应是否倾向于形成星形结构
三元组transitiveweights传递效应是否倾向于形成聚合三角形结构
城市属性变量节点属性nodefactor®马太效应属性越强的城市是否更倾向发展联系
nodecov©
nodematch®同配效应属性相同或差异小的城市是否更倾向产生联系
absdiff©
城际关系变量边属性edgecov©®协同效应在其他网络存在关系的城市对是否更倾向产生联系

注:®表示适用于类型变量(Categorical Variable);©表示适用于连续变量(Continuous Variable);©®表示类型变量和连续变量均适用。

新窗口打开| 下载CSV


城市属性变量和城际关系变量为外生变量,其对城市知识合作网络的影响主要体现在城市知识规模、等级和多维邻近性。本文选取城市研发投入(R&D)、高校数量(university)、人均地区生产总值(PGDP)和行政等级(capital)考察知识合作中是否存在马太效应,即属性越强的城市是否越倾向产生知识合作联系?其中,行政等级变量是省会和直辖市为1,其余为0。传统模型中的多维邻近性因素主要体现在ERGM中对同配效应和协同效应的检验,即属性相同或差异小的城市是否更倾向产生联系?在其他网络存在关系的城市对是否更倾向产生联系?本文通过用否属于同一方言区(dialect)表征文化邻近性、是否在同一省份(province)、同一城市群(region)表征制度邻近性、在2006年是否有过论文合作(path)表征社会邻近性,构建了4个虚拟变量(是为1,否为0)。其中,方言划分参考《中国语言地图集》的十大方言区范围[43];社会邻近性也可以反映网络的发展是否存在路径依赖。地理邻近性通过城市间的欧式距离(distance)和是否存在直达高铁/动车(HSR)两个变量表征,前者为连续变量,后者为类型变量(是为1,否为0)。知识邻近性通过两个城市知识产出结构的差距衡量,为连续变量。与Cao等[3]一致,本文通过赫芬达尔指数(HHI)根据论文的学科归属,计算出每个城市知识生产的集中化或多样化程度。

所有外生变量统计数据来自《中国城市统计年鉴》,与知识网络一致,这部分变量数据采用2012—2016年的均值。所有外生变量的VIF均低于5,不存在严重的多元共线性。本文是对2016年的网络进行模拟,而2006年的网络二值化后作为边协变量path(社会邻近性或路径依赖)引入模型。最终确定加权ERGM算法如下:

Pr(Y=y)~θ0sum+θ1nodesqrtcovar+θ2transitiveweights+θ3nodefactor (capital)+                  θ4nodecov (R&D)+θ5nodecov (university)+θ6nodecov (PGDP)+                 θ7absdiff (HHI)+θ8nodematch (dialect)+θ9nodematch (province)+                θ10nodematch (region)+θ11edgecov (distance)+θ12edgecov (HSR)+                θ13edgecov (path)

ERGM是关系型数据的统计模型,可通过类似于逻辑回归的原理解释所观测到的影响因素对网络的影响机制。但由于样本非独立性,ERGM无法通过传统的方法进行拟合,而是采用马尔可夫蒙特卡罗极大似然法(MCMC-MLE)进行估计检验,通过t统计量检验参数的显著性,并通过赤池信息准则(AIC)和贝叶斯信息准则(BIC)评价模型的拟合优度。BIC略大于AIC,两个数值越小,表明模型拟合优度越高。加权ERGM的模拟与检验可在R语言的statnet程序包中通过ergm.count实现。

3 中国城市知识合作网络结构演化分析

3.1 空间结构演化

2006年和2016年中国城市知识合作网络的空间格局如图2所示。整体而言,中国城市知识合作网络“东密西疏”的格局比较稳定。2006年中国知识合作网络主要由北京—上海双核组织(图2a),其中、北京、上海、南京、武汉、天津、长春、广州、合肥之间部分城市对的论文合作量超过1500篇,构成城际知识流动的主要通道。网络呈现出“首府引力效应”,即高强度的知识合作基本形成于首府城市之间,这与中国的行政等级体系或者网络的择优链接机制有关。首府城市往往集聚了更多的高校、研究机构、科研人员等创新资源,即便在地理上空间并不邻近,它们之间也仍旧拥有相当密切的合作联系。2016年区域中心节点显著增多(图2b),论文合作发表量超过1500篇的城市对除了与北京的知识合作外,还包括由上海、合肥、成都、广州、南京、长沙等主导的城际联系。以北京为核心的“轴幅式”知识流动得到强化的同时,京津冀、长三角、长江中游、成渝、珠三角五大国家级城市群之间及其内部的知识合作亦在增加,所构成的“钻石型”结构逐渐显现。知识合作模式不再是长距离合作主导,也包含城市群或省域的邻近扩散和知识溢出[36]

图2

图2   2006年和2016年中国知识合作网络的空间格局

注:基于自然资源部标准地图服务网站审图号为GS(2019)1823号的标准地图制作,底图边界无修改

Fig. 2   Spatial patterns of China's intercity knowledge collaboration network in 2006 and 2016


2006年和2016年中国知识合作网络的节点结构如图3所示。在节点区域分析时,中心(或主导)城市的最大知识合作联系指向一个与之相比知识规模较小的城市,次级中心(或主导)城市的最大知识合作联系指向主导城市,腹地(或从属)城市的最大知识合作联系指向与之相比规模较大的城市,而城市的知识规模以合著论文总量表征。由此,得到图3中的全国中心城市、区域中心城市、区域次级城市、区域三级城市和腹地城市的层级划分。从节点结构图可以更清晰地发现,2006—2016年北京一直是中国城市间知识合作创新的绝对中心,而直辖市、省会城市、计划单列市等高行政级别的城市逐渐成为区域中心。总体而言,这些区域中心城市一方面与所在省份或城市群内部的中小城市进行邻近溢出与知识扩散,另一方面与北京或区域外部的其他中心城市进行远程合作与知识创新,形成“本地嗡鸣”(Local Buzz)与“全球管道”(Global Pipeline)的交织结构[44]。与此同时,这些区域中心连接腹地而形成的节点区域范围愈发与“十三五”规划中的19个城市群范围吻合[2]。最明显体现在2016年节点结构中(图3b),出现了以乌鲁木齐为中心的天山北坡节点区域和以银川为中心的宁夏沿黄节点区域。2006年这两个城市群内城市的最大知识合作联系均是指向区域外的北京和南京(图3a),而2016年群内的中小城市强化了与首位城市的论文合作,促使乌鲁木齐和银川的中介作用得到一定发挥,但两个城市群的群内合作仍较弱,知识一体化程度有待进一步提升。

图3

图3   2006年和2016年中国知识合作网络的节点结构

注:基于自然资源部标准地图服务网站审图号为GS(2019)1823号的标准地图制作,底图边界无修改

Fig. 3   Nodal structures of China's intercity knowledge collaboration network in 2006 and 2016


3.2 拓扑结构演化

随着知识合作网络在覆盖范围上的扩大和合作强度上的提升,整个网络的拓扑结构也发生变化。如表3所示,2006年有183个城市参与WOS论文合作发表,每个城市的平均合作城市有26个,整个网络中的合作城市对有2405个;而2016年参与合作的城市增至206个,每个城市的平均合作伙伴也上升至68个,并产生7011对合作关系。网络密度由0.144增长到0.332,表明城市间知识合作的渠道变多、形式也更多样化。

表3   2006年和2016年中国知识合作网络的拓扑属性

Tab. 3  Topological properties of China's intercity knowledge collaboration network in 2006 and 2016

年份节点平均度密度幂指数度度相关平均路径长度全局集聚系数
20061832405260.1440.611-0.4441.9200.443
20162067011680.3320.143-0.3821.5510.594

新窗口打开| 下载CSV


节点度分布是描述网络几何特征的核心统计参数,若度分布满足幂律分布,且幂指数介于2~3之间,则该网络为无标度网络[45]。由度分布幂律拟合指数可知,2006—2016年中国知识合作网络不是完全的无标度网络,但其一定程度上符合知识合作集中于大城市之间的规律。2006年节点度排名前20%的城市汇聚了整个网络61.95%的知识合作,而2016年该比例下降为58.32%,与幂指数的下降一致。说明近些年中国知识合作网络在首位城市的集中化降低,有多层次扁平发展的态势。2006—2016年的度度相关系数均为负,该网络呈现异配性,即节点度小的城市倾向于与度数大的城市进行知识合作,表明城市间知识溢出具有粘着性和路径依赖性[13,17]。大节点是网络的中心节点,小节点的这种链接偏好有利于边缘城市高效地融入合作网络,直接吸收大城市的知识溢出。2016年异配性有所下降,结合幂指数的下降可知,网络连接的结构在优化,小城市的知识合作倾向逐渐向网络中的次级中心城市转移,次级中心的崛起一定程度分散了网络主导城市对知识资源控制的极化性。

将中国知识合作网络的平均路径长度、全局集聚系数与同规模下的随机网络对比发现,2006年实际平均路径为1.920(大于183个节点组成的随机网络的1.872),全局集聚系数为0.443(大于随机网络的0.143),虽然网络整体呈集聚发展,但最短路径不够优化,在随机网络之上,而未达到小世界特征[46]。2016年的平均路径长度缩短至1.551,即网络中206个城市任意两个之间达成合作平均需1.551步,小于206个节点组成的随机网络的1.670;而全局集聚系数增至0.594,城市间三元组合作模式得到强化,大于随机网络的0.333,符合小世界网络的标准。

4 中国城市知识合作网络演化机制分析

4.1 ERGM模拟过程分析

根据前文构造的14个统计量,采用逐个添加的方法探讨ERGM的拟合结果。ERGM无法对所有内生和外生变量的多重共线性进行检验,本文通过3个标准决定变量的保留:① 加入变量后模型是否收敛;② 加入变量后模型拟合优度是否提升,即AIC和BIC值变小;③ 加入变量的参数是否通过显著性检验,即p值小于0.05,具体结果见表4

