地理学报, 2023, 78(11): 2864-2882 doi: 10.11821/dlxb202311014

生态环境

中国城市网络地位对碳排放效率的影响

盛科荣,1, 李晓瑞1, 孙威,2,3, 王传阳4

1.山东理工大学经济学院,淄博 255012

2.中国科学院地理科学与资源研究所,北京 100101

3.中国科学院大学资源与环境学院,北京 100049

4.中国科学院东北地理与农业生态研究所, 长春 130102

Examining the impacts of network position on urban carbon emissions efficiency in China

SHENG Kerong,1, LI Xiaorui1, SUN Wei,2,3, WANG Chuanyang4

1. School of Economics, Shandong University of Technology, Zibo 255012, Shandong, China

2. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

3. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

4. Northeast Institute of Geography and Agroecology, CAS, Changchun 130102, China

通讯作者: 孙威(1975-), 男, 河南开封人, 副研究员, 中国科学院大学岗位教授, 研究方向为经济地理与区域发展。E-mail: sunw@igsnrr.ac.cn

收稿日期: 2023-02-1   修回日期: 2023-10-18  

基金资助: 国家自然科学基金项目(42371209)

Received: 2023-02-1   Revised: 2023-10-18  

Fund supported: National Natural Science Foundation of China(42371209)

作者简介 About authors

盛科荣(1977-), 男, 山东日照人, 博士, 教授, 硕士生导师, 研究方向为城市网络与区域可持续发展。E-mail: shengkerong@163.com

摘要

提升城市碳排放效率是中国实现“双碳”目标和经济社会可持续发展的关键。在流动空间环境下,城市碳排放效率不再仅仅取决于集聚经济,而是越来越多地受到网络经济的影响。本文利用中国制造业500强企业投资联系数据构建城市网络,研究了2005—2020年城市网络地位对全要素碳排放效率的影响机理及特征。研究发现:① 网络地位对城市碳排放效率具有显著正向影响,结论经过稳健性和内生性检验后依然成立。② 网络地位不仅通过价值链重组效应、中间产品多样化效应和网络竞争效应正向影响着城市的碳排放效率,还通过促进绿色技术创新、科技企业孵化和风险资本投资的中介机制改善了城市碳排放效率。③ 网络地位对城市碳排放效率的影响呈现多维异质性特征,东部城市、非资源型城市、人口规模较大城市和行政等级较高城市的碳排放效率更多从网络地位的增强中获益。未来中国政府应将碳达峰碳中和目标与城市网络建设结合起来,充分发挥城市网络对碳排放效率提升的推动作用,同时高度关注网络环境下不同类型城市碳排放效率的协调发展。

关键词: 城市网络; 碳排放效率; 面板Tobit模型; 链式中介效应; 网络经济; 流动空间

Abstract

Improving the urban carbon emissions efficiency (UCEE) is the key for China to achieving carbon peaking and carbon neutrality goals and enhancing sustainable development capabilities. In recent years, increased attention has been given to the role of city network economies in promoting factor productivity and economic growth. However, it is still unknown whether network position of cities translates into a higher level of UCEE. This paper sets out to explore the impact of network position on UCEE through the lens of investment networks of China's top 500 manufacturing enterprises. To this end, the Window model and super-efficient SBM model in data envelopment analysis (DEA) are combined to measure the total factor carbon emissions efficiency of cities. In addition, a set of panel Tobit models are employed to assess the positive influence, transmission channels and multidimensional heterogeneity of cities' network position. The analysis finds that: (1) Network position has a significant positive impact on UCEE. The conclusion is still valid considering the replacement of carbon emissions efficiency measurement methods, spatial autocorrelation effects, and endogeneity issues. This result confirms that network linkages provide a basis for cities to balance economic growth and carbon emissions reduction on a larger spatial scale. (2) Two types of effects through which network position enhances UCEE are identified. On the one hand, network position exerts a direct effect through value chain reorganization, intermediate product diversification and network competition. On the other hand, green knowledge innovation, technology-based enterprise incubation and venture capital investment play mediation roles between network position and UCEE. (3) The influence of network position on UCEE is heterogeneous. The carbon emissions efficiency of eastern cities, non-resource-based cities, cities with larger population size and cities with higher administrative rank benefit more from the enhancement of network position. This indicates that network linkages have increased the inter-city gaps of carbon emissions efficiency in China on different dimensions over the past 20 years. The paper provides important implications for policymakers. In the future, the Chinese government should combine the "dual carbon" goal with the construction of city networks, and give full play to the role of network economies in promoting UCEE. Besides, great efforts should also be made to narrow the multidimensional UCEE gaps to achieve a balanced low-carbon society.

Keywords: city network; carbon emissions efficiency; panel Tobit model; chain mediation effect; network economies; space of flows

PDF (1747KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

盛科荣, 李晓瑞, 孙威, 王传阳. 中国城市网络地位对碳排放效率的影响. 地理学报, 2023, 78(11): 2864-2882 doi:10.11821/dlxb202311014

SHENG Kerong, LI Xiaorui, SUN Wei, WANG Chuanyang. Examining the impacts of network position on urban carbon emissions efficiency in China. Acta Geographica Sinica, 2023, 78(11): 2864-2882 doi:10.11821/dlxb202311014

1 引言

二氧化碳大量排放引起的全球气候变化对人类社会生存和发展带来了严峻的挑战[1]。中国政府在第75届联合国会议上做出了力争在2030年前实现碳达峰并在2060年前实现碳中和的承诺,这不仅是中国履行国际减排责任的重要内容,也对中国绿色转型发展提出了更高的要求。中国有70%以上的碳排放来源于城市[2],如何在快速城镇化进程中协同推动经济转型和节能减碳关系到全国低碳发展的成效[3]。中国是一个发展中国家,需要有效的平衡经济增长和碳减排的关系。与欧美国家追求绝对数量碳减排不同的是,中国的主要任务应该是提高碳排放效率,确保在降低碳排放强度的同时促进经济增长[4]。因此,聚焦城市这一碳排放主体,探究城市碳排放效率的来源,推进绿色低碳城市建设,成为中国实现“双碳”目标和经济社会可持续发展的关键。

与此同时,随着生产分割的日益深化,中国城市间的网络联系快速发展。城市逐步由场所空间中的生产基地转变为流动空间中的经济平台,城市经济的地理边界变得越来越开放。相对于场所空间环境下的集聚经济,网络经济(Network Economies)已经成为理解城市经济效率的重要基础[5]。一方面,城市网络为产业链重组提供了更大的空间,有利于城市之间通过产业链分工形成比较优势、建立产业关联,从而实现专业化生产和产出增长[6];另一方面,城市网络也在更大空间尺度上推动了异质性知识和互补性资源的流动,有利于促进本地技术进步和企业孵化,进而提升整体的创新效率[7]。在这种背景下,中国城市的碳排放效率不再仅仅取决于城市本身的资源优势和集聚经济,也必将越来越多的受到网络地位即城市对网络资源支配、吸收和利用能力的影响。

围绕研究主题,本文重点关注以下3个问题:城市网络地位如何影响全要素碳排放效率?城市网络地位的减碳效应存在哪些机制?城市网络地位的影响在地理区位、资源禀赋、人口规模和行政等级的不同维度上是否存在差异?为了解答这些问题,本文采用中国制造业500强企业投资联系数据构建城市网络,利用度数、中介度和特征根测度城市的网络地位,利用DEA分析中窗口模型和超效率SBM模型相结合的方法测度全要素碳排放效率,在此基础上采用面板Tobit模型定量研究了城市网络地位对碳排放效率的多维影响及中介机制。这些问题的研究将加深对网络经济一般规律的认识,为理解城市碳排放效率来源提供新的视角,并为推进全国统一大市场建设和实现国家“双碳”目标愿景的互动发展提供借鉴。

本文基于中国制造业500强企业投资联系视角开展研究,主要原因有:① 制造业一直是支撑中国城市经济发展的重要基石[8],2020年中国制造业500强企业营业收入和资产规模总额分别占当年GDP的36.92%和38.67%,发明专利占到当年全国发明专利有效数量的18.37%。② 中国制造业500强企业的生产分割和分散化布局日益普遍,大量企业开始在其他城市新建企业或开展股权投资,企业网络的发展在更大空间尺度上推动了城市之间的分工与合作,成为中国城市网络发展的重要媒介。③ 中国制造业500强企业不仅涵盖了通讯、汽车、电气、医药等现代制造行业,也覆盖了石油、化工、冶金、建材等传统高能耗和高碳排放行业,能够较为全面的反映中国城市的主要经济活动,也是提升碳排放效率的着力点。

与本文相关的研究文献主要集中在两个领域。一是中国城市碳排放效率时空演变及影响因素的研究。城市碳排放效率的测度主要有单位GDP碳排放强度、全要素碳排放效率等方法[9],这些研究揭示了城市碳排放效率的多维度异质性[10],以及日益增强的空间溢出效应[11]。但是由于测度方法和指标体系存在差异,不同研究揭示出来的城市碳排放效率时空演化特征并不一致[3,12]。近年来,高铁开通[13]、绿色技术创新[9]、数字经济[14]、区域一体化[15]、低碳试点政策[16]、环境规制[17]对城市碳排放效率的多维影响及作用机理得到了深入的探讨。总体来看,这些研究还停留在场所空间的思维,主要集中在解析城市本身资源禀赋、结构特征和集聚经济等因素的作用机制,没有充分考虑到快速发展的城市网络所带来的深刻影响,特别是网络地位对城市碳排放效率影响的研究仍然处于空白。二是中国城市网络结构特征及外部影响的研究。当前研究集中在城市网络结构的解析方面[18],这些研究揭示了中国城市网络权力的层级分化和核心—外围结构特征[19],以及城市网络联系的凝聚子群结构[20]、相互重叠的网络腹地格局[21]、小世界性和结构韧性[22]。最近几年,城市网络外部性的研究受到重视[23],这些研究揭示了网络嵌入对城市经济发展的积极影响[24]、本地人力资本和知识存量对网络外部性的调节机制[25]、本地蜂鸣和网络管道的互补效应[26]、借用规模和集聚阴影效应的空间并存[27]以及城市网络外部性的空间异质性特征[28]。但是这些研究主要集中在网络外部性对城市创新发展和经济增长影响的层面,对经济主体有意识的网络投资行为产生的非外部性影响关注不足,也没有充分考虑到城市网络在更大空间尺度上平衡经济增长和碳减排的功能。