表4   加权指数随机图模型拟合结果

Tab. 4  Simulation results of exponential random graph models

变量类型自变量模型1模型2模型3模型4模型5模型6模型7模型8模型9模型10模型11模型12
网络结构变量网络构型Edges-1.660***-1.656***-1.544***-1.384***-1.836***-1.007***-1.070***-1.053***-1.073***-1.059***-1.067***-1.078***
(0.021)(0.032)(0.003)(0.057)(0.013)(0.054)(0.060)(0.057)(0.069)(0.072)(0.061)(0.062)
K-star0.478***0.475***0.519***0.560***0.527***0.585***0.594***0.628***0.622***0.634***0.631***0.626***
(0.011)(0.014)(0.002)(0.020)(0.003)(0.019)(0.023)(0.021)(0.028)(0.024)(0.024)(0.021)
城市属性变量行政等级capital0.017
(节点协变量)(0.064)
知识规模R&D0.000***
(0.000)
university0.050***0.048***0.046***0.047**0.047**0.047**0.048***0.048***0.047***
(0.002)(0.001)(0.002)(0.002)(0.002)(0.003)(0.003)(0.003)(0.002)
PGDP0.000***
(0.000)
知识邻近HHI-2.256***-2.229***-2.785***-2.501***-2.581***-2.635***-2.629***
(0.347)(0.369)(0.303)(0.302)(0.256)(0.285)(0.378)
文化邻近dialect0.245***0.146**0.145**0.135**0.140**0.135**
(0.041)(0.047)(0.044)(0.050)(0.046)(0.044)
制度邻近province1.817***1.490***1.525***1.482***1.514***
(0.088)(0.153)(0.140)(0.164)(0.157)
region0.380**0.314**0.375**0.359**
(0.140)(0.102)(0.129)(0.124)
城际关系变量地理邻近distance-0.067
(边协变量)(0.055)
HSR0.048**
(0.043)
社会邻近path1.133***
路径依赖(0.030)
Akaike Inf. Crit. (AIC)-20627-20747-20649-20808-20774-21204-21183-21407-21472-21660-21461-22547
Bayesian Inf. Crit. (BIC)-20611-20724-20625-20785-20743-21173-21145-21360-21417-21598-21399-22485

注:BIC比AIC大,两值越小,模型拟合优度越好;***表示p < 0.01;**表示p < 0.05;*表示p < 0.1;括号中数值为标准误。

新窗口打开| 下载CSV


模型1首先检验3个网络结构变量EdgesK-starTriad假设,但发现三角形结构导致模型无法收敛,因此仅保留加权边和星形结构。模型2加入行政等级,虽然模型收敛且拟合优度有所提升,但其参数未通过显著性检验,因而移除该变量。模型3~5检验城市研发投入、高校数量和人均GDP对知识合作网络的影响,虽然都显著,但R&DPGDP的参数均小于0.0001,且3个变量加入后对拟合优度的提升程度不如只加入university,因此此后的模拟只考虑该变量。模型6~9依次加入反映知识邻近、文化邻近、制度邻近的4个变量,模拟结果较为稳健,优度逐步提升。模型10和11加入地理邻近性变量——城际距离和有无高铁,发现知识合作中的距离衰减效应并不显著;高铁的存在虽可促进城际知识合作联系,但该变量的加入并没有提升拟合效果,模型11的AIC和BIC值均大于模型9,因此忽略这两个边协变量。模型12检验了2006年存在知识合作的城市之间是否更倾向于2016年发展合作联系,假设成立,该二值变量大大提升了整个ERGM的拟合优度且呈现出较好的收敛性。图4展示了最优模型中8个变量的MCMC收敛性诊断结果,在踪迹(trace)图中,好的模拟需要避免较长的平坦区域和一个方向上持续的发展态势,所有变量拟合需收敛于横线处。实际的时序图类似于“白噪声”,这样的结果呈现良调配,模型收敛性较好[47]

图4

图4   指数随机图模型的收敛性诊断图

Fig. 4   Convergence diagnostics plots for exponential random graph models


4.2 ERGM拟合结果分析

根据模型12的结果可以发现,中国知识合作网络受到择优链接、马太效应、同配性和历史路径的综合影响。在内生结构变量中,Edges的参数一直为负数且显著,说明中国城市知识合作网络并不是随机的[48]。由前文拓扑结构可知,其具有一定的小世界特征。 K-star的参数一直显著,且在0.478~0.626之间,中国城市间的知识合作受网络自演化的成长性与择优链接机制驱动,这与李丹丹等[13]对中国科学知识和技术知识网络的定性研究结果一致。新加入知识网络的城市更倾向与已经拥有很多知识联系的城市进行合作:在等级扩散和迁移扩散等作用下,中心城市先进的知识会流向边缘城市;边缘城市除被动接受中心城市的知识溢出外,还会主动与创新能力高的城市合作,以最小的成本获得最优的网络资源。这种效应在城市信息网络[26]和城市交通网络[40]中也存在,是网络模拟不可忽视的因子,也体现了ERGM相比于传统回归模型具有一定优势。

在外生动力变量中,capital变量不显著,并非说明行政等级不重要,而是因为其与K-star变量高度重合,类似于回归模型里的共线性。中国城市知识合作网络倾向于星形结构化发展,而根据前文网络结构演化分析,这种星形结构主要存在于高等级城市与区域内或邻近的中小城市间合作。可见,K-star变量一定程度上已经验证了高行政等级的城市更易产生知识合作的假设。城市知识规模中,R&DPGDP虽然通过显著性检验,但其对网络演化的影响微乎其微,这与王海花等[49]在长三角城市群协同创新网络演化动力研究中的发现一致。university的参数保持在0.05左右,对知识合作网络有显著的促进作用,即高校数量多的城市之间更倾向于产生知识合作,这个结果比较直观,因为高校是WOS论文产出的主要阵地。也侧面体现出研发投入和经济水平影响不大的原因可能是这两个变量更笼统,其效应不仅针对论文知识合作,还包括技术知识、企业知识等,可能对后者的影响更直接[12,19]

就邻近性而言,两城市间知识结构的邻近性对合作联系的影响最强,即赫芬达尔指数差距越大,越不利于产生知识合作。知识产出多样化的城市倾向于寻找与之类似的研究领域多元化城市合作,而不是知识生产高度集中的城市,后者不利于城市创新力的提升[3]。语言文化的邻近性也能促进城际知识流动,但影响较小,参数为0.135;而同一省内和城市群内城市的制度邻近性对知识合作的影响较大,说明区域发展规划等正式制度比语言文化、价值观、行为规范等非正式制度更能影响知识流动。省域的正向影响(1.514)强于城市群尺度(0.359),即同省城市的知识合作总体优先于同城市群的合作,说明中国城市群知识一体化发展有待深化,城际交流上壁垒需进一步破除[2]。地理邻近性方面的城际高铁能促进知识交流,而空间距离对知识合作的抑制作用并不显著。从前文网络结构演化分析可知,北京对全国城市的远程辐射式知识溢出已克服距离因素,虚拟空间的交流亦可实现论文合作之类的智力资源流动;而高铁等基础设施的全国化布局更是增加了城际合作的自由度,使得地理距离不再是学者间开展合作所需考虑的主要因素。虽然前人的研究发现物理距离对知识合作仍有负向影响,但这种影响一直在削弱[20]。最后,社会邻近性用过去是否有过合作衡量,该变量参数较大(1.133),仅次于知识结构邻近性和省域行政边界影响,在知识流动中发挥重要的推动作用,中国城市知识合作网络具有明显的路径依赖性[48]

5 结论与讨论

本文基于WOS中国城市之间的论文合著数据构建中国城市知识合作网络,分析其2006—2016年的空间结构和拓扑结构演化特征,并引进加权随机指数图模型(ERGM)探究中国城市知识合作网络的演化动力机制。主要研究发现:

(1)就空间结构而言,北京是中国城市知识合作网络的绝对中心,“东密西疏”的格局比较稳定。整体网络由2006年北京—上海双核结构发展为2016年京津冀、长三角、长江中游、成渝、珠三角五大国家级城市群崛起的多中心格局。知识合作模式也由远程交互为主,转化为与邻近扩散相结合。高等级城市发挥着对内知识资源溢出辐射和对外知识资源合作互补的门户作用,以其为中心的节点区域逐渐与规划的城市群范围吻合。

(2)就拓扑结构而言,2006—2016年中国知识合作网络的规模和密度显著增加,城际合作的渠道变多、形式也更多样化。城市间知识合作集中在少数大城市,具有“首府引力效应”,但这种极化性呈下降态势。网络中的小城市倾向于与大城市直接进行知识合作,但随着网络结构的优化和次级中心城市的崛起,这种异配性也逐渐弱化。随着合作路径的优化,中国城市知识网络在2016年演化为小世界网络。

(3)就影响机制而言,中国城市知识合作网络是内生结构与外生动力共同作用的结果。网络自演化的成长性与择优链接性是知识网络的重要驱动力,该作用与行政等级效应存在重叠;研发投入、经济水平和高校数量能促进城际知识流动,但前两者影响甚微,而高校数的正影响在城市属性因素中较强,但弱于邻近性和网络构型的影响;知识、文化、制度邻近性对知识合作起推动作用,其中知识结构相似的城市和同省的城市更易产生知识合作,制度环境比语言文化对知识流动影响大,同省城市的知识合作总体优先于同城市群的合作。高铁的存在增大了城际合作的自由度,地理距离对知识交流的影响不显著。社会邻近性的作用仍然较大,中国城市知识合作存在明显的路径依赖。

与前人的研究类似,本文亦证实了知识/技术邻近性、文化/语言邻近性、制度邻近性、社会邻近性(或历史路径依赖)对城际知识合作的正向影响,但也存在两点差异。① 地理距离对中国城市知识合作虽然起阻碍作用,但不显著,这与刘承良等[24]对全球科研论文合作网络、段德忠等[10]对中国城市专利转移网络、司月芳等[20]对高被引华人科学家知识网络的研究结论相左,而与Zhang等[43]对长三角企业网络的研究发现一致。这可能是由于研究尺度和研究网络类型的差异所致,说明在全国尺度上论文合作比专利转移更能克服物理距离;同时,结合高铁变量的正显著影响可以推测,交通等基础设施的改善极大地压缩了时空;此外,在Broekel等[29]对德国城市研发合作网络的研究中,地理距离的负向作用也及其微弱。② 城市的经济水平、研发投入对城际论文合作的促进作用甚微,而高校数量的正向影响虽比两者高,但仍比邻近性和内生动力的影响弱。因为当模型只考虑外生动力时,高校作为论文产出的重要阵地,其数量比经济水平和研发投入更能直接促进论文合作。而当模型同时考虑外生动力和内生动力时,城市属性变量的影响会弱化,城际关系变量和网络结构变量的拟合参数往往是城市属性变量的10~1000倍之多。这在王海花等[49]对长三角创新网络与Broekel等[29]对德国城市研发合作网络的研究中亦有体现。

根据研究结果,可相应归纳出3点政策启示:① 择优链接是知识网络演化的内在逻辑,需充分考虑该效应,优化知识资源规划布局,促进培育新的知识增长极,推动知识多中心扁平化发展,从而通过大城市的涓滴效应带动中小城市的知识交流水平,以降低或避免马太效应。② 城市属性对知识流动的影响弱于城际同配性和其他协同效应,需重点加强城际联系促进要素流动,优化基础设施和合作政策配套,进一步消除城际合作的认知、文化和制度壁垒,提高城市群知识协同发展水平。③ 当前的知识合作具有较强路径依赖和较弱的聚合性,需积极运用合作优势,提升既有合作的创新水平,并借助小世界网络拓展合作渠道,以强化优质合作模式的根植性和降低新兴城际链接的合作成本。

在前人的基础上,本文加入网络内生动力进行定量探讨,并将ERGM从传统二值网络模拟拓展到加权网络的模拟,深化了城市网络的实证研究。需要指出的是,ERGM无法对内外生变量进行多重共线性检验,因此本文通过逐个添加变量的逻辑确定最优模型变量并进行解释,变量添加的顺序总体不影响结果的稳健性。此外,三角形结构变量在本文网络数据的拟合中未达到收敛,但在其他类型的知识网络中未必如此。未来研究可比较科学知识网络与技术网络、企业网络在内外生影响机制的差别,也可分析不同学科领域知识网络间演化动力的异同。

参考文献

Si Yuefang, Zeng Gang, Cao Xianzhong, et al.

Research progress of global innovation networks

Progress in Geography, 2016, 35(5): 600-609.

DOI:10.18306/dlkxjz.2016.05.007      [本文引用: 1]

Against the background of economic globalization and technological development, innovation network has been a heated topic in the field of economic geography research. However, the scale of research of innovation network remains debatable. Among the global, nation, and local scales, which one is important? The concept of “glocalization” provides a new perspective to this research. Glocalization refers to the twin process whereby, firstly, institutional arrangements shift from the national scale both upwards to the global scale and downwards to local configurations and, secondly, economic activities and inter firm networks are becoming simultaneously more localized/ regionalized and transnational. Based on solid theoretical reviews, this article defines the concept of glocal innovation network and then discusses the main issues and research methods of glocal innovation networks. In this article, glocal innovation network is defined as the sum of knowledge network channels of various innovators, for example, firms, universities, and research institutes, which increasingly connect globally scattered innovation resources together. Local innovation networks, which are the sub-networks of global innovation networks, are connected by trans-local knowledge flows. Glocal innovation networks are organized by the negotiation among industrial associations and technology alliances and their members. Network knowledge measurement is the suitable method to analyze the structure, evolution, and mechanism of glocal innovation network. The concept of glocal innovation networks provides a new perspective to analyze the approaches of local/regional innovation capabilities promotion and economic development by utilizing global and local knowledge. We conclude that existing research remains at the stage of conceptual discussion and case studies. Therefore, the following issues should be further studied: (1) glocal innovation network evolution dynamics and its connection with economic development; (2) comparative study of glocal networks of different industries and technologies; (3) characteristics of Chinese glocal innovation networks, which can provide empirical evidence of latecomer regions in the catching-up process for further theoretical discussion.

[ 司月芳, 曾刚, 曹贤忠, .

基于全球—地方视角的创新网络研究进展

地理科学进展, 2016, 35(5): 600-609.]

DOI:10.18306/dlkxjz.2016.05.007      [本文引用: 1]

全球化、创新驱动是新时代的重要特征之一,创新网络成为经济地理学者关注的热点领域之一。在评述现有创新网络研究成果的基础上,本文界定了全球—地方创新网络的内涵和特征,论述了其类型、结构、作用机理和分析方法,并得出结论:全球创新网络与地方创新网络是不可分割的有机体,地方创新网络是全球创新网络的子系统,知识流是创新网络各主体之间联系的重要纽带,行业协会、技术联盟与成员之间的多次协商是全球—地方创新网络的重要组织方式,而网络知识测量方法则能较好地实现定性分析结论与统计计算结论的融合,能较好地刻画、模拟全球—地方创新网络的形态、结构、演变和机理。从服务国家建设和推动中国创新地理学发展的目标出发,有必要开展基于中国国情和视角的全球—地方创新网络机理与区域经济增长之间互动关系的研究,启动不同产业领域的全球—地方创新网络的比较分析,检验网络知识测量方法的可靠性和准确性。

Dai Liang, Cao Zhan, Zhu Qing, et al.

Analyzing polycentric urban development in China: Evidence from intercity knowledge collaboration

Resources Science, 2021, 43(5): 886-897.

DOI:10.18402/resci.2021.05.03      [本文引用: 5]

Against the backdrop of new urbanization and high-quality development, the spatial structure of urban agglomerations and their polycentric development have become a hot issue in urban studies. Based on the publication data of Chinese scholars from 2012 to 2016 derived from the Web of Science (WOS), this research assessed the knowledge morphological polycentricity and functional polycentricity of 19 urban agglomerations in China by employing Taylor’s polycentricity measurement through the lens of scientific knowledge output and knowledge collaboration network. After quantifying and analyzing the development status, this research explored the determinants of polycentric urban development in China and made some policy recommendations for future development. The results show that: (1) There exists an obvious spatial heterogeneity in both knowledge resources distribution and the knowledge collaboration patterns among different urban agglomerations. The polycentric development of urban agglomerations in the east is better than their central and western counterparts. The overall development of morphological and functional polycentricities is consistent. (2) Urban agglomerations can be divided into four categories: Ⅰ. urban agglomerations with both morphologically and functionally polycentric development, which is typical for the Yangtze River Delta urban agglomeration; Ⅱ. urban agglomerations with morphologically monocentric but functionally polycentric development consisting of the Pearl River Delta urban agglomeration; III. urban agglomerations with both morphologically and functionally monocentric development, which is typical for the northern Ningxia urban agglomeration along the Yellow River; IV. urban agglomerations with morphologically polycentric but functionally monocentric development consisting of the Chengdu-Chongqing urban agglomeration. (3) The knowledge polycentric development of China’s urban agglomerations is driven by both market and policies. For urban agglomerations with the development of knowledge morphological monocentricity, emphasis should be put on the scientific planning and layout of knowledge innovation resources; for those with relatively functionally monocentric development, local governments need to break the barriers of knowledge flows and form a diversified collaboration and sharing mechanism.

[ 戴靓, 曹湛, 朱青, .

中国城市群知识多中心发展评价

资源科学, 2021, 43(5): 886-897.]

DOI:10.18402/resci.2021.05.03      [本文引用: 5]

在新型城镇化和高质量发展背景下,城市群的空间结构及其多中心发展成为城市研究的热点议题。本文基于Web of Science(WOS)数据库中国学者2012—2016年的论文发表数据,采用Taylor的多中心性测度,从知识规模和知识网络层面,对中国19个城市群知识形态多中心与功能多中心进行量化,进而分析不同城市群知识多中心的发展状况、原因及对策,主要结论如下:①中国城市群的知识规模分布和知识合作格局均具有较强的空间异质性,东部城市群知识多中心发育优于中西部城市群,城市群形态与功能多中心发展整体匹配度高。②以中国19个城市群知识形态和功能多中心度的平均值为界,可将城市群分为4类:Ⅰ知识形态与功能均相对多中心发展的城市群,以长三角城市群最为典型;Ⅱ知识形态相对单中心但功能相对多中心发展的城市群,如珠三角城市群;Ⅲ知识形态与功能均相对单中心发展的城市群,以宁夏沿黄城市群最为典型;Ⅳ知识形态相对多中心但功能相对单中心发展的城市群,如成渝城市群。③中国城市群知识多中心发展是市场驱动和政策引导共同作用的结果,对于知识形态相对单中心发展的城市群,需重点加强知识创新资源的合理规划与布局;对于知识功能相对单中心发展的城市群,需积极打破知识流通壁垒,形成多元合作共享机制。

Cao Z, Derudder B, Dai L, et al.

'Buzz-and-pipeline' dynamics in Chinese science: The impact of interurban collaboration linkages on cities' innovation capacity

Regional Studies, 2022, 56(2): 290-306.

DOI:10.1080/00343404.2021.1906410      URL     [本文引用: 4]

Lyu Lachang, Liang Zhengji, Huang Ru.

The innovation linkage among Chinese major cities

Scientia Geographica Sinica, 2015, 35(1): 30-37.

DOI:10.13249/j.cnki.sgs.2015.01.30      [本文引用: 1]

Inter-urban linkage is traditional research field of urban geography. With the increasing importance of innovation in city, inter-urban linkage of innovation has aroused the interesting of numerous sholars, some of which have examined the field through direct surveyed approach by co-author published papers or co-author patents granted, however, this approach is limited because it lacks data of the inter-urban and the rusults of survey may not present the comprensive inter-urban innovation situation of the cities. Therefore, we employ a indrect approach, using revised gravity model to map the pattern of inter-urban innovation linkage of Chinese major cities. China takes constructing the innovation country as the core strategy, and urban innovation as the core contents of national innovation system, so urban innovation linkage is an important part of China’s national innovation system. However, a number of issues, such as the current sitation of urban innovaiton linkage, and the pattern and laws of inter urban innovation have rarely been studied. This article will try to study the inter urban innovation linkage among major Chinese cities so as to find innovation source cities and innovation nodes cities in urban innovation system and the general pattern of the inter urban innovation, to promote the complementary and optimization of urban innovation function and to plan the circle of China urban innovation. Based on the review of the literatures of innovation linkage and theoretical analysis, through establishing a set of measureement of index, this article defines ourward innovation linkage of scale and measures innovation linkage and innovation pattern among Chinese major cities. The research shows: 1) the general pattern of urban innovation linkage in East China is stronger and that in West China is weak, and a "Golden Triangle innovation linkage" pattern has formed in the coastal area of China, which takes Shanghai, Nanjing and Hangzhou as the vertex, while Beijing-Tianjin and Guangzhou-Shenzhen as two points. 2) the city innovation linkage presents obvious hierarchy, the cities, such as Beijing, Shanghai, Guangzhou, Shenzhen, Tianjin and Chongqing have national innovation influence with extensive innovative linkage with the other cities in China, while cities, such as Nanjing, Hangzhou, Wuhan, Zhengzhou, Jinan, Qingdao, Dalian and Xi'an have regional innovation influence. 3) in terms of the East Coastal main economic circle in China, the Zhujiang River Delta economic circle has the strongest internal innovation linkage, but less outward innovation radiation; the Changjiang River Delta economic circle has very strong internal innovation linkage with strong external innovation linkage with the cities of Huan Bohai economic circle, while the cities of Beijing, Tianjin and Tangshan have very strong innovation linkage, and with strong outward radiation to the Changjiang River Delta economic circle. This article examines the general innovation linkage pattern among Chinese major cities considering two important elements of distance among cites and scale of urban innovation, but some elements, such institution and policies which may influence the innovation linkage have not been examined, it will be put consideration in future studies.