相较于已有文献,本文的边际贡献主要体现在:① 整合内生经济增长理论、创新地理学等的片段式分析,构建了一个理解城市网络与碳排放效率关系的分析框架,从理论上阐释了城市网络地位的碳减排机制,丰富了城市网络经济效应的理论内涵与应用场景,拓展了对流动空间环境下城市碳排放效率来源的理解。② 基于面板Tobit模型、链式多重中介模型等计量方法,验证了城市网络地位对碳排放效率的积极影响,识别了城市知识产出和创业活力的中介机制,明确了城市网络在实现“双碳”目标中的功能定位,为推动城市绿色高质量发展提供了新的战略选择。本文在城市网络和碳排放效率两个研究领域之间搭建起桥梁,有助于推动网络经济基础理论的发展,并为网络环境下提升中国城市碳排放效率的政策制定提供科学参考。

2 理论基础与研究假说

本文关注的是城市全要素碳排放效率,它本质上是考虑碳排放、要素投入和经济产出的城市综合经济效率。拼合现有内生经济增长理论、创新地理学等的片段式分析,可得待检验的城市网络地位影响碳排放效率的机制与特征(图1),具体包括如下环节:

图1

图1   网络地位影响城市碳排放效率的机制与特征

Fig. 1   Mechanisms and characteristics of network position affecting urban carbon emissions efficiency


第一,城市网络的发展为城市改善自身经济结构提供了更广阔的空间,这种库兹涅茨式的结构优化效应构成了网络环境下城市碳排放效率的重要来源。网络地位的提升至少可以通过3种途径直接影响着城市的碳排放效率。① 价值链重组。城市网络的发展将推动生产的分割,促进产品价值链不同环节与城市资源禀赋、比较优势实现更好的匹配。根据Krugman[29]和Romer[30]的研究,这将放大规模经济、劳动分工和边干边学对生产率的促进作用。因此网络地位的提升可以通过发挥比较优势、放大规模经济和累积技术知识,提高城市的经济绩效和碳排放效率。② 中间产品多样化。城市网络的发展将有利于促进产品内分工,丰富城市体系内部中间产品的种类。根据Ethier的内生经济增长理论[31],中间产品种类的增多可以规避资本积累的收益递减倾向。这意味着网络地位的提升可以增强城市利用多样化中间产品的能力,从而在给定能源消费数量、碳排放数量的情况下生产出更多的产品。③ 网络竞争。城市网络的发展将带来更加激烈的市场竞争,使得那些原先分散在不同区域市场的企业现在变成了直接的竞争对手。市场竞争是经济效率的重要来源,也是模仿导向型增长向创新驱动型增长转变的重要保障[32]。城市网络带来的竞争将迫使高耗能、低效率的产业退出,激励着经济主体更多的采用清洁生产技术、降低能源消费,从而改善城市的碳排放效率。对此,引申出本文的第一个理论假说。

理论假说1:城市网络地位的提高将促进全要素碳排放效率的提升。

第二,城市网络还充当着城市体系中知识和资本流动管道的功能[33],城市网络的发展将对城市绿色技术创新和低碳经济发展带来深刻影响,这种熊彼特式的创造性破坏效应将成为网络地位作用于城市碳排放效率的重要媒介。① 绿色技术创新。在“蜂鸣—管道”的知识流动体系下[33],城市网络促进了不同类型城市之间绿色知识的交流。根据重组式增长理论(Recombinant Growth Theory),技术创新在很大程度上来源于现有知识的重新组合[34]。因此网络地位的提升将为城市利用网络中多样性的知识资源提供更大的空间,这将通过促进城市绿色技术创新的中介机制,提升城市的全要素碳排放效率。② 科技企业孵化。由于经济主体对创业认知的不确定性,在经济体系中往往存在着大量具有商业化利用前景、但未能实现充分利用的知识资源。创业知识溢出理论的研究成果意味着,城市网络的发展有利于实现新知识与掌握更多市场信息的经济主体之间更好的匹配[35]。因此网络地位的提升可以提高城市对未商业化利用的知识资源的可及性,这将通过促进科技企业孵化、推动低碳经济发展的传导机制进一步提升碳排放效率。③ 风险资本投资。风险资本能够迅速、有效地识别投资机会,降低城市低碳产业发展过程中的融资约束,改善城市经济结构和资源配置效率。风险资本还能够为具有前景的生产技术商业化和企业家创业活动提供增值服务,促进企业技术创新,扶持初创企业成立[36],这将进一步为城市绿色技术和低碳经济发展提供动力。因此网络地位不仅将通过风险投资的独立中介效应,还将通过风险投资提升创新活力和创业机会的链式中介效应提高城市碳排放效率。对此,引申出第二个理论假说。

理论假说2:城市网络地位的提高将通过促进绿色知识产出、科技企业孵化和风险资本投资的中介机制提升城市的碳排放效率。

第三,中国城市在地理区位、资源禀赋、人口规模和行政等级多个维度上都存在较大发展差异,网络地位的碳排放效率提升效应也可能存在多维度异质性特征。① 中国幅员辽阔,不同地理区位城市的发展差距明显。东部城市受益于更好的产业基础和创新能力,能够充分利用网络的资源重配效应和知识管道功能提高自身的碳排放效率[37]。而西部城市经济基础和创新发展能力相对较差,这将导致城市网络的碳排放效率提升效应相对较弱。② 中国拥有大量的资源型城市,资源型城市和非资源型城市之间存在较大发展差距。资源型城市的产业结构以采掘工业和原材料工业为主导,缺乏“知识守门人”和利用网络资源的能力,往往难以通过融入城市网络来提高碳排放效率。③ 中国城市的人口规模差距较大,不同规模城市在网络中的获益能力也存在差异。城市规模与集聚经济以及经济活动的多样化密切相关,人口规模更大的城市具备更强的网络资源吸收利用能力,能够从网络地位提升中显著改善碳排放效率[38]。④ 中国城市的行政级别存在较大差距,行政级别对城市经济效率影响巨大。行政级别的提高意味着城市可以享受更多的政策红利,支配更多的经济资源,拥有更好的创新基础设施和经济效率[39],从网络联系中更多的改善自身碳排放效率。基于此,引申出第三个理论假说。

理论假说3:网络地位对城市碳排放效率的影响在地理区位、资源禀赋、人口规模和行政等级多个维度上都将呈现异质性特征。

3 研究方法

3.1 城市网络地位的测度

本文首先借鉴Alderson等提出的隶属联系模型(Ownership Linkage Model)[40],利用2020年中国制造业500强企业与被投资企业的投融资关系界定中国城市间网络联系。中国制造业500强企业名单来自中国企业联合会、中国企业家协会(http://www.cec1979.org.cn)。首先根据企查查网站(https://www.qcc.com)和公司年度报告整理出制造业500强企业对外投资的企业名录,接着将制造业500强企业与被投资企业的投融资关系在城市层面进行加总,最终建立起包含2005年、2010年、2015年和2020年4个时间断面的中国城市网络面板数据。其中,城市网络矩阵中的元素linkij(t)表示,截止到t年在第i个城市的制造业500强企业在第j个城市投资的企业数量。初步分析发现,中国城市间有向联系数量从2005年的6426条增长到2020年16856条。

在此基础上,采用3个相互补充的网络中心性指标来测度城市的网络地位(NP):① 度数(Degree),该指标强调城市在企业投融资网络中的链接强度对网络资源支配能力的重要性,定义为城市发出和接收投资关系数量之和的对数;② 中介度(Between),强调城市对于投资联系的桥接功能的重要性,定义为投资网络中经过城市的最短路径数量的对数;③ 特征根(Eigen),强调城市与网络中具有较高中心性节点临近性的重要性,定义为Eigeni = λ-1jlinkijEigenj,其中ij分别代表焦点城市及其合作伙伴,λ表示最大特征值,linkij表示城市i向城市j发出的投资关系数量。

3.2 城市碳排放效率的测度

本文采用数据包络分析(DEA)中窗口模型和超效率SBM模型相结合的方法,来测度2000—2020年中国城市的全要素碳排放效率(UCEE)。其中,窗口模型不仅可以实现特定时间点上不同城市之间经济效率的横向比较,还能实现同一城市在不同时间点上经济效率的纵向比较;超效率SBM模型不仅考虑到了投入和产出变量的松弛性特征,还使得那些在传统DEA模型中位于效率前沿的城市变得更具有可区分性[41]

考虑一个城市数量为Ni = 1, 2, …, N)和年份跨度为Tt = 1, 2, …, T)的投入产出面板数据,其中每个城市都利用m种类型的投入x生产s种类型的产出y。如果一个窗口起始于时间点k(1 ≤ k T)且宽度为d(1 ≤ d T-k),那么这个窗口中城市的投入矩阵xkd和产出矩阵ykd分别为:

xkd=[x1k, x2k ,, xNk, x1k+1, x2k+1,, xNk+1,, x1k+d, x2k+d,, xNk+d]T
ykd=[y1k, y2k ,, yNk, y1k+1, y2k+1,, yNk+1,, y1k+d, y2k+d,, yNk+d]T