[ 吕拉昌, 梁政骥, 黄茹.

中国主要城市间的创新联系研究

地理科学, 2015, 35(1): 30-37.]

DOI:10.13249/j.cnki.sgs.2015.01.30      [本文引用: 1]

对国内外城市创新联系综述及理论分析的基础上,通过一组测度指标,界定了城市外向创新联系规模,采用引力模型,测度了中国主要城市间的创新联系强度及格局。研究表明:中国主要城市创新联系格局基本为东强西弱,东部地区城市创新联系格局显现出以上海、南京、杭州为顶角,以北京、天津,以广州、深圳为2个底角的创新联系&#x0201c;金三角&#x0201d;。城市创新联系在空间上呈现明显的等级性:北京、上海、广州、深圳、天津、重庆等与中国的许多城市有广泛的创新联系,具有全国创新影响力;南京、杭州、武汉、郑州、济南、青岛、大连、西安等成为地区性的城市创新联系节点,具有区域性的创新影响力。在创新联系较强的东部沿海主要的经济圈,珠江三角洲经济圈城市间创新联系最强,但外向辐射力有限;长江三角洲经济圈内部创新联系较强,并与环渤海经济圈有较强的创新联系, 环渤海经济圈内部北京、天津、唐山具有较强的创新联系,外向辐射以长江三角洲的城市为主。对中国创新联系格局规律的揭示,更进一步强化了中国创新城市体系中城市的作用,并为规划与建立中国创新都市圈提供依据。

Lyu L C, Sun F X, Huang R.

Innovation-based urbanization: Evidence from 270 cities at the prefecture level or above in China

Journal of Geographical Sciences, 2019, 29(8): 1283-1299.

DOI:10.1007/s11442-019-1659-1      [本文引用: 1]

With the rapid development of knowledge economy, a number of important shifts are emerging in urbanization pattern across the world. Traditional urbanization theory has become hard to interpret these changes on a global scale, and “innovation” is a core concept to explain the new changes of the urbanization dynamics. As one of the important contents of urban geography, urbanization dynamic needs to turn from the general population flows between rural and urban areas into emphasizing high skilled migrants flow among cities and regions research. Against this background, we propose a conception of innovation-based urbanization. Using this concept, this study analyzes the spatial distribution characteristics of high skilled migrants and cultural diversity on urban innovation in China, based on the data of the sixth census of 270 cities at the prefecture level or above in China. This study measures the extent to which highly skilled migrants and cultural diversity increase urban innovation, by using spatial Durbin method to construct urban innovation regression model, to support the concept of innovation-based urbanization. The result shows that: first of all, the concept of innovation-based urbanization conforms to the development of knowledge economy, which emphasizes the migration process of highly skilled labor to cities. It helps to promote the changes in urban functions and landscapes and the expansion of urban knowledge activities, which undelines new dynamics of urban development, innovative landscape. Secondly, innovation urbanization based on highly skilled migrants flow is an important driving force for the development of Chinese cities, especially for eastern coastal cities and capital cities. Thirdly, the scale of highly skilled migrants flow and the level of urban cultural diversity in China both have been demonstrated of having positive effect on urban innovation output. With other conditions unchanged, a 10% increase in the number of urban highly skilled migrants and urban cultural diversity will directly result in an increase of 3% and 2% in urban innovation output respectively. This research has deepened our understanding and awareness of the openness and dynamics of the regional innovation system, and it has also provided an important theoretical basis for the formulation of urbanization and urban development policy under knowledge economy.

Ma Haitao.

The theoretical construction and network simulation of intercity innovative relationships in knowledge flow space

Acta Geographica Sinica, 2020, 75(4): 708-721.

DOI:10.11821/dlxb202004004      [本文引用: 1]

The interactive relationships between cities in the knowledge economy era have attracted much attention. Researchers have applied a range of methods to explore intercity innovative relationships and associated network characteristics. It nevertheless remains unclear just how intercity innovative relationships can be theoretically constructed based on knowledge flow space and how further scientific simulation methods can be designed. Research questions in this area have rarely been explored in detail, an issue which has inevitably placed obstacles on further exploration. A framework for the theoretical construction of intercity innovative relationships is presented in this study; the basis for this research is that an intercity innovation network is essentially a 'soft network', distinct from a 'hard network'. These interconnections are founded on a subjective relationship construction process and therefore necessitate scale transformation from 'point-point' connections between innovative subjects in different cities with respect to 'city-city' interactions. At the same time, this transformation process is prone to exaggerations and deviations from objective intercity innovative relationships and therefore exerts considerable influence on the accuracy of results such that constructions must be entirely theoretical. Four construction methods for intercity innovative relationships and network simulation are summarized in this study, including an intercity undirected network based on cross-city co-operations between scientific and technological achievements, an intercity directed network based on the cross-city transfer of scientific and technological achievements, an intercity innovation network based on the cross-city flow of high-end talents, and an intercity innovation network based on the multi-city distribution of innovative enterprises and institutions. Simulation tests were then undertaken using relevant data to reflect aspects of these relationships. The results of this analysis are conducive to further exploration of global and regional innovative spatial patterns from the perspective of urban geography and intercity relationships and provide a theoretical and methodological foundation for further research on intercity innovation networks.

[ 马海涛.

知识流动空间的城市关系建构与创新网络模拟

地理学报, 2020, 75(4): 708-721.]

DOI:10.11821/dlxb202004004      [本文引用: 1]

知识经济时代城市间的创新关系是新时代城市间相互作用关系的新内涵,研究者尝试采用各种方法探索城市间创新关系及其网络特征。然而,如何从理论上建构知识流动空间的城市间创新关系?如何设计更加合理的城市间创新网络模拟方法?这些问题却少有专门探讨。基于相关研究,本文提出了城市间创新关系构建的理论框架,认为城市间创新网络本质上是区别于“硬网络”的“软网络”,是一种主观的关系建构过程,需要经过异城创新主体间的点—点关系向城—城之间关系的尺度转换,这一转换过程容易发生夸大或偏离城市间客观存在的创新关系,对结果的精确度产生很大影响,应对关系建构给予充分理论论证;本文论述了4种城市间创新关系建构和网络模拟方法,包括科技成果异城合作的城市间无向网络构建方法、科技成果转让转移的城市间有向网络构建方法、高端人才跨城移动的城市间创新网络建构方法和创新企业机构多城分布的城市间创新网络建构方法,并运用相关数据进行了模拟试验与结果展示,来反映城市间创新关系的不同方面。本研究有助于推动从城市地理学视角和城市关系的维度探讨全球/区域的创新空间格局,为城市间创新网络研究提供理论和方法支撑。

Matthiessen C W, Schwarz A W, Find S.

World cities of scientific knowledge: Systems, networks and potential dynamics

An analysis based on bibliometric indicators. Urban Studies, 2010, 47(9): 1879-1897.

[本文引用: 1]

Ma H T, Fang C L, Lin S N, et al.

Hierarchy, clusters, and spatial differences in Chinese inter-city networks constructed by scientific collaborators

Journal of Geographical Sciences, 2018, 28(12): 1793-1809.

DOI:10.1007/s11442-018-1579-5      [本文引用: 1]

The Chinese urban system is currently experiencing a fundamental shift, as it moves from a size-based hierarchy to a network-based system. Contemporary studies of city networks have tended to focus on economic interactions without paying sufficient attention to the issue of knowledge flow. Using data on co-authored papers obtained from China Academic Journal Network Publishing Database (CAJNPD) during 2014-2016, this study explores several features of the scientific collaboration network between Chinese mainland cities. The study concludes that: (1) the spatial organization of scientific cooperation amongst Chinese cities is shifting from a jurisdiction-based hierarchical system to a networked system; and (2) several highly intra-connected city regions were found to exist in the network of knowledge, and such regions had more average internal linkages (14.21) than external linkages (8.69), and higher average internal linkage degrees (14.43) than external linkage degrees (10.43); and (3) differences existed in terms of inter-region connectivity between the Western, Eastern, and Central China regional networks (the average INCD of the three regional networks were 109.65, 95.81, and 71.88). We suggest that China should engage in the development of regional and sub-regional scientific centers to achieve the goal of building an innovative country. Whilst findings reveal a high degree of concentration in those networks - a characteristic which reflects the hierarchical nature of China’s urban economic structure - the actual spatial distribution of city networks of knowledge flow was found to be different from that of city networks based on economic outputs or population.

Bergé L R, Wanzenböck I, Scherngell T.

Centrality of regions in R&D networks: A new measurement approach using the concept of bridging paths

Regional Studies, 2017, 51(8): 1165-1178.

DOI:10.1080/00343404.2016.1269885      URL     [本文引用: 1]

Duan Dezhong, Du Debin, Chen Ying, et al.

Spatial-temporal complexity and growth mechanism of city innovation network in China

Scientia Geographica Sinica, 2018, 38(11): 1759-1768.

DOI:10.13249/j.cnki.sgs.2018.11.003      [本文引用: 3]

At present, China’s city innovation system is gradually taking shape. As the core component of innovation resources, innovative technology represented by patents has become the focus of competition among all cities. Its gathering and diffusion channels urgently need to build a compatible city technology transfer system. The construction of a national technology transfer system in line with the law of science and technology innovation, the law of technology transfer and the law of industrial development is an inevitable choice for serving the strategy of innovation development. Based on data mining from National Intellectual Property Office of China, the heterogeneities and its evolution characteristics of city innovation network depicted by patent transfer in topology and space from 2001 to 2015 were sketched using lots of visualizing tools such as Pajek, Gephi, VOSviewer, ArcGIS, and so on. Topologically, from 2001 to 2015, with the increasing number of cities involved in technology transfer, China city innovation network has emerged a significant small-world feature with the smaller average path length and the extremely large cluster coefficient compared to its counterpart. In addition, the entire network presents a core- periphery structure with hierarchies, which dominated by Beijing, Shanghai and Shenzhen. Spatially, the quadrilateral pattern of China city innovation network based on the triangular structure is gradually formed. Last but not least, the growth mechanism of city innovation network were also verified by correlational analysis, negative binomial regression approach and gravity model of STATA. The growth of city innovation network in China is significantly related to the technological innovation strength represented by the number of patent application. The findings further confirm that geographical distance has weakened cross-city patents transfer. Meanwhile, the similarity of economic development and industrial structure between cities are also important factors influencing the growth of city innovation network.

[ 段德忠, 杜德斌, 谌颖, .

中国城市创新网络的时空复杂性及生长机制研究

地理科学, 2018, 38(11): 1759-1768.]

DOI:10.13249/j.cnki.sgs.2018.11.003      [本文引用: 3]

以国家知识产权局专利转让记录为数据源,采用大数据挖掘与分析技术、空间分析技术、复杂网络模型和负二项回归模型,系统描绘了2001~2015年中国城市创新网络的拓扑结构、空间结构和生长机制。研究发现:① 中国城市创新网络规模迅速扩张,在两极分化下涌现出显著的小世界性和等级层次性,以北京、上海、深圳为核心的核心-边缘格局不断强化;② 以三角结构为基础的中国城市创新网络的四边形格局逐渐形成,京津、长三角、珠三角是中国城市专利转移的核心三角;③ 中国城市创新网络的生长与城市科技创新实力显著相关,且受到地理距离的阻抗作用,凸显出强烈的地理邻近性,另外城市经济发展水平相似度和产业结构相似度也是影响城市创新网络生长的重要因素。

Neuländtner M, Scherngell T.

Geographical or relational: What drives technology-specific R&D collaboration networks?

The Annals of Regional Science, 2020, 65(3): 743-773.

DOI:10.1007/s00168-020-01002-5      URL     [本文引用: 1]

Huang Xiaodong, Ma Haitao, Miao Changhong.

Connectivity characteristics for city networks in China based on innovative enterprises

Acta Geographica Sinica, 2021, 76(4): 835-852.

DOI:10.11821/dlxb202104005      [本文引用: 2]

Improving the connectivity of multi-sector enterprises at a cross-regional level can enhance knowledge and technology transfer and stimulate innovation and synergies among cities. Therefore, the study of city networks, which comprise a large number of multi-sector enterprises, can provide an important knowledge base for innovation and development at the regional and national levels. Based on an evaluation of innovative enterprises in China by authoritative institutions, data were collected on 1778 multi-sector enterprises, which included details on the headquarters, the branches (a total of 30,625) and the locations. A city-based network for the country was established, using the data for the multi-sector linkages and a model for the headquarters-branches, to explore the network connectivity characteristics via social network analysis, the GIS method and the spatial interactive model. The results showed that (1) although the network covered 353 cities across China, the spatial distribution of the network was extremely uneven. For instance, a diamond-shaped connectivity pattern emerged gradually as the network hierarchy decreased. The Beijing-Tianjin-Hebei region, the Yangtze River Delta and the Pearl River Delta were found to be the three key hubs of the network. (2) The intercity linkages between innovative enterprise sectors (innovative enterprise flows), had a clear administrative center and a provincial boundary effect. Moreover, the innovative enterprises were strongly attracted to the municipalities and provincial capitals. Beijing was at the heart of the network, followed by Shanghai and Shenzhen. (3) Differences existed in regional connectivity. There was a striking difference between the eastern region and the central-western region. The former had a high connectivity with respect to both the internal and the external networks, while the latter had lower connectivity for the internal network but a higher connectivity at the external level. At the same time, although the network structures for all the three eastern megalopolises showed strong cohesion, their connectivity characteristics were quite different. (4) The input and output of innovative enterprise flows were to varying degrees influenced by the indicator attributes for each city, and these in turn were related to the administrative hierarchy, the economic strength and the innovative environment of the region, as well as proximity indicators, which were related to geographical, technological and institutional factors. Foreign capital was not conducive to innovative enterprise flows and to the formation of innovative intercity company-based networks in China.

[ 黄晓东, 马海涛, 苗长虹.

基于创新企业的中国城市网络联系特征

地理学报, 2021, 76(4): 835-852.]

DOI:10.11821/dlxb202104005      [本文引用: 2]

多部门创新企业的跨城布局能够增进城市间的知识流动与创新联系,大量创新企业部门关联构成的城市网络是理解国家创新格局的重要认知基础。本文运用1778家国家级创新企业部门关联数据和“总部—分支机构”方法建立中国城市间有向关系矩阵,借助社会网络分析、GIS技术及空间交互模型方法,对创新企业建构的中国城市网络联系特征进行分析。结果发现:① 基于创新企业的中国城市网络联系覆盖广但极不均质,菱形联系格局在次级网络中逐步显现,京津冀、长三角和珠三角城市群是网络联系的核心枢纽。② 城市间创新企业流具有明显的行政中心指向特征与省级边界效应,直辖市及省会城市对创新企业流具有较强吸引力,北京是网络联系最强核心,上海和深圳次之。③ 城市网络区域异质性突出,东部区域“内联外控”与中、西部区域“内弱外强”的联系格局呈现鲜明对比,东部区域内沿海三大城市群网络的联系结构也存在较大差异。④ 城市的行政等级、经济水平和创新环境等属性指标,以及城市间地理、技术、制度的邻近性关系指标,都对城市吸收和输出创新企业流产生了不同程度的影响,外资并不利于促进中国城际创新企业流和网络的形成。

Li Dandan, Wang Tao, Wei Yehua, et al.

Spatial and temporal complexity of scientific knowledge network and technological knowledge network on China's urban scale

Geographical Research, 2015, 34(3): 525-540.

DOI:10.11821/dlyj201503011      [本文引用: 5]

With the rise of the knowledge-based economy in the 1980s, knowledge (including code and tacit knowledge) as the backbone of innovation has become a key factor affecting production process. Cities have gathered not only a large number of professionals, universities and research institutions, but also a great many producers and consumers, which provides the premise for the innovation actions. City's knowledge storage and its position in the regional knowledge network play an important role in comprehensive competitiveness. Published papers and patents are main outcomes of innovation, which are used to evaluate the urban innovation capability. Moreover, co-publications and co-patents are not only the form of knowledge spillover, but also the key indicators to measure regional innovation. Taking the co-publication and co-patent in the field of biotechnology in China during 2000-2009 as the original data, we built scientific knowledge network (SKN) and technological knowledge network (TKN) between cities. From the perspective of complex networks and geospatial analysis, we explored the temporal and spatial complexity of knowledge spillovers combining the indicators of whole network structure, ego network, power-law, hubs and so on. The results show that: firstly, the nodes degree distribution of SKN and TKN is consistent with the power-law distribution, which means that the both networks not only have a scale-free network structure, but also present a preferential attachment rule when the cities choose the cooperation partner. Secondly, central cities have an obvious hierarchical structure, and are featured by a "big scattered and small gathering" spatial pattern in SKN, while the TKN is not showing this feature. From the view of central city ego network, the cooperation develops between the coastal capital cities at first, and then turns to inter-regional cooperation, such as Yangtze River Delta, Pearl River Delta, and inter-regional knowledge spillovers is obvious in SKN. The central cities and its partners are still in the coastal city instead of western provincial capitals, and inter-regional knowledge spillovers are not significant in TKN. Thirdly, the temporal evolution of central cities and its ego-network presents hierarchical diffusion and contagious diffusion, and conforms to law of grades process in SKN. The TKN is dominated by hierarchical diffusion. Finally, this study draws conclusions on the temporal and spatial complexity of innovation network, which has a positive impact on quantifying spatial knowledge spillovers and measuring its space-time evolution. Besides, the results clarify the status of each city in innovation networks, which provides a new perspective for the cities to formulate innovative policies.

[ 李丹丹, 汪涛, 魏也华, .

中国城市尺度科学知识网络与技术知识网络结构的时空复杂性

地理研究, 2015, 34(3): 525-540.]

DOI:10.11821/dlyj201503011      [本文引用: 5]

知识在产业集聚、区域创新中的地位越来越突出,城市知识储量及其在区域知识网络中的地位对城市的综合竞争力有重要影响。学术论文合作与专利合作是知识溢出的体现形式,是科学和技术发展的重要成果,也是度量区域创新能力的主要指标。以2000-2009年中国生物技术领域合著论文和共同申请专利的信息为原始数据,分别构建中国城市间科学知识网络(scientific knowledge network,SKN)与技术知识网络(technological knowledge network,TKN)。运用复杂网络与地学空间分析方法,从整体网络结构特征、择优链接性、中心城市及其自我网络的空间特征等方面进行分析,探究知识溢出的时空复杂性。研究表明:①SKN和TKN具有无标度网络特征;SKN节点度数的异质性高于TKN。②两种网络均呈异配性,即城市选择合作对象存在明显择优链接性,知识溢出具有粘着性和空间依赖性。③SKN中心城市具有明显的等级结构,空间分布总体呈&#x0201c;大分散小集聚&#x0201d;特点;TKN中心城市层级结构不明显,尚未形成明显极化中心。④SKN中心城市自我网络的合作空间,由最初的沿海省会城市间的合作转向长三角、珠三角、京津冀等区域间和沿海城市与内陆城市间的合作,区域间知识溢出明显;TKN中心城市自我网络仍多分布于沿海城市和少数中西部省会城市,区域间知识溢出不明显。⑤SKN中心城市及其自我网络的时空演变存在等级扩散和传染扩散的现象,符合时空梯度推移规律,且空间等级梯度逐渐向扁平化转变;TKN中心城市及其自我网络的时空演变以等级扩散为主,时空梯度推移现象不明显。研究结论为量化知识溢出及知识溢出网络结构的时空演化过程提供新的研究视角,对城市创新政策的制定有一定借鉴意义。

Lata R, Scherngell T, Brenner T.

Integration processes in European research and development: A comparative spatial interaction approach using project based research and development networks, co-patent networks and co-publication networks

Geographical Analysis, 2015, 47(4): 349-375.

DOI:10.1111/gean.12079      URL     [本文引用: 1]

Wang S, Wang J X, Wei C Q, et al.