式中:xit=[xi1t, xi2t,, ximt]yit=[yi1t, yi2t,, yist]分别表示城市i在年份tt=k, k+1, …, k+d)上的m维投入向量和s维产出向量。在此基础上,将每个窗口的投入、产出矩阵带入到非导向的超效率SBM模型[41],得到该窗口期内所有城市的全要素碳排放效率。按照相同方法对每个窗口中所有城市的全要素碳排放效率进行测算,然后计算出每个城市在不同窗口中相同时间点上效率的平均值,最终以平均效率值来衡量城市在每个时间点上的碳排放效率。

在具体测算过程中借鉴Kuang等研究[42],将窗口宽度设置为3年(d = 3),因此窗口的数量共有14个。根据数据可获得性原则,借鉴Wang等[3]和Kuang等[42]的研究,本文采用了主要能源消费的全要素碳排放效率,其中产出指标为城市实际GDP,投入指标包括城市的碳排放数量、实际固定资本存量、劳动力数量和城市建设用地面积。投入和产出指标的定义方法见表1

表1   城市全要素碳排放效率的测度指标

Tab. 1  Indicators for measuring the total factor carbon emissions efficiency of cities

类型指标定义方法
产出实际GDP以2000年为基准年份,以GDP平减指数折算
投入碳排放规模利用IPCC的算法估计:Carbon =∑Enkn,其中Enkn分别为第n种能源的消费量和碳排放系数,能源消费包括全社会用电量、天然气、液化石油气和供热4种类型,全社会用电量的碳排放系数根据生态环境部发布的中国区域电网基准线排放因子分区域确定,其他能源的碳排放系数参考《2006年IPCC国家温室气体清单指南》中提供的缺省值确定
实际固定资本存量采用永续盘存法估计,其中基准年份为2000年,初始资本存量用2000年的名义资本存量除以10%来测度,折旧率为取值为9.6%,价格指数为GDP平减指数
劳动力以全市城镇单位从业人员期末人数来测度
城市建设用地以城市用地面积中各项建设用地面积之和来测度

新窗口打开| 下载CSV


3.3 耦合协调度

本文采用耦合协调度指标来识别城市碳排放效率和网络地位的耦合关系。城市i在年份t的耦合协调度Dit的计算公式为:

Dit=UCEEit×NPit1/20.5UCEEit+0.5NPit×0.6UCEEit+0.4NPit1/2

式中:it分别表示城市和年份;UCEE代表碳排放效率;NP代表网络地位。耦合协调度的区间在0和1之间,越接近0,说明网络地位和碳排放效率之间的协调程度越低;越接近1,表明系统间的协调程度越高。

3.4 面板Tobit模型

本文基于Dietz等发展的STIRPAT理论框架,探究网络地位对城市能源消费效率的多维影响[43]。STIRPAT框架可以分析多种人类活动的综合影响并具有灵活的可扩展性,被广泛应用于探索能源消费碳排放的驱动因素并产生了大量的成果[11]。同时考虑到城市全要素碳排放效率为归并数据(Censored Data),使用普通最小二乘(OLS)回归会产生有偏差的估计结果,因此本文使用面板Tobit模型进行计量检验。基准计量模型设定如下:

UCEEit=α0+α1NPit+lφlCtrlitl+cityi+yeart+εit

式中:i代表城市;t代表年份;UCEE代表城市全要素碳排放效率;NP代表城市的网络地位;Ctrl代表控制变量;l表示控制变量的编码;α0代表常数项;α1为反映城市网络地位影响全要素碳排放效率的核心参数;φl表示第l个控制变量的拟合系数;city代表个体效应;year表示时间效应;ε为误差项。

本文中被解释变量为城市全要素碳排放效率(UCEE),采用DEA中窗口模型和超效率SBM模型相结合的方法测度。核心解释变量为城市的网络地位(NP),分别用度数(Degree)、中介度(Between)和特征根(Eigen)来测度。为了减缓遗漏变量带来的估计偏误问题,本文在对STIRPAT模型进行分解和扩展的基础上选择控制变量。原始STIRPAT模型关注的是碳排放数量,主要从人口、财富和技术3个维度解析碳排放的影响因素。本文综合考虑GDP、碳排放以及资本、劳动和土地投入的全要素碳排放效率,更多关注的是经济结构、创新能力和经济激励等因素的影响。参照Wang等[3]、Liu等[10]、徐英启等[12]、丁斐等[17]、黄蕊等[44]的研究,本文在计量方程中纳入了城镇化率、产业结构、人力资本、外国直接投资、航空可达性和财政压力6个控制变量。控制变量定义及计算方法参见表2

表2   控制变量及定义方法

Tab. 2  Control variables and their definition methods

变量符号定义方法影响机理
城镇化率Urban市辖区人口/全市人口集聚经济具有减碳作用,而能耗增长提高碳排放量
产业结构Indust第二产业增加值/GDP结构优化效应提升效率,高能耗部门提高碳排放量
人力资本Reasch研究和开发人员数量的对数通过提升创新发展水平和产业结构提高碳排放效率
外国直接投资FDI外国直接投资规模的对数污染天堂效应或污染光环效应(pollution halo effect)
航空可达性Passe民用航空客运量/全市人口通过改善可达性、吸引价值链高端环节提升碳排放效率
财政压力Gov政府预算支出/政府预算收入通过改善基础设施提高效率,但也导致“趋劣竞争”

新窗口打开| 下载CSV


3.5 数据来源

计量分析基于城市层面的面板数据,城市样本为283个中国地级以上城市(因数据可得性,暂未含港澳台地区)( 本文剔除了中国地级行政区划中的7个地区、30个自治州、3个盟以及拉萨、毕节、铜仁、三沙、吐鲁番等14个数据不完整的城市。),时间断面为2005年、2010年、2015年和2020年。在城市碳排放效率测度中,城市GDP、劳动力、天然气使用量、液化石油气使用量、全社会用电量数据来自相关年份的《中国城市统计年鉴》,城市建设用地面积、供热规模数据来自《中国城市建设统计年鉴》;2018年、2019年和2020年的城市固定资产投资数据根据城市发布的固定资产投资增速数据估算而来。在计量分析中,控制变量也均来自相关年份的《中国城市统计年鉴》。为了缓解异方差问题,网络地位、人力资本和外国直接投资变量均取自然对数处理。

4 实证结果与分析

4.1 特征事实

2005—2020年中国城市间的网络链接在整体上显著增强。城市网络密度从0.0287提升到0.0891,城市度数(对数)的平均值从0.8235提高到1.3014,中介度和特征根的平均值也明显提升。但是城市网络呈现出明显的核心—外围分化特征。绝大多数的网络联系发生在以京津冀、长三角、珠三角和成渝城市群为顶点的菱形区域内部,其中北京、上海、杭州、深圳等城市始终位于网络的核心,并且在城市网络发展过程中进一步强化了自身的网络地位。中西部城市的网络联系普遍稀疏,大多属城市位于网络的边缘地位。

与此同时,中国城市碳排放效率在整体上明显提升,碳排放效率的平均值从0.4397提升到了0.5136(② 本文分析结果与Wang等的结论相冲突[3],Wang等发现1997—2017年中国城市碳排放效率呈现下降趋势。分析结果的差异性可能有两个原因:一是Wang等在测度城市碳排放规模时仅考虑了城市全年电力消费量的单一指标,而本文考虑了天然气、液化石油气、全社会用电量、供热规模4种类型的能源消费量;二是Wang等选取了超效率SBM模型来核算城市的碳排放绩效,而超效率SBM模型无法实现同一城市效率值在不同时间点上的直接比较。)。此外,不同类型城市碳排放效率的演化路径也出现分化:上海、南京、深圳、武汉等171个城市的碳排放效率明显提高,中国主要城市群的核心城市成为碳排放效率前沿城市的主体;盐城、无锡、枣庄、天水等66个城市的碳排放效率基本保持不变,包头、南昌、吕梁、聊城等46个城市的碳排放效率则明显下降。

进一步可以识别出中国城市碳排放效率和网络地位时空耦合的两个显著特征:第一,城市碳排放效率和网络地位的整体关联性显著提升。2005—2020年中国城市碳排放效率和度数的相关系数从0.0408提升到0.3539,耦合协调度的平均值也从0.2236提升到0.3416。当用中介度、特征根来测度城市网络地位时也得到了类似的分析结果。这意味着,城市碳排放效率越来越多的与自身网络地位联系起来。第二,城市碳排放效率和网络地位耦合发展的空间和类型指向性日益明显。从图2中可以看出,东部地区城市,特别是那些位于中国主要城市群地区(哈长、京津冀、山东半岛、长三角、粤港澳等)的城市,碳排放效率和度数的耦合协调度得到明显改善;西部地区的成渝城市群、滇中城市群的耦合协调度得到显著提升,其他大多数城市的碳排放效率并没有从网络地位提升中受益。当用中介度、特征根来测度城市网络地位时也得到了类似的分析结果。这意味着,网络地位对于不同城市碳排放效率的影响存在差异。

图2

图2   2005年和2020年中国城市碳排放效率和度数的耦合格局

注:基于自然资源部标准地图服务网站GS(2020)4619号的标准地图绘制,底图边界无修改。

Fig. 2   The coupling patterns of carbon emissions efficiency and degree centralities of Chinese cities in 2005 and 2020


4.2 基准回归结果

考虑到城市的度数、中介度和特征根存在较高相关性,为了避免潜在的共线性问题,本文依次对这3个变量开展分析。表3报告了基准模型式(5)的回归结果。在所有回归中Log likelihood的值较大且LR test和Wald chi2(10)统计值显著,表明模型设定合理。在第(1)和(2)列中,度数的拟合系数均为正值且显著。这意味着对外链接数量越高的城市越有能力实现经济结构的优化调整,具有更多机会利用网络中多样化的中间产品,从而有效提升全要素碳排放效率。在第(3)和(4)列中,中介度的拟合系数也显著为正值,这表明城市在网络中桥接功能的提升也会显著提高碳排放效率。在第(5)和(6)列中特征根在1%的水平上具有显著正向影响,表明城市碳排放效率不仅取决于合作伙伴的数量,还受到合作伙伴网络地位的积极影响。总体来看,理论假说1得到支持,即城市网络为城市发挥比较优势和利用外部资源提供了更大的空间,这构成了流动空间环境下城市碳排放效率的重要来源。