Collaborative innovation efficiency: From within cities to between cities: Empirical analysis based on innovative cities in China

Growth and Change, 2021, 52(3): 1330-1360.

DOI:10.1111/grow.12504      URL     [本文引用: 1]

Karlsson C, Johansson B.

Towards a dynamic theory for the spatial knowledge economy//Johansson B, Karlsson C, Stough R R. Entrepreneurship and Dynamics in the Knowledge Economy

London: Routledge, 2006: 12-46.

[本文引用: 1]

Wang Tao, Hennemann Stefan, Liefner Ingo, et al.

Spatial structure evolution of knowledge network and its impact on the NIS: Case study of biotechnology in China

Geographical Research, 2011, 30(10): 1861-1872.

[本文引用: 4]

[ 汪涛, Hennemann Stefan, Liefner Ingo, .

知识网络空间结构演化及对NIS建设的启示: 以我国生物技术知识为例

地理研究, 2011, 30(10): 1861-1872.]

[本文引用: 4]

Ma Haitao, Huang Xiaodong, Li Yingcheng.

The evolution and mechanisms of megalopolitan knowledge polycentricity of Guangdong-Hong Kong-Macao Greater Bay Area

Acta Geographica Sinica, 2018, 73(12): 2297-2314.

DOI:10.11821/dlxb201812003      [本文引用: 3]

The concept of megalopolis, since its original inception six decades ago, has inspired many new terms that mainly describe large-scale urbanized forms such as megaregions and polycentric urban regions. However, recent studies have increasingly focused on the two key functions that megalopolises act as an incubator of new ideas and trends and as a hub that articulates knowledge exchange at the megalopolitan, national, and global scales. While the recent studies have mainly analyzed the functional aspects of megalopolis based on China's Yangtze River Delta region, this paper investigates the evolving process and mechanisms of knowledge collaboration within and beyond Guangdong-Hong Kong-Macao Greater Bay Area (GBA) - one of the most promising and vibrant megalopolises in China. In addition, the GBA megalopolis is unique because it contains Hong Kong and Macao, which have a different political system from China's mainland. Drawing upon a dataset of publications that were indexed in Web of Science Core Collection during the 1990-2016 period, this paper uses the Gini coefficient to measure the degree of knowledge polycentricity of the GBA megalopolis. Here, knowledge polycentricity is further classified into attribute polycentricity of knowledge production and functional polycentricity of knowledge collaboration within and beyond the GBA megalopolis. Whereas the attribute polycentricity refers to the distribution inequality of the total publications of GBA cities, the functional polycentricity represents the distribution inequality of GBA cities' knowledge collaboration at different geographical scales. Our empirical results show: (1) knowledge production of the GBA megalopolis as a whole has experienced a robust and continuous growth. The degrees of both attribute polycentricity and functional polycentricity have also been on the increase in general, although there are some fluctuations in early years and some deviations in recent years. During the ten years after Hong Kong and Macao returned to China (the 2000-2010 period), the degree of knowledge polycentricity of the GBA megalopolis especially enjoyed the fastest rise; (2) The degree of functional polycentricity decreased with the expansion in the geographical scales at which it is measured, confirming the findings of previous studies that functional polycentricity is scale-dependent. Moreover, we find that the degree of functional polycentricity becomes more fluctuated at the global scale while it tends to increase continuously at the megalopolitan scale; (3) The evolving process of knowledge polycentricity of the GBA megalopolis is influenced by institutional proximity, geographical proximity and status proximity between cities. Specifically, the mobility of researchers, the collaboration of universities and research institutes, and the coordination of local governments are three major forces promoting the evolution of knowledge polycentricity of the GBA megalopolis. Overall, the increasing knowledge polycentricity would be of significance for the GBA megalopolis to form a knowledge-driven region of collective collaboration.

[ 马海涛, 黄晓东, 李迎成.

粤港澳大湾区城市群知识多中心的演化过程与机理

地理学报, 2018, 73(12): 2297-2314.]

DOI:10.11821/dlxb201812003      [本文引用: 3]

基于1990-2016年“Web of Science”核心合集所收录的科研论文合著数据,借助基尼系数测度属性和功能多中心性的方法,对粤港澳大湾区城市群的知识多中心性及其知识网络的演化进行了研究。结果发现:① 伴随着粤港澳大湾区城市群知识生产总量的持续增长,其多中心性程度呈现出阶段性、阶梯式提升的特征,分别经历了波动、增长和分化的发展阶段,港澳回归后的2000-2010年间是多中心性快速增长的重要阶段。② 粤港澳大湾区城市群在区域、国家和全球尺度上的功能多中心性程度随着尺度增加逐级递减,进一步证实了功能多中心性的尺度规律性;而且发现了多中心在演化中的尺度敏感性,全球尺度上的多中心性会存在不确定的峰值,而区域尺度上的多中心性可能会持续增加。③ 城市群多中心的演化是受制度接近、地理接近和等级接近影响,在研究人员移动、科研单位联动和政府政策推动及其行动主体间的相互作用下实现的,多中心程度的增加有助于推动粤港澳大湾区城市群构建科研协同创新共同体。

Liu Chengliang, Guan Mingming, Duan Dezhong.

Spatial pattern and influential mechanism of interurban technology transfer network in China

Acta Geographica Sinica, 2018, 73(8): 1462-1477.

DOI:10.11821/dlxb201808006      [本文引用: 2]

On the basis of patent transaction data in 2015, spatial pattern of interurban technology transfer network in China was portrayed by integrating big data mining, social network, and GIS, from the perspectives of nodal strength and centrality, linkage intensity, and modular divisions. Then, its key influencing factors were identified as well using the Negative Binominal Regression Analysis. Some findings were ontained as follows. First of all, the intensity of interurban technology transfers in China is not well distributed with obvious polarization. Those cities with higher-level technology transfers are concentrated in the three urban clusters, namely, the Yangtze River Delta, the Pearl River Delta and Beijing-Tianjin-Hebei urban agglomeration. Secondly, a typical core-periphery structure with hub-and-spoke organization is evidently observed, which consists of several hubs and the majority of cities with far lower technology transfers. Beijing, Shenzhen, Shanghai and Guangzhou are acting as the pivot of the technology transfer network and playing a critical role in aggregating and dispersing technology flows. Thirdly, technology linkage intensities of urban pairs appear to be significantly uneven with hierarchies, centralizing in the three edges from Beijing to Shanghai, from Shanghai to Guangzhou and Shenzhen, and from Beijing to Guangzhou and Shenzhen, which shapes a triangle pattern. Fourthly, the technology transfer network is divided into four communities or plates, with prominent reflexivity and spillover effects, which is resulted from geographical proximity and technological complementary. Last but not least, spatial flows of technology are co-organized by a variety of spatial diffusion modes such as hierarchical diffusion, contact diffusion and leapfrog diffusion, owing to economic and administrative powers. They are greatly influenced by urban economic scale, foreign linkage, policy making, as well as multiple proximity factors related to geographical, technological, social and industrial proximities.

[ 刘承良, 管明明, 段德忠.

中国城际技术转移网络的空间格局及影响因素

地理学报, 2018, 73(8): 1462-1477.]

DOI:10.11821/dlxb201808006      [本文引用: 2]

基于2015年专利交易数据,融合数据挖掘、社会网络、空间分析等方法,从节点、关联、模块及影响因素4个方面揭示中国城际技术转移的空间格局及其影响因素:① 技术转移整体强度偏低,空间极化严重,长三角、珠三角、京津冀城市群成为技术转移的活跃地带。② 北京、深圳、上海、广州是全国技术转移网络的“集线器”,发挥城际技术流的集散枢纽和中转桥梁作用,中西部大部分城市处于网络边缘,整个网络发育典型的核心—边缘式和枢纽—网络式结构。③ 技术关联的空间层级和马太效应凸显,形成以北京、上海、广深为顶点的“三角形”技术关联骨架结构,技术流集聚在东部地带经济发达的城市之间和具有高技术能级的城市之间,中西部技术结网不足,呈现碎片化。④ 技术转移网络形成明显的四类板块(子群),具明显自反性和溢出效应,其空间聚类既有“近水楼台先得月”式块状集聚,也有“舍近求远”式点状“飞地”镶嵌。⑤ 城际技术流呈现等级扩散、接触扩散、跳跃扩散等多种空间扩散模式,其流向表现出经济指向性和行政等级指向性特征。⑥ 城市经济发展水平、对外开放程度、政策支持等主体属性和地理、技术、社会、产业邻近性的城市主体关系均会影响其技术转移强度。

Si Yuefang, Sun Kang, Zhu Yiwen, et al.

Spatial structure and influencing factors of knowledge network of highly cited Chinese scientists

Geographical Research, 2020, 39(12): 2731-2742.

DOI:10.11821/dlyj020200188      [本文引用: 3]

The spatial structure characteristics and influencing factors of knowledge networks are heated research topics in the field of economic geography. Previous studies in knowledge networks have focused on industrial cases, especially on knowledge networks at the national and city levels, while the research of individuals has been relatively limited. We firstly selected highly cited Chinese scientists based on 2014-2015 global highly cited scientists as the original data, and then established knowledge network based on the co-authorship of papers among those scientists, and finally applied social network analysis methods to examine the spatial structure of the knowledge network and used the negative binomial regression model to explore the influence mechanism of knowledge network from the perspectives of geographic proximity, social proximity and institutional proximity. The study found that: (1) the knowledge network of highly cited Chinese scientists has core-peripheral structure with the characteristics of a small-world network. (2) The spatial distribution of this knowledge network is dispersal at global scale and agglomerated at local level. (3) The formation of the knowledge network is influenced by the personal characters of those scientists. Geographical distance has a negative effect on the connection between scientists. The influence of geographic proximity still exists. Both social proximity and institutional proximity have significant positive effects on the formation of knowledge networks of highly cited Chinese scientists.

[ 司月芳, 孙康, 朱贻文, .

高被引华人科学家知识网络的空间结构及影响因素

地理研究, 2020, 39(12): 2731-2742.]