表3   面板Tobit模型基准回归结果(n=1132)

Tab. 3  The baseline regression results of panel Tobit model

(1)(2)(3)(4)(5)(6)
Degree0.0474***
(0.013)
0.0378**
(0.015)
Between0.0209***
(0.006)
0.0166**
(0.007)
Eigen0.0042***
(0.001)
0.0039***
(0.001)
Urban-0.1194***
(0.045)
-0.1210***
(0.046)
-0.1360***
(0.047)
Indust0.1900***
(0.052)
0.1886***
(0.052)
0.1928***
(0.052)
Reasch0.0031
(0.005)
0.0041
(0.005)
0.0023
(0.005)
FDI0.0049*
(0.003)
0.0050*
(0.003)
0.0048*
(0.003)
Passe0.0097**
(0.004)
0.0100***
(0.004)
0.0091**
(0.004)
Gov-0.0025
(0.003)
-0.0031
(0.003)
-0.0032
(0.003)
个体效应
时间效应
常数项0.4007***
(0.014)
0.3388***
(0.053)
0.4253***
(0.010)
0.3531***
(0.054)
0.4184***
(0.011)
0.3651***
(0.055)
Log likelihood762.93776.43761.58775.94762.74777.22
LR test499.46***
(0.000)
467.33***
(0.000)
513.36***
(0.000)
471.50***
(0.000)
495.92***
(0.000)
459.84***
(0.000)
Wald chi2(10)112.64***
(0.000)
142.56***
(0.000)
110.08***
(0.000)
141.71***
(0.000)
112.13***
(0.000)
144.13***
(0.000)

注:括号中数值为标准误;******分别代表在10%、5%和1%的水平上显著。

新窗口打开| 下载CSV


对控制变量的估计结果也做出简单说明。Urban的拟合系数显著为负值,表明过去20年来,中国城镇规模快速扩张对能源消费强度带来的压力超过了集聚经济的积极影响,总体上导致了碳排放效率的下降;Indust的拟合系数显著为正值,表明近些年来中国淘汰落后产能、推进节能降耗和促进工业转型发展的努力取得了巨大的成效,再次验证了库兹涅茨式的结构优化效应是中国城市碳排放效率的重要来源;FDIPasse的系数也显著为正值,表明外商直接投资和航空可达性改善了城市经济结构,带来了技术溢出,从而降低了碳排放强度;Reasch的系数不显著,意味着研发人员对城市碳排放效率不具有直接影响,事实上后面中介效应分析表明研发人员主要通过提高城市创新能力的中介渠道降低碳排放强度;Gov的系数也不显著,背后的原因可能在于财政支出的生产率效应被“趋劣竞争”带来的“污染避难所”效应抵消。

4.3 稳健性检验和内生性问题应对

4.3.1 稳健性检验

第一,变换碳排放效率测度方法。虽然超效率SBM模型能够对位于效率前沿的决策单元进行排序和比较,但是这种方法将二氧化碳排放作为投入要素来看待。实际上,二氧化碳是经济系统的非期望产出。在存在非期望产出的情况下,相对于较少的资源投入,具有较多好的(期望)产出和较少坏的(非期望)产出的技术应被认为是有效的。为此,本文采用窗口模型和非期望产出SBM模型相结合的方法重新测度城市碳排放效率并进行回归分析。表4汇总了回归结果,可以发现城市网络地位与碳排放效率仍然呈现显著正相关关系,表明替换碳排放效率测度方法不会影响本文结论的稳健性。

表4   变换碳排放效率测度方法的稳健性检验结果(n=1132)

Tab. 4  Robustness test results for replacing carbon emissions efficiency measurement methods

(1)(2)(3)(4)(5)(6)
Degree0.0467***
(0.013)
0.0394**
(0.016)
Between0.0197***
(0.007)
0.0159**
(0.008)
Eigen0.0039***
(0.001)
0.0037***
(0.001)
控制变量

注:括号中数值为标准误;******分别代表在10%、5%和1%的水平上显著;控制变量的选取同表3中第(2)列一致,所有回归均包含个体效应、时间效应和常数项;为节省篇幅,未报告控制变量、个体效应、时间效应和常数项的回归结果,下同。

新窗口打开| 下载CSV


第二,考虑空间依赖效应。为了避免遗漏空间依赖效应导致的估计偏误问题,本文将城市碳排放效率的空间滞后项(w×UCEE)加入基准模型进行检验,其中空间权重矩阵w采用一阶Queen邻接方法界定。表5汇总了空间滞后模型的估计结果。空间滞后模型揭示出两个显著特征:① 城市碳排放效率空间滞后项的拟合系数在所有回归中均为正值且显著,表明空间相邻城市的技术溢出效应和市场竞争效应促进了焦点城市碳排放效率的提升,意味着城市碳排放效率在地理空间上是相互影响的;② 度数、中介度和特征根的拟合系数均显著为正值,这表明即使在考虑空间依赖效应的情况下,网络地位对于城市碳排放效率仍然具有显著的促进作用。因此,空间滞后模型分析结果进一步验证了网络地位对碳排放效率具有稳健的正向影响。

表5   空间滞后模型的稳健性检验结果(n=1132)

Tab. 5  Robustness test results of spatial lag models

(1)(2)(3)(4)(5)(6)
w×UCEE0.0388***
(0.007)
0.0399***
(0.007)
0.0405***
(0.007)
0.0411***
(0.007)
0.0395***
(0.007)
0.0399***
(0.007)
Degree0.0180***
(0.005)
0.0137**
(0.006)
Between0.0192***
(0.006)
0.0143**
(0.007)
Eigen0.0036***
(0.001)
0.0028**
(0.001)
控制变量

新窗口打开| 下载CSV


4.3.2 内生性问题应对

第一,采用滞后期模型。由于城市网络的发育存在择优选择机制,即那些在场所空间中具有较高经济绩效的城市通常在流动空间中占据着较高的网络地位[18-21],因此城市网络地位与碳排放效率之间可能是相互影响的。为了控制潜在的反向因果关系带来的内生性问题,本文将滞后一期(5年)的城市网络地位作为解释变量,并重新进行回归。表6报告了滞后期模型的回归结果,其中L1.Degree、L1.Between和L1.Eigen分别为度数、中介度和特征根的一阶时间滞后项。可以观测到城市网络地位的系数仍然显著为正值,表明基准回归结果在缓解反向因果关系导致的内生性问题后依然稳健。

表6   滞后期模型的稳健性检验结果(n=1132)

Tab. 6  Robustness test results of lagged variable models

(1)(2)(3)(4)(5)(6)
L1.Degree0.0222***
(0.006)
0.0193***
(0.006)
L1.Between0.0076***
(0.003)
0.0060**
(0.003)
L1.Eigen0.0040***
(0.001)
0.0038***
(0.001)
控制变量

新窗口打开| 下载CSV


第二,采用工具变量法。本文进一步选择城市到最近沿海港口距离的对数(Disport)作为工具变量,采用两步法IV-Tobit模型开展内生性检验。沿海港口名单来自2006年交通部发布的《全国沿海港口布局规划》(https://www.gov.cn/ztzl/2007-07/20/content_691642.htm)。选择城市到最近沿海港口距离作为工具变量的原因在于地理位置是外生变量,并且会通过影响企业的区位选择塑造着城市在企业网络中的嵌入地位。表7报告了两步法IV-Tobit模型的回归结果,可以观测到:在(1)、(3)和(5)列中工具变量的回归系数显著为负值,且弱工具变量检验的AR和Wald统计值均在1%的水平上显著,表明工具变量满足相关性要求;在(2)、(4)和(6)列中度数、中介度和特征根的拟合系数均显著为正值,这表明在考虑到反向因果关系引起的内生性问题后,网络地位提升城市全要素碳排放效率的结论仍然是成立的。

表7   两步法IV-Tobit模型的稳健性检验结果(n=1132)

Tab. 7  Robustness test results of two-step IV-Tobit models

(1)(2)(3)(4)(5)(6)
DegreeUCEEBetweenUCEEEigenUCEE
Distport-0.04160***
(0.009)
-0.0846***
(0.018)
-0.4362***
(0.097)
Degree0.6723***
(0.163)
Between0.3307***
(0.081)
Eigen0.0641***
(0.016)
控制变量
AR test65.30***65.31***65.30***
Wald test16.94***16.53***16.64***

新窗口打开| 下载CSV


5 检验分析

5.1 链式多重中介效应检验

城市在生产网络中的嵌入地位可能会通过熊彼特式创造性破坏效应的传导机制提升碳排放效率。本文检验了3个中介变量的影响:① 绿色知识(GPatent),采用人均绿色专利申请量的对数来测度,绿色专利清单来自国家知识产权局发布的《绿色低碳技术专利分类体系》,绿色专利数据根据佰腾网(https://www.baiten.cn)的信息整理得到;② 科技企业(TFirm),用人均科技型中小企业注册数量的对数来衡量,数据来自企查查网站(https://www.qcc.com);③ 风险投资(PEVC),用私募股权投资(PE)和风险投资(VC)之和的对数来测度,数据来自万得数据库(https://www.wind.com.cn)。

绿色知识和科技企业指标分别反映了两种不同类型的城市活动,前者反映了科研人员遵循自然规律的知识创造活动,后者反映了潜在企业家遵循市场规律的企业创办活动。考虑到风险投资可能会促进绿色知识产出和科技企业孵化,因此本文采用链式多重中介效应模型来考察网络地位影响碳排放效率的中介渠道。由于绿色知识产出和科技企业数量的相关性较高(相关系数达到0.7665),为了避免共线性问题本文将这两个变量分别放入两组方程并依次进行检验。参考Baron等的方法[45],构建如下链式多重中介效应模型:

PEVCit=η0+η1NPit+lφlCtrlitl+cityi+yeart+εit
Mediatorit=γ0+γ1NPit+γ2PEVCit+lφlCtrlitl+cityi+yeart+εit
UCEEit=θ0+θ1NPit+θ2PEVCit+θ3Mediatorit+lφlCtrlitl+cityi+yeart+εit

式中:Mediator为受到风险投资影响的中介变量,分别用绿色知识产出和科技企业数量测度;η0η1γ0γ1γ2θ0θ1θ2θ3为待估计的参数;其他变量的含义与式(4)相同。链式多重中介模型的估计结果见表8

表8   链式多重中介效应模型检验结果(n=1132)

Tab. 8  Test results of chain multiple mediation models

PEVCGPatentUCEETFirmUCEEPEVCGPatentUCEETFirmUCEE
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)
GPatent0.0407***
(0.012)
0.0399***
(0.012)
TFirm0.0048***
(0.001)
0.0046***
(0.001)
PEVC0.0855***
(0.010)
0.0109***
(0.004)
0.8995***
(0.081)
0.0097**
(0.004)
0.0824***
(0.010)
0.0113***
(0.004)
0.9120***
(0.080)
0.0102**
(0.004)
Degree0.1728**
(0.084)
0.2328***
(0.029)
0.0261*
(0.015)
1.1128***
(0.300)
0.0299**
(0.015)
Eigen0.0326***
(0.007)
0.0218***
(0.003)
0.0031**
(0.001)
0.1213***
(0.027)
0.0033**
(0.001)
控制变量

注:(1)和(6)列报告了方程(5)的固定效应面板模型估计结果,(2)、(4)、(7)和(9)列报告了方程(6)的固定效应面板模型估计结果,(3)、(5)、(8)和(10)列报告了方程(7)的随机效应面板Tobit模型估计结果。

新窗口打开| 下载CSV


表8中(1)~(5)列报告了用度数来测度网络地位时的链式多重中介模型估计结果。(1)列以PEVC为被解释变量,可以发现度数的拟合系数(η1)在5%的水平上显著为正值;(2)列以GPatent为被解释变量,风险资本的系数(γ2)在1%的水平上显著为正值;(3)列以UCEE为被解释变量,风险资本的系数(θ2)和绿色知识产出的系数(θ3)也均显著为正值。分析结果表明度数不仅通过风险资本投资和绿色知识创新两个独立的中介渠道提升城市碳排放效率,还通过“风险资本投资→绿色知识创新”的链式中介渠道提升城市碳排放效率。(1)、(4)和(5)列进一步检验了风险资本投资和科技企业孵化的中介效应,结果发现度数通过风险资本投资和科技企业孵化两个独立的中介渠道以及“风险资本投资→科技企业孵化”的链式中介渠道提升城市碳排放效率。因此,理论假说2得到初步验证。

表8中(6)~(10)列报告了用特征根来测度网络地位时的链式多重中介模型估计结果。(6)列中特征根的拟合系数(η1)在1%的水平上显著为正值,表明特征根的提升增加了城市的风险投资;(7)列中风险资本的系数(γ2)在1%的水平上显著为正值,表明在控制特征根的情况下风险资本促进了城市绿色知识产出;(8)列中风险资本和绿色知识产出的系数(θ2θ3)也均显著为正值,表明在控制特征根的情况下风险资本和绿色知识产出均促进了城市碳排放效率。分析结果意味着,特征根也通过风险资本投资和绿色知识创新两个独立的中介渠道以及“风险资本投资→绿色知识创新”的链式中介渠道提升城市碳排放效率。(6)、(9)和(10)列的结果也进一步表明,在以特征根来测度网络地位的环境下,风险资本投资同时发挥了独立中介效应和链式中介效应,科技企业孵化发挥了独立中介效应。总体来看,理论假说2得到进一步检验。

5.2 多维度异质性检验

本文采用Chow检验方法,在基准方程中加入城市网络地位与组分虚拟变量(Class)的交叉项,来检验网络地位对城市碳排放效率影响的多维度异质性。模型设定如下:

UCEEit=α0+α1NPit+α2NPit×Classi+lφlCtrlitl+cityi+yeart+εit

式中:NP×Class表示网络地位与组分虚拟变量的交叉项;其他变量的含义与式(4)相同。为了增加分析结果的可靠性,本文不仅检验了城市在全国尺度的整体网络中地位特征的影响,还检验了城市在不同分组的局部网络中地位特征的影响。组分虚拟变量(Class)为二值变量,其中焦点城市编码为1,其他城市编码为0。

为了检验网络地位对城市碳排放效率影响的空间异质性,本文将城市按照地理区位划分为东部、中部和西部3个组分(③ 东部包括北京、天津、河北、上海、江苏、浙江、福建、山东、广东和海南,中部包括辽宁、吉林、黑龙江、山西、安徽、江西、河南、湖北和湖南,西部包括内蒙古、广西、重庆、四川、贵州、云南、西藏、陕西、甘肃、青海、宁夏和新疆。),并构建了EastCentralWest 3个地理区位虚拟变量。其中,如果城市在东部地区East = 1,否则East = 0;如果城市在中部地区Central =1,否则Central = 0;如果城市在西部地区West = 1,否则West = 0。考虑篇幅关系,本文仅仅报告了网络地位用度数来测度时的空间异质性检验结果(表9),网络地位用中介度和特征根来测度时的分析结果类似。从表9中可以发现,无论是在整体网络和局部网络中,Degree×East的拟合系数均显著为正值,而Degree×West的系数显著为负值,表明度数对东部城市碳排放效率的促进作用明显高于中西部城市,而对西部城市碳排放效率的促进作用显著低于东中部城市;Degree×Central的系数不显著,表明度数和碳排放效率的关系在中部城市、东西部城市的分组之间不存在显著差异。此外,也可以观测到,相对于局部网络而言,整体网络分析中度数的拟合系数具有更高的绝对值,表明城市碳排放效率更多受到在国内市场大循环中的嵌入特征的影响。

表9   空间异质性的检验结果(n=1132)

Tab. 9  Results of spatial heterogeneity test

整体网络局部网络
东部中部西部东部中部西部
(1)(2)(3)(4)(5)(6)
Degree0.0054
(0.018)
0.0397**
(0.016)
0.0635***
(0.016)
0.0071
(0.008)
0.0232***
(0.007)
0.0307***
(0.006)
Degree×East0.0748***
(0.021)
0.0325***
(0.010)
Degree×Central-0.0100
(0.024)
-0.0025
(0.010)
Degree×West-0.0942***
(0.022)
-0.0375***
(0.011)
控制变量

新窗口打开| 下载CSV


接着本文将城市按照类别进行分组,构建类别虚拟变量,并进行了网络地位影响的类别异质性检验。按照资源基础,城市被分为资源型城市(焦点城市的类别虚拟变量Resource = 1)和非资源型城市(Resource = 0),其中资源型城市名单来自2013年国务院发布的《全国资源型城市可持续发展规划(2013—2020年)》(http://www.gov.cn/zwgk/2013-12/03/content_2540070.htm);按照人口规模,城市被分为较大城市(Size = 1)和较小城市(Size = 0),其中较大(较小)城市指的是2020年市区人口大于(小于)100万的城市;按照行政级别,城市被分为级别较高城市(Political = 1)和级别较低城市(Political = 0),其中前者包括直辖市、省会城市和计划单列市,后者为普通地级城市。表10报告了度数的检验结果,网络地位用中介度和特征根来测度时的分析结果类似。可以观测到,在整体网络分析结果中Degree×Resource的系数显著为负值,而Degree×SizeDegree×Political的系数显著为正值;局部网络的分析结果具有相似的特征,但是交叉项的拟合系数明显变小且Degree×Resource的系数不再显著。分析结果表明:相对于资源型城市、规模较小城市和行政等级较低城市,网络地位的碳减排效应在非资源型城市、规模较大城市和行政等级较高城市更加明显;相对于局部网络,城市在全国尺度网络联系中的地位特征对碳排放效率具有更大的边际影响。

表10   类型异质性的检验结果(n=1132)

Tab. 10  Results of type heterogeneity test

整体网络局部网络
资源基础人口规模行政等级资源基础人口规模行政等级
(1)(2)(3)(4)(5)(6)
Degree0.0438***
(0.015)
0.0042
(0.019)
0.0214
(0.017)
0.0249***
(0.007)
-0.0016
(0.009)
0.0058
(0.007)
Degree×Resource-0.0464***
(0.013)
-0.0083
(0.010)
Degree×Size0.0377***
(0.014)
0.0313***
(0.011)
Degree×Political0.0671**
(0.030)
0.0300**
(0.013)
控制变量

新窗口打开| 下载CSV


分析结果表明,2005—2020年东部城市、非资源型城市、规模较大城市和行政等级较高城市依托强大的网络资源利用能力,借助网络嵌入提高了自身的碳排放效率,而西部城市、资源型城市、规模较小城市和行政等级较低的城市,由于“知识守门人”的缺失,没有能够充分利用网络资源改善自身的碳排放效率。分析结果不仅呼应了Meijers等[38]、江艇等[39]的研究,即城市的人口规模、行政级别正向影响着城市的吸收能力,还呼应了Wang等[46]关于资源型城市碳减排的研究结论,即大量自然资源丰富的城市陷入到了“资源诅咒”的困境。总体来看,理论假说3得到验证,即网络地位对城市碳排放效率的促进作用受到城市对网络资源吸收利用能力的深刻影响。分析结果也意味着,2005—2020年网络地位在不同维度上加大了中国城市碳排放效率的发展差距。