DOI:10.11821/dlyj020200188      [本文引用: 3]

知识网络的空间结构特征与影响因素是经济地理学探讨的热点议题之一,以往研究侧重于产业案例的分析,主要关注国家和城市层面的知识网络,而对科学家等个人层面的网络研究较为缺乏。以2014—2015年全球高被引科学家为原始数据,筛选出高被引华人科学家,并基于Web of Science数据库,检索高被引华人科学家之间合著论文的数据构建知识网络,借助社会网络分析方法对高被引华人科学家知识网络的空间结构进行分析;并运用负二项回归模型,从地理邻近性、社会邻近性、制度邻近性3个维度,探讨高被引华人科学家知识网络的影响机制。研究发现:① 高被引华人科学家知识网络存在核心-边缘结构特征,且具有小世界网络的网络特征;② 此知识网络呈现“小集聚大分散”的空间结构特征,地理邻近性作用明显;③ 高被引华人科学家知识网络形成过程中会受到科学家自身科研能力等因素的影响,地理距离和科学家之间的联系呈现负相关关系,地理邻近性的影响仍然存在,社会邻近性和制度邻近性均对知识网络的形成有促进作用。

Scherngell T, Hu Y J.

Collaborative knowledge production in China: Regional evidence from a gravity model approach

Regional Studies, 2011, 45(6): 755-772.

DOI:10.1080/00343401003713373      URL     [本文引用: 1]

Gui Q C, Liu C L, Du D B.

Globalization of science and international scientific collaboration: A network perspective

Geoforum, 2019, 105: 1-12. DOI: 10.1016/j.geoforum.2019.06.017.

URL     [本文引用: 1]

Boschma R.

Proximity and innovation: A critical assessment

Regional Studies, 2005, 39(1): 61-74.

DOI:10.1080/0034340052000320887      URL     [本文引用: 1]

Liu Chengliang, Gui Qinchang, Duan Dezhong, et al.

Structural heterogeneity and proximity mechanism of global scientific collaboration network based on co-authored papers

Acta Geographica Sinica, 2017, 72(4): 737-752.

DOI:10.11821/dlxb201704014      [本文引用: 2]

Despite increasing importance of academic papers in global knowledge flows, the structural disparities and proximity mechanism related to international scientific collaboration network attracted little attention. To fill this gap, based on data mining from Thomson Reuters' Web of Science database in 2014, its heterogeneities in topology and space were portrayed using visualizing tools such as Pajek, Gephi, VOSviewer, and ArcGIS. Topologically, 211 countries and 9928 ties are involved in global scientific collaboration network, but the international network of co-authored relations is mono-centricand dominated by the United States. It exhibits some features of a "small-world" network with the smaller average path length of 1.56 and the extremely large cluster coefficient of 0.73 compared to its counterpart, as well as the better-fitting exponential distribution accumulative nodal degree. In addition, the entire network presents a core-periphery structure with hierarchies, which is composed of 13 core countries and the periphery of 198 countries. Spatially, densely-tied and high-output areas are mainly distributed in four regions: West Europe, North America, East Asia and Australia. Moreover, the spatial heterogeneity is also observed in the distributions of three centralities. Amongst these, the countries with greater strength centrality are mainly concentrated in North America (i.e. the US and Canada), Western Europe (i.e. the UK, France, Germany, Italy and Spain), and China, noticeably in the US, which forms the polarizing pattern with one superpower of the US and great powers such as China and the UK. Similarly, the big three regions consisting of West Europe, North America and Asian-Pacific region have the peak betweenness centrality as well. Slightly different from the two above, the distribution of nodal degree centrality is uneven in the world, although regional agglomeration of high-degree countries is still observed. Last but not least, the proximity factors of its structural inequalities were also verified by correlational analysis, negative binomial regression approach and gravity model of STATA. The findings further confirm that geographical distance has weakened cross-country scientific collaboration. Meanwhile, socio-economic proximity has a positive impact on cross-country scientific collaboration, while language proximity plays a negative role.

[ 刘承良, 桂钦昌, 段德忠, .

全球科研论文合作网络的结构异质性及其邻近性机理

地理学报, 2017, 72(4): 737-752.]

DOI:10.11821/dlxb201704014      [本文引用: 2]

以科研论文为媒介的知识合作网络已成为知识溢出的重要通道,但目前学术界对全球科研合作网络结构的复杂性涌现机制缺乏深入的探讨。基于2014年Web of Science核心合集所收录的科研论文合著数据,借助大数据挖掘技术、复杂网络、空间统计和重力模型分析,刻画了全球科研论文合作网络的拓扑结构、空间格局及其邻近性机理。结果发现:① 拓扑结构上,形成了以美国为核心的层级网络,具有小世界性和等级层次性,发育出典型的等级“核心—边缘”结构。② 空间格局上,以美国、西欧、中国和澳大利亚为顶点的“四边形”成为全球科研论文合作网络的骨架;三大中心性指标值的空间分异明显,强度中心性形成以美国为极核,加拿大、澳大利亚、中国及西欧诸国为次中心的“一超多强”格局,与之类似的介数中心性呈现北美、西欧和东亚“三足鼎立”的形态,度中心性分布则相对均匀,表现出“大分散、小集中”的“多中心—边缘集散”格局。③ 重力回归分析发现,地理距离抑制了国际科研论文合作,不过其影响力较弱;社会与经济邻近性对全球科研论文合作具有明显的促进作用,语言差异不是国际科研合作交流的障碍。

Vértes P E, Alexander-Bloch A F, Gogtay N, et al.

Simple models of human brain functional networks

PNAS, 2012, 109(15): 5868-5873.

DOI:10.1073/pnas.1111738109      PMID:22467830      [本文引用: 1]

Human brain functional networks are embedded in anatomical space and have topological properties--small-worldness, modularity, fat-tailed degree distributions--that are comparable to many other complex networks. Although a sophisticated set of measures is available to describe the topology of brain networks, the selection pressures that drive their formation remain largely unknown. Here we consider generative models for the probability of a functional connection (an edge) between two cortical regions (nodes) separated by some Euclidean distance in anatomical space. In particular, we propose a model in which the embedded topology of brain networks emerges from two competing factors: a distance penalty based on the cost of maintaining long-range connections; and a topological term that favors links between regions sharing similar input. We show that, together, these two biologically plausible factors are sufficient to capture an impressive range of topological properties of functional brain networks. Model parameters estimated in one set of functional MRI (fMRI) data on normal volunteers provided a good fit to networks estimated in a second independent sample of fMRI data. Furthermore, slightly detuned model parameters also generated a reasonable simulation of the abnormal properties of brain functional networks in people with schizophrenia. We therefore anticipate that many aspects of brain network organization, in health and disease, may be parsimoniously explained by an economical clustering rule for the probability of functional connectivity between different brain areas.

Vinciguerra S, Frenken K, Valente M.

The geography of internet infrastructure: An evolutionary simulation approach based on preferential attachment

Urban Studies, 2010, 47(9): 1969-1984.

DOI:10.1177/0042098010372685      URL     [本文引用: 2]

Cao Wei, Dong Yao, Miao Jianjun.

Research on formation mechanism of regional intellectual property protection network based on exponential random graph models

Soft Science, 2019, 33(11): 131-137.

[本文引用: 1]

[ 曹薇, 董瑶, 苗建军.

基于ERGM的区域知识产权保护网络形成机制研究

软科学, 2019, 33(11): 131-137.]

[本文引用: 1]

Qin Liuting, Teng Tangwei, Zhang Yi, et al.

Evolution's characteristics and influence factors of China's universities knowledge collaboration network

Science & Technology Progress and Policy, 2020, 37(22): 125-133.

[本文引用: 1]

[ 覃柳婷, 滕堂伟, 张翌, .

中国高校知识合作网络演化特征与影响因素研究

科技进步与对策, 2020, 37(22): 125-133.]

[本文引用: 1]

Broekel T, Hartog M.

Determinants of cross-regional R&D collaboration networks:An application of exponential random graph models//Scherngell T. The Geography of Networks and R&D Collaborations

Berlin, Heidelberg, New York: Springer, 2013: 49-70.

[本文引用: 3]

Zhang S R, Derudder B, Witlox F.

Dynamics in the European air transport network, 2003-9: An explanatory framework drawing on stochastic actor-based modeling

Networks and Spatial Economics, 2016, 16(2): 643-663.

DOI:10.1007/s11067-015-9292-8      URL     [本文引用: 1]

Pilny A, Atouba Y.

Modeling valued organizational communication networks using exponential random graph models

Management Communication Quarterly, 2018, 32(2): 250-264.

DOI:10.1177/0893318917737179      URL     [本文引用: 3]

Krivitsky P N.

Exponential-family random graph models for valued networks

Electronic Journal of Statistics, 2012, 6: 1100-1128.

PMID:24678374      [本文引用: 1]

Exponential-family random graph models (ERGMs) provide a principled and flexible way to model and simulate features common in social networks, such as propensities for homophily, mutuality, and friend-of-a-friend triad closure, through choice of model terms (sufficient statistics). However, those ERGMs modeling the more complex features have, to date, been limited to binary data: presence or absence of ties. Thus, analysis of valued networks, such as those where counts, measurements, or ranks are observed, has necessitated dichotomizing them, losing information and introducing biases. In this work, we generalize ERGMs to valued networks. Focusing on modeling counts, we formulate an ERGM for networks whose ties are counts and discuss issues that arise when moving beyond the binary case. We introduce model terms that generalize and model common social network features for such data and apply these methods to a network dataset whose values are counts of interactions.

Li Y C, Phelps N A.

Knowledge polycentricity and the evolving Yangtze River Delta megalopolis

Regional Studies, 2017, 51(7): 1035-1047.

DOI:10.1080/00343404.2016.1240868      URL     [本文引用: 1]

Andersson D E, Gunessee S, Matthiessen C W, et al.

The geography of Chinese science

Environment and Planning A: Economy and Space, 2014, 46(12): 2950-2971.

DOI:10.1068/a130283p      URL     [本文引用: 1]

Ma H T, Li Y C, Huang X D.Proximity and the evolving knowledge polycentricity of megalopolitan science: Evidence from China's Guangdong-Hong Kong-Macao Greater Bay Area, 1990-2016. Urban Studies, 2021, 58(12): 2405-2423.

DOI:10.1177/0042098020942665      URL     [本文引用: 1]

Xiang Lin, Dai Liang, Zhu Xihui, et al.

Hierarchical and regional evolution of China's intercity knowledge innovation network: Evidence from scientific publication collaboration

Modern Urban Research, 2021, 36(1): 25-31.

[本文引用: 2]

[ 香林, 戴靓, 朱禧惠, .

中国城市知识创新网络的等级性与区域性演化: 以合著科研论文为例

现代城市研究, 2021, 36(1): 25-31.]

[本文引用: 2]

Nystuen J D, Dacey M F.