6 结论和讨论

6.1 结论

提升城市碳排放效率是中国实现“双碳”目标和经济社会可持续发展的关键。本文利用中国制造业500强企业投资联系数据构建城市网络,采用数据包络分析(DEA)中窗口模型和超效率SBM模型相结合的方法测度城市碳排放效率,在此基础上研究了2005—2020年城市网络地位对碳排放效率的影响。研究发现:① 网络地位的增强在整体上有助于提升城市碳排放效率,该结论在替换碳排放效率测度方法、考虑空间依赖效应和应对内生性问题后仍然成立,表明网络联系为城市在更大空间尺度上平衡经济增长和碳减排的关系提供了基础。② 网络地位不仅通过价值链重组效应、中间产品多样化效应和网络竞争效应改善城市的全要素碳排放效率,还通过促进城市绿色知识创新、科技企业孵化和风险资本投资的中介机制正向影响着城市的碳排放效率。③ 网络地位对城市碳排放效率的影响呈现多维异质性,相对于西部城市、资源型城市、人口规模较小城市和行政等级较低城市,东部城市、非资源型城市、人口规模较大城市和行政等级较高城市的碳排放效率更多从网络地位的增强中获益。

6.2 讨论

当前关于城市碳排放效率的研究主要集中在场所空间的视角,未能关注到城市网络的快速发展所带来的深刻影响[3]。本文研究发现,城市网络为城市在更大空间尺度上平衡经济增长和碳减排的关系提供了基础。这表明对城市碳排放效率来源的解析需要超越Harris等所说“城市第一本质”即集聚经济的视角[47],高度重视Taylor所说的“城市第二本质”即网络经济的积极影响[48]。不仅如此,在流动空间环境下城市可以超越地理临近性的限制,从远距离的合作伙伴获得关键资源,因此相对于场所空间环境下的地理区位,流动空间中的网络地位变得越来越重要。从这个意义上讲,网络地位可以被视为Huggins等提出的关系资产的一种关键形式[49],它构成了更广阔意义上的城市碳排放效率的重要来源。这也意味着,推动城市经济突破本地和区域空间尺度,积极融入国内大循环和国家城市网络,将为提升碳排放效率提供更加广阔的空间。

由于集聚经济和网络经济对城市发展的影响可能随着经济基础、制度环境和空间尺度发生变化,澄清集聚经济和网络经济的相互关系变得十分迫切。在欧洲国家的城市发展过程中,无论是Alonso关于借用规模(borrowed size)的研究还是Meijers等关于借用绩效(borrowed performance)的研究都表明[38],网络经济似乎是集聚经济的替代品。本文研究发现,那些具有更高集聚经济的城市从网络联系中获得了更大的收益。这意味着,在中国快速城市化的发展环境下,集聚经济对于增强城市从网络经济中的获益能力发挥了积极作用。本文结果呼应了Huggins等[49]、Shi等[25]的结论,即网络经济和集聚经济存在协同效应,这导致了网络化的集聚经济(networked agglomeration economies)。因此在提升城市碳排放效率的过程中,应着力改善城市对网络资源吸收能力,并立足本地基础、采取差异化的发展路径。

本文结果对于提升中国城市碳排放效率具有两点政策启示。① 将碳达峰碳中和目标愿景与国家城市网络建设结合起来,使中国城市在网络联系中实现碳排放效率的提升。未来应依托全国统一的资本、产权市场建设,在国家尺度上推进城市网络发展,为城市产业结构调整、低碳经济发展和绿色知识生产提供更大的空间和更多的资源。同时充分释放城市网络联系的库兹涅茨式结构优化效应和熊彼特式创造性破坏效应,在更大的网络空间上平衡经济增长和碳减排的关系,实现城市网络联系与低碳发展的良性互动。② 高度关注网络联系对城市碳排放效率的多维度异质性影响,推动中国低碳城市建设的协调发展。东部城市、非资源型城市、人口规模较大城市和行政等级较高城市应在着力增强创新发展能力的同时,推动价值链区块、绿色知识和创新资源在城市体系中顺畅流动,增强对低碳发展的辐射带动作用。同时支持西部城市、资源型城市、人口规模较小城市和行政等级较低城市通过推进新型工业化进程、构建本土创新体系、培育科技型企业等举措,增强对网络资源的吸收能力,提升网络经济对碳排放效率的促进作用。

本文主要考虑了直接能源消费带来的城市碳排放,对间接能源消费带来的碳排放考虑不足,未来需要继续丰富城市碳排放规模的测度指标,以检验城市网络地位与碳排放效率关系的稳健性。在基于不同媒介的网络联系中,网络经济的来源和特征可能存在差异,这也需要开展进一步的检验。特别是,考虑到城市体系作为多层网络体系的本质特征[50],多层网络联系的碳减排效应研究显得尤为重要。此外不同网络地位测度指标的影响机理可能存在差异,未来需要进一步区分度数、中介度和特征根影响机理的差异性,也需要进一步检验核心度、接近中心度等其他网络地位测度指标对城市碳排放效率的影响。

参考文献

Nordhaus W D. The Spirit of Green. Princeton: Princeton University Press, 2021.

[本文引用: 1]

Cai B F, Cui C, Zhang D, et al.

China city-level greenhouse gas emissions inventory in 2015 and uncertainty analysis

Applied Energy, 2019, 253: 113579. DOI: 10.1016/j.apenergy.2019.113579.

URL     [本文引用: 1]

Wang S J, Wang Z H, Fang C L.

Evolutionary characteristics and driving factors of carbon emission performance at the city level in China

Science China Earth Sciences, 2022, 65(7): 1292-1307.

DOI:10.1007/s11430-021-9928-2      [本文引用: 6]

Cheng Yeqing, Wang Zheye, Zhang Shouzhi, et al.

Spatial econometric analysis of carbon emission intensity and its driving factors from energy consumption in China

Acta Geographica Sinica, 2013, 68(10): 1418-1431.

DOI:10.11821/dlxb201310011      [本文引用: 1]

The economic and social development has been facing with serious challenge brought by global climate change due to carbon emissions. As a responsible developing country, China pledged to reduce its carbon emission intensity by 40%-45% below 2005 levels by 2020. The realization of this target depends on not only the substantive transition of society, economy and industrial structure in national scale, but also the specific action and share of energy saving and emissions reduction in provincial scale. Based on the method provided by the IPCC, this paper examines the spatio-temporal dynamic patterns and domain factors of China's carbon emission intensity from energy consumption in 1997-2010 using spatial autocorrelation analysis and spatial panel econometric model. The aim is to provide scientific basis for making different policies on energy conservation and carbon emission reduction in China. The results are shown as follows. Firstly, China's carbon emissions increased from 4.16 Gt to 11.29 Gt in 1997-2010, with an annual rate of 7.15%, which was much slower than that of annual growth rate of GDP (11.72%); therefore, China's carbon emission intensity tended to decline. Secondly, the changing curve of Moran's I indicated that China's carbon emission intensity from energy consumption has a continued strengthening tendency of spatial agglomeration at provincial scale. The provinces with higher and lower values appeared to be path-dependent or space-locked to some extent. Third, according to the analysis of spatial panel econometric model, it can be found that energy intensity, energy structure, industrial structure and urbanization rate were the domain factors that have impact on the spatio-temporal patterns of China's carbon emission intensity from energy consumption. Therefore, in order to realize the targets of energy conservation and emission reduction, we should improve the utilizing efficiency of energy, and optimize energy and industrial structure, and choose the low-carbon urbanization way and implement regional cooperation strategy of energy conservation and emissions reduction.

[程叶青, 王哲野, 张守志, .

中国能源消费碳排放强度及其影响因素的空间计量

地理学报, 2013, 68(10): 1418-1431.]

DOI:10.11821/dlxb201310011      [本文引用: 1]

碳排放所引起的全球气候变化对人类经济社会发展带来了严峻的挑战。中国政府承诺到2020 年GDP碳排放强度较2005 年降低40%~45%,这一目标的实现有赖于全国层面社会经济和产业结构的实质性转型,更有赖于省区层面节能减排的具体行动。基于联合国政府间气候变化专门委员会(IPCC) 提供的方法,本文估算了全国30 个省区1997-2010 年碳排放强度,采用空间自相关分析方法和空间面板计量模型,探讨了中国省级尺度碳排放强度的时空格局特征及其主要影响因素,旨在为政府制定差异化节能减排的政策和发展低碳经济提供科学依据。研究结果表明:① 1997-2010 年,中国能能源消费CO<sub>2</sub>排放总量从4.16 Gt 增加到11.29Gt,年均增长率为7.15%,而同期GDP年均增长率达11.72%,碳排放强度总体上呈逐年下降的态势;② 1997-2010 年,碳排放强度的Moran's I 指数呈波动型增长,说明中国能源消费碳排放强度在省区尺度上具有明显的空间集聚特征,且集聚程度有不断增强的态势,同时,碳排放强度高值集聚区和低值集聚区表现出一定程度的路径依赖或空间锁定;③ 空间面板计量模型分析结果表明,能源强度、能源结构、产业结构和城市化率对中国能源消费碳排放强度时空格局演变具有重要影响;④ 提高能源利用效率,优化能源结构和产业结构,走低碳城市化道路,以及实行节能减排省区联动策略是推动中国实现节能减排目标的重要途径。

Capello R.

The city network paradigm: Measuring urban network externalities

Urban Studies, 2000, 37(11): 1925-1945.

DOI:10.1080/713707232      URL     [本文引用: 1]

In recent years, network behaviour has been analysed extensively as the emerging model for economic growth. By network behaviour, a metaphor for co-operative behaviour among individuals, corporate or territorial partners is intended. This is increasingly becoming the reference paradigm in an era of continuing innovation and fast technological change, in the presence of 'market failure' where dynamic and innovative behaviours are concerned and of the high costs of a growth strategy based solely on internal know-how. The theory of the city network paradigm claims that, through participation in the network, cities exploit scale economies in complementary relationships and synergies in co-operative activities. In this sense, network advantage is a real club good, achieved only by those economic actors who are partners in the economic and spatial network, and is distributed among partners despite the private marginal costs each partner bears to participate in the network. In this sense, the private marginal costs of network participation differ from private marginal benefits, and network advantages turn out to be network externalities. The aim of the present paper is to measure the impacts that city network behaviour has on city performance-i.e. to provide a quantitative measurement of network externalities stemming from network behaviour in territorial systems.

Sheng Kerong, Zhang Jie, Zhang Hongxia.

Network embedding and urban economic growth in China: A study based on the corporate networks of top 500 public companies

Acta Geographica Sinica, 2021, 76(4): 818-834.

DOI:10.11821/dlxb202104004      [本文引用: 1]

In recent years, increased attention has been given to the role of city networks in promoting economic performance. Nevertheless, the empirical evidence concerning urban network externalities and its transmission mechanisms is at best patchy. This study sets out to gain a better understanding of network externalities through the lens of corporate networks in China. Information on the headquarter and branch locations of China's top 500 public companies in 2017 are subjected to ownership linkage model to construct the urban network, resulting in a panel data with 265 cities in 2006 and 2016. Then the impacts of network linking strength and economic performance of partners on urban economic growth are quantitatively measured, and the dynamic mechanisms of network links that affect urban economic growth under the production fragmentation environment are discussed. Two conclusions are drawn. First, the transmission mechanisms of network embeddedness influencing urban economic growth in China have different effects. The analysis results of all samples show that the strength of network links has a profound impact on the quality of urban economic growth, but the impact of economic performance of partners is not obvious. This means that, in general, the transmission mechanisms of network embeddedness are to highlight the comparative advantages and economies of scale of cities, rather than to promote knowledge spillovers and technical progress. Second, the impact of network embeddedness on urban economic growth is heterogeneous in many dimensions. Cities in the eastern region, core position or with a large population size benefit more from the network competitive advantage and the knowledge flow system of "local buzz and global pipelines", while cities in the central and western regions, peripheral position or with a small population, bounded by lack of network competitiveness and "knowledge gatekeeper", increase the risks of low-end lock of industrial economy. In the future, the policy and governance of urbanization in China need to be adjusted accordingly. The Chinese government should promote network cooperation among cities on a larger spatial scale, and attach great importance to the multi-dimensional development gap between cities under the network environment.

[盛科荣, 张杰, 张红霞.

上市公司500强企业网络嵌入对中国城市经济增长的影响

地理学报, 2021, 76(4): 818-834.]

DOI:10.11821/dlxb202104004      [本文引用: 1]

近些年来城市网络的快速发展深刻改变了中国城市经济的发展环境,城市网络外部性及其传导机制的研究已经成为新时期城市地理学的重要课题,也将为中国城镇化政策的优化调整提供直接参考。本文以产品价值链生产分割为主线,利用2017年中国上市公司500强企业和隶属联系模型建立城市网络,定量测度了网络链接强度和合作伙伴经济绩效对城市经济增长的影响,揭示了生产分割环境下网络外部性的多样性和异质性特征。研究发现:① 网络嵌入影响中国城市经济增长的传导机制具有不同的作用效果,总体来看网络链接强度对城市经济增长具有显著促进作用,但是合作伙伴经济绩效的影响不明显,表明网络嵌入主要是通过凸显比较优势和规模经济而不是知识外溢来提高城市经济绩效。② 网络嵌入对中国城市经济增长的影响具有异质性特征,东部地区、核心地位、较大规模城市从网络中获得的利益分别明显高于中西部地区、外围地位和较小规模城市,表明网络外部性的经济效果受到城市网络竞争力和知识利用能力的强烈约束。未来中国城镇化政策体系和治理模式需要做出相应调整,中国政府需要在更大空间尺度上推动城市之间的网络合作,同时高度重视网络环境下城市间多维度的发展差距问题。

Liu Chengliang, Guan Mingming, Duan Dezhong.

Spatial pattern and influential mechanism of interurban technology transfer network in China

Acta Geographica Sinica, 2018, 73(8): 1462-1477.

DOI:10.11821/dlxb201808006      [本文引用: 1]

On the basis of patent transaction data in 2015, spatial pattern of interurban technology transfer network in China was portrayed by integrating big data mining, social network, and GIS, from the perspectives of nodal strength and centrality, linkage intensity, and modular divisions. Then, its key influencing factors were identified as well using the Negative Binominal Regression Analysis. Some findings were ontained as follows. First of all, the intensity of interurban technology transfers in China is not well distributed with obvious polarization. Those cities with higher-level technology transfers are concentrated in the three urban clusters, namely, the Yangtze River Delta, the Pearl River Delta and Beijing-Tianjin-Hebei urban agglomeration. Secondly, a typical core-periphery structure with hub-and-spoke organization is evidently observed, which consists of several hubs and the majority of cities with far lower technology transfers. Beijing, Shenzhen, Shanghai and Guangzhou are acting as the pivot of the technology transfer network and playing a critical role in aggregating and dispersing technology flows. Thirdly, technology linkage intensities of urban pairs appear to be significantly uneven with hierarchies, centralizing in the three edges from Beijing to Shanghai, from Shanghai to Guangzhou and Shenzhen, and from Beijing to Guangzhou and Shenzhen, which shapes a triangle pattern. Fourthly, the technology transfer network is divided into four communities or plates, with prominent reflexivity and spillover effects, which is resulted from geographical proximity and technological complementary. Last but not least, spatial flows of technology are co-organized by a variety of spatial diffusion modes such as hierarchical diffusion, contact diffusion and leapfrog diffusion, owing to economic and administrative powers. They are greatly influenced by urban economic scale, foreign linkage, policy making, as well as multiple proximity factors related to geographical, technological, social and industrial proximities.

[刘承良, 管明明, 段德忠.

中国城际技术转移网络的空间格局及影响因素

地理学报, 2018, 73(8): 1462-1477.]

DOI:10.11821/dlxb201808006      [本文引用: 1]

基于2015年专利交易数据,融合数据挖掘、社会网络、空间分析等方法,从节点、关联、模块及影响因素4个方面揭示中国城际技术转移的空间格局及其影响因素:① 技术转移整体强度偏低,空间极化严重,长三角、珠三角、京津冀城市群成为技术转移的活跃地带。② 北京、深圳、上海、广州是全国技术转移网络的“集线器”,发挥城际技术流的集散枢纽和中转桥梁作用,中西部大部分城市处于网络边缘,整个网络发育典型的核心—边缘式和枢纽—网络式结构。③ 技术关联的空间层级和马太效应凸显,形成以北京、上海、广深为顶点的“三角形”技术关联骨架结构,技术流集聚在东部地带经济发达的城市之间和具有高技术能级的城市之间,中西部技术结网不足,呈现碎片化。④ 技术转移网络形成明显的四类板块(子群),具明显自反性和溢出效应,其空间聚类既有“近水楼台先得月”式块状集聚,也有“舍近求远”式点状“飞地”镶嵌。⑤ 城际技术流呈现等级扩散、接触扩散、跳跃扩散等多种空间扩散模式,其流向表现出经济指向性和行政等级指向性特征。⑥ 城市经济发展水平、对外开放程度、政策支持等主体属性和地理、技术、社会、产业邻近性的城市主体关系均会影响其技术转移强度。

Huang Qunhui, He Jun.

The core capability, function and strategy of Chinese manufacturing industry: Comment on "Chinese Manufacturing 2025"

China Industrial Economics, 2015(6): 5-17.

[本文引用: 1]

[黄群慧, 贺俊.

中国制造业的核心能力、功能定位与发展战略: 兼评《中国制造2025》

中国工业经济, 2015(6): 5-17.]

[本文引用: 1]

Xu L, Fan M T, Yang L L, et al.

Heterogeneous green innovations and carbon emission performance: Evidence at China's city level

Energy Economics, 2021, 99: 105269. DOI: 10.1016/j.eneco.2021.105269.

URL     [本文引用: 2]

Liu B Q, Tian C, Li Y Q, et al.

Research on the effects of urbanization on carbon emissions efficiency of urban agglomerations in China

Journal of Cleaner Production, 2018, 197: 1374-1381.

DOI:10.1016/j.jclepro.2018.06.295      URL     [本文引用: 2]

Wang Shaojian, Huang Yongyuan.

Spatial spillover effect and driving forces of carbon emission intensity at city level in China

Acta Geographica Sinica, 2019, 74(6): 1131-1148.

DOI:10.11821/dlxb201906005      [本文引用: 2]

Since the Paris Climate Change Conference in 2015, reducing carbon emission and lowering carbon intensity has become a global consensus to deal with climate change. Due to different economic development stages, carbon intensity is regarded as a better index to measure regional energy-related carbon emissions. Although previous scholars have made great efforts to explore the spatiotemporal patterns and key driving factors of carbon intensity in China, the results lack the perspective from city level because of limited availability of statistical data of city-level carbon emission. In this study, based on carbon intensity of 283 cities in China from 1992-2013, we used the kernel density estimation, spatial autocorrelation, spatial Markov-chain and quantile regression panel model to empirically reveal its spatial spillover effects and explore the critical impact factors of carbon intensity at the city level. Our result indicates that although the total carbon emission increased during the study period, carbon intensity saw a gradual decline and regional differences were shrinking. Secondly, the city-level carbon intensity presented a strong spatial spillover effect and diverse regional backgrounds exerted heterogeneous effects on regions. Thirdly, quantile panel data analysis result showed that for low-intensity cities, on the one hand, FDI and transport sector were main contributing factors, and economic growth, technical progress and high population density negatively affected carbon intensity. On the other hand, industrial activity, extensive growth of investment and urban sprawl were key promoting factors for high-intensity cities, and population density was beneficial to emission reduction task. Furthermore, technological advance has not exerted negative influence on carbon intensity in high-intensity cities. At last, we suggested that Chinese government should take different carbon intensity levels into full consideration before policy making.