A graph theory interpretation of nodal regions

Papers of the Regional Science Association, 1961, 7(1): 29-42.

DOI:10.1111/j.1435-5597.1961.tb01769.x      URL     [本文引用: 1]

Hou Chunguang, Du Debin, Liu Chengliang, et al.

Spatio-temporal evolution and factors influencing international student mobility networks in the world

Acta Geographica Sinica, 2020, 75(4): 681-694.

DOI:10.11821/dlxb202004002      [本文引用: 2]

Based on the data released by UNESCO on international student mobility in tertiary education from 2001 to 2015, this paper draws on network science to construct a multidimensional weighted directed network heterogeneity model. This model combines the GIS spatial analysis method and the negative binomial regression model to study spatiotemporal evolution and factors influencing international student mobility networks. The results are as follows. First, in terms of the evolutionary characteristics of time series, the linkages of international student mobility networks have increased from 4921 to 9137, and its average weighted degree centrality has rapidly increased from 8004 to 20,834, which indicates that both the number of international students and the choices of overseas routines are mounting. Second, in terms of the topological structure, it has evolved from a single core comprising the United States into dual cores comprising the United States and China. Gradually, Asian countries have become the main body of international student mobility networks, while the centrality of European countries has reduced. Thirdly, in terms of spatial structure, the international student mobility network has a significant core-periphery structure and hierarchical characteristics. The countries in the core, strong semi-periphery and semi-periphery alternate with countries from other tiers. The spatial patterns of the international student mobility network "from east to west, and from south to north" are changing. China and Australia have become the new regional centers of international student mobility networks, meaning that regionalization has become an important trend. Finally, regression analysis shows that the flow of international students correlates positively with the quality of higher education in destination countries, the number of students in colleges and universities, the per capita GDP, the historical links connection between the destination country and the country of origin, and the level of globalization. Geographical distance and linguistic proximity have a significant negative correlation with the flow of international students, indicating that the impediment of language is rapidly weakening, while geographical distance still hinders student mobility.

[ 侯纯光, 杜德斌, 刘承良, .

全球留学生留学网络时空演化及其影响因素

地理学报, 2020, 75(4): 681-694.]

DOI:10.11821/dlxb202004002      [本文引用: 2]

基于联合国教科文组织公布的全球高等学校留学生流动数据,借鉴网络科学,利用社会网络分析方法和负二项回归模型,对2001—2015年全球留学网络时空演化及其影响因素进行研究。主要结论为:① 时序演化特征上,全球留学网络关系流从4921个增加到9137个,平均加权度从8004迅速增加到20834,表明全球留学网络不仅学生数量在增加,且留学路径数量也在不断增加。② 拓扑结构上,从以美国为单一核心,演变成以美国、中国为双核心的拓扑结构,亚洲国家逐渐成为全球留学网络的主体,欧洲国家的中心性逐渐萎缩。③ 空间结构上,全球留学网络具有明显的等级层次性,美国是全球性主导型节点,德国、捷克是区域性主导型节点,次级主导型节点从25个增加到32个,全球留学网络“东向西、南到北”的地理空间格局正在发生变化,中国、澳大利亚等国成为新的区域性中心,区域化成为全球留学网络一个重要趋势。④ 回归分析发现,留学目的地国高等教育质量、高校在校生数量、人均GDP、留学目的地国与留学生来源国间的历史联系及全球化水平与留学生流量呈显著正相关关系,地理距离、语言临近性与留学生流量呈显著负相关关系,表明语言差异的阻抗作用在迅速减弱,地理距离仍然是阻碍学生流动的一个重要因素。

Jiao Meiqi, Du Debin, Gui Qinchang, et al.

The spatio-temporal evolution and influencing factors of urban technical corporation networks: From the perspective of Belt and Road

Geographical Research, 2021, 40(4): 913-927.

DOI:10.11821/dlyj020200333      [本文引用: 1]

China proposed the Belt and Road Initiative (BRI) to facilitate the economic development of the Belt and Road (B&R) region. In the vision of BRI, countries will utilize their comparative advantages to foster cultural and educational exchanges, build scientific and technological platforms, enhance relevant institution for long-term and stable scientific and technological collaboration, and elevate innovation abilities. As a result, B&R technological transfer networks can be constructed. At the same time, the integration of regional innovation can be achieved. However, within the B&R region, except a few developed countries, most countries are still developing or less developed. These countries sometimes show quite different evolutionary mechanism from the developed ones. Therefore, research on B&R technical corporation networks has both pragmatic and theoretical meanings in boosting the development of B&R countries. Under the background of knowledge economy, technology innovation becomes the key to regional economic development. Cities are the main platform of technology activities. So in order to explore the technology activities in and outside B&R region, we investigate the PCT patent data from 2007 to 2018. The inner and outer B&R technical corporation networks are constructed to present the topological structure and spatial distribution of the technical corporation activities. The negative binomial regression is used to detect the dynamic mechanism from the perspective of the proximity theory. The results show that in terms of topological structures, the networks evolve from Scale Extension to Linkage Enhancement stage. Chinese cities gradually reach the core position. In terms of spatial distribution, most linkages between B&R cities are domestic. Meanwhile, cities from the same country show similar pattern of choosing outer corporation partners. Singapore is the most important hub in both inner and outer B&R networks. We find that the mass of cities has significant impact on corporation. Geographical proximity and economic proximity have the significant negative impact, while social proximity, technology proximity and language proximity have the significant positive impact. In addition, geographical proximity and economic proximity have complementary effects as well as geographical proximity and language proximity.

[ 焦美琪, 杜德斌, 桂钦昌, .

“一带一路”视角下城市技术合作网络演化特征与影响因素研究

地理研究, 2021, 40(4): 913-927.]

DOI:10.11821/dlyj020200333      [本文引用: 1]

采用2007—2018年的PCT专利合作数据,基于“一带一路”视角,分段刻画城市技术合作网络的拓扑结构、空间格局及其时空演化,利用负二项回归方法分析其演化的邻近性机理,结果表明:① 拓扑结构方面,网络整体规模经历了从“规模扩大”到“联系增强”的演化过程,中国城市逐渐占据网络的核心层级。② 空间格局方面,“一带一路”城市之间的合作多为国家内部合作,来自同一国家的城市在选择外部合作伙伴时具有一定的相似性。新加坡是“一带一路”内部网络和对外网络的枢纽节点。③ 影响机制方面,合作城市的质量对合作具有显著正向作用,地理邻近性和经济邻近性具有显著负向作用,社会邻近性、认知邻近性和语言邻近性具有显著正向作用,而地理邻近性与经济邻近性、地理邻近性与语言邻近性具有相互补充作用。

Dai L, Derudder B, Liu X J.The evolving structure of the Southeast Asian air transport network through the lens of complex networks, 1979-2012. Journal of Transport Geography, 2018, 68: 67-77.

DOI:10.1016/j.jtrangeo.2018.02.010      PMID:32288377      [本文引用: 2]

This paper presents a novel approach to investigating and understanding the evolving structure of the Southeast Asian air transport network (SAAN) over the period 1979-2012. Our approach captures the main topological and spatial changes from a complex network perspective. We find that the SAAN combines a relatively stable topological structure with a changing multilayered geographical structure. Statistical analysis indicates that the SAAN is a scale-free network with an increasing number of hub cities and has been characterized by small-world properties since 1996. Furthermore, the SAAN exhibits a recently intensified disassortative mixing pattern, suggesting an increasing dependence of small cities on hub-and-spoke configuration for better accessibility. A decomposition analysis is used to disaggregate the SAAN into a hierarchical core-bridge-periphery structure. The core layer consists of capital cities, the most economic vibrant secondary cities, and tourist destinations. This core layer is also densely interconnected with its center of gravity moving towards the north. The periphery layer, comprised of cities in remote areas, sustains a low significance with declining internal connectivity despite a rising number of cities being connected. The bridge layer lies in between both extremes, and is characterized by a high volatility over time. The connections and passengers between different layers increase, especially those between core and bridge after 1996. In our discussion, we trace these changes back to a series of socio-economic and politico-institutional dynamics in Southeast Asia.© 2018 Elsevier Ltd. All rights reserved.

Lusher D, Koskinen J, Robins G. Exponential Random Graph Models for Social Networks:Theory, Methods, and Applications. Cambridge: Cambridge University Press, 2013.

[本文引用: 1]

Robins G, Pattison P, Kalish Y, et al.

An introduction to exponential random graph (p*) models for social networks

Social Networks, 2007, 29(2): 173-191.

DOI:10.1016/j.socnet.2006.08.002      URL     [本文引用: 1]

Zhang W Y, Derudder B, Wang J H, et al.

An analysis of the determinants of the multiplex urban networks in the Yangtze River Delta

Tijdschrift Voor Economische En Sociale Geografie, 2020, 111(2): 117-133.

DOI:10.1111/tesg.12361      URL     [本文引用: 2]

Bathelt H, Malmberg A, Maskell P.

Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation

Progress in Human Geography, 2004, 28(1): 31-56.

DOI:10.1191/0309132504ph469oa      URL     [本文引用: 1]

Barabasi A L, Albert R.

Emergence of scaling in random networks

Science, 1999, 286(5439): 509-512.

DOI:10.1126/science.286.5439.509      PMID:10521342      [本文引用: 1]

Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.

Watts D J, Strogatz S H.

Collective dynamics of 'small-world' networks

Nature, 1998, 393(6684): 440-442.

DOI:10.1038/30918      URL     [本文引用: 1]

Levin D A, Peres Y.Markov Chains and Mixing Times. 2nd ed. Providence, Rhode Island: American Mathematical Society, 2017.

[本文引用: 1]

Chong Z H, Pan S.

Understanding the structure and determinants of city network through intra-firm service relationships: The case of Guangdong-Hong Kong-Macao Greater Bay Area

Cities, 2020, 103: 102738. DOI: 10.1016/j.cities. 2020.102738

URL     [本文引用: 2]

Wang Haihua, Sun Qin, Guo Jianjie, et al.

Research on evolution dynamic of collaborative innovation network in the urban agglomeration of Yangtze River Delta based on ERGM

Science & Technology Progress and Policy, 2021, 38(14): 45-53.

[本文引用: 2]

[ 王海花, 孙芹, 郭建杰, .

长三角城市群协同创新网络演化动力研究: 基于指数随机图模型

科技进步与对策, 2021, 38(14): 45-53.]

[本文引用: 2]

/