[王少剑, 黄永源.

中国城市碳排放强度的空间溢出效应及驱动因素

地理学报, 2019, 74(6): 1131-1148.]

DOI:10.11821/dlxb201906005      [本文引用: 2]

采用核密度估计、空间自相关、空间马尔科夫链和面板分位数回归等方法对1992-2013年全国283个城市碳排放强度的空间溢出效应和驱动因素进行了分析。① 核密度估计结果表明,中国城市碳排放强度总体均值下降,差异在逐步缩小。② 空间自相关Moran's I指数表明城市碳排放强度存在显著的空间集聚性且空间集聚性在逐渐增强,但空间集聚水平的变化逐年缩小。③ 空间马尔科夫链分析结果表明:第一,中国城市碳排放强度存在马太效应,低强度与高强度的城市在相邻年份转移过程中呈现维持初始状态的特征。第二,城市碳排放“空间溢出”效应明显,且不同区域背景下溢出效应存在异质性,即若与碳排放强度低的城市为邻,该城市的碳强度能够增加向上转移的概率,反之亦然。④ 面板分位数结果显示:在碳排放强度低的城市,经济增长、技术进步、适当的人口密度起到减排作用;外商投资强度与交通排放是使碳强度增大的主要因素。在碳排放强度高的城市,人口密度是重要的减排因素,技术进步暂时没起减排作用;工业排放、粗放式的资本投资以及城市土地蔓延则是碳强度上升的主要因素。

Xu Yingqi, Cheng Yu, Wang Jingjing, et al.

Spatio-temporal evolution and influencing factors of carbon emission efficiency in low carbon city of China

Journal of Natural Resources, 2022, 37(5): 1261-1276.

DOI:10.31497/zrzyxb.20220511      [本文引用: 2]

China puts forward the strategic goal of achieving carbon peaks by 2030 and carbon neutrality by 2060. Improving carbon emission efficiency and promoting green and low-carbon development are important ways to achieve the "dual carbon" goal. The study uses the Super-SBM model that includes undesired output to measure the carbon emission efficiency of 68 low carbon cities in China from 2003 to 2018 and analyzes their spatio-temporal evolution characteristics. The panel regression model is used to analyze the influencing factors of urban carbon emission efficiency. The following conclusions are drawn: (1) The carbon emission efficiency of low carbon city has shown an overall upward trend over time, from 0.169 to 0.423, with an average annual growth rate of 6.31%, and there is still room for improvement. (2) Regional differences in the carbon emission efficiency of low carbon cities show a trend of shrinking first and then gradually expanding, and a declining distribution pattern of "from eastern to central and western region" in space; the carbon emission efficiency of pilot city at various levels is characterized as "megacity > supercity > large city > medium-sized city > small city". (3) Economic development level, industrial structure, urbanization level, green technology innovation and carbon emission efficiency of a pilot city are significantly positively correlated, and the intensity of foreign investment has restrictions on urban carbon emission efficiency. There are some differences in the degree of influence of each factor on the three regions and cities of different sizes. The paper puts forward countermeasures and suggestions from the aspects of innovation input, industrial structure and regional differentiation, which has certain reference significance for promoting urban green and low-carbon development and the construction of ecological civilization.

[徐英启, 程钰, 王晶晶, .

中国低碳试点城市碳排放效率时空演变与影响因素

自然资源学报, 2022, 37(5): 1261-1276.]

DOI:10.31497/zrzyxb.20220511      [本文引用: 2]

中国提出2030年前实现碳达峰、2060年前实现碳中和的战略目标,提高碳排放效率,推动绿色低碳发展是实现&#x0201c;双碳&#x0201d;目标的重要途径。运用包含非期望产出的Super-SBM模型,测度了2003&#x02014;2018年中国68个低碳试点城市的碳排放效率并分析其时空演变特征,运用面板回归模型分析城市碳排放效率的影响因素,得出以下结论:(1)低碳试点城市碳排放效率在时间上整体呈上升趋势,效率值从0.169上升至0.423,年均增长率为6.31%,仍有一定的提升空间。(2)低碳试点城市碳排放效率的区域差异呈先缩小后逐渐扩大趋势,空间上呈现&#x0201c;东中西&#x0201d;递减分布格局;从城市等级规模来看呈现&#x0201c;超大城市&gt;特大城市&gt;大城市&gt;中等城市&gt;小城市&#x0201d;特征。(3)经济发展水平、产业结构、城镇化水平、绿色技术创新与试点城市碳排放效率呈显著正相关,外资强度与碳排放效率呈显著负相关,各影响因素对三大地区和不同规模城市的作用程度存在一定的差异性。从创新投入、产业结构和区域差异化等方面提出对策建议,对促进城市绿色低碳发展和生态文明建设具有一定的借鉴意义。

Sun L X, Li W.

Has the opening of high-speed rail reduced urban carbon emissions? Empirical analysis based on panel data of cities in China

Journal of Cleaner Production, 2021, 321: 128958. DOI: 10.1016/j.jclepro.2021.128958.

URL     [本文引用: 1]

Xu Weixiang, Zhou Jianping, Liu Chengjun.

The impact of digital economy on urban carbon emissions: Based on the analysis of spatial effects

Geographical Research, 2022, 41(1): 111-129.

DOI:10.11821/dlyj020210459      [本文引用: 1]

Global warming is a great challenge faced by all mankind. The continued increase in greenhouse gas emissions will have a negative impact on agricultural production, socio-economic activities and human life, and ultimately hinder the process of achieving global sustainable development. This study attempts to introduce the variable of digital economy development into the research framework of carbon emission impact factor theory to systematically examine the effect of digital economy development on urban carbon emissions. This study was conducted to investigate the spatial effects of the digital economy on urban carbon emissions. Based on the panel data of 286 cities from 2011 to 2017, this study analyzes the impact of digital economy development on urban carbon emissions using the spatial Durbin model and the spatial DID model. The main conclusions are as follows:(1) There is spatial heterogeneity in the development pattern of digital economy, and the development pattern changes from "multi-point" sporadic distribution to "cluster" agglomeration, but the gap between the development levels of cities has not been narrowed, and the Yangtze River Delta becomes an important digital economy agglomeration area. (2) The digital economy has a significant negative effect on urban carbon emissions, and the findings are robust to the introduction of the exogenous policy shock of "smart cities". Moreover, there is spatial heterogeneity in this effect, with the negative effect of digital economy on carbon emissions being stronger in the eastern region, and the influence of digital economy is stronger in regions located within urban agglomerations. (3) In order to investigate the spatial decay characteristics of the spillover effect of the digital economy on urban carbon emissions, the spillover effect analysis of the multi-distance economic circle is carried out, and it is found that the spillover effect of the digital economy on carbon emissions peaks at 1100 km. (4) The coverage of digital infrastructure does not have a significant negative effect on carbon emissions in the region, while digital industry development, digital innovation capacity and digital inclusive finance all have a significant negative effect on carbon emissions in the region and neighboring areas. This study adds to the lack of research on the digital economy and carbon emissions, and provides some theoretical reference for the study of the environmental improvement effects of the digital economy.

[徐维祥, 周建平, 刘程军.

数字经济发展对城市碳排放影响的空间效应

地理研究, 2022, 41(1): 111-129.]

DOI:10.11821/dlyj020210459      [本文引用: 1]

为探讨数字经济对城市碳排放影响的空间效应,基于2011&#x02014;2017年286个城市面板数据综合测度数字经济发展水平,运用空间杜宾模型及空间DID模型分析数字经济发展对城市碳排放的影响。主要得到以下结论:① 数字经济发展存在明显的空间异质性,发展格局从&#x0201c;多点式&#x0201d;零星分布向&#x0201c;组团式&#x0201d;聚集形态转变,但各城市发展层级差距仍未改善,长三角成为重要的数字经济高水平集聚区。② 数字经济发展显著改善了城市碳排放,通过引入&#x0201c;智慧城市&#x0201d;这一外生政策冲击进行检验,发现结论具有稳健性,而且这种效应存在明显的空间异质性,东部地区数字经济发展对碳排放的负向影响作用较强,位于城市群内部的区域受数字经济的影响更大。③ 数字经济发展对碳排放的作用在不同经济圈层内有所差异,空间外溢具有边界效应,在1100km处外溢达到峰值。④ 数字产业发展、数字创新能力以及数字普惠金融是数字经济影响城市碳排放效应发挥的重要因素。

Guo Yi, Cao Xianzhong, Wei Wendong, et al.

The impact of regional integration in the Yangtze River Delta on urban carbon emissions

Geographical Research, 2022, 41(1): 181-192.

DOI:10.11821/dlyj020210506      [本文引用: 1]

The Yangtze River Delta is a demonstration area for China's high-quality integrated development and an important area for China to achieve its peak dioxide emissions by 2030 and carbon neutrality targets by 2060. In the context of the transformation of China's administrative region economy to an integrated economy, the regional integration of the Yangtze River Delta has reduced administrative barriers and optimized the allocation of factors. At the same time, what impact does it have on urban carbon emissions? Based on the panel data of prefecture level and above cities in China, this paper regards the issuance of The Regional Planning of Yangtze River Delta as a quasi-natural experiment, using the difference-in-difference (DID) method to estimate the effects of regional integration in the study area on urban carbon emissions. Furthermore, by using the mediation effect model, we identify the possible internal mechanism of regional integration on carbon emission effects. The results showed that regional integration policy of this delta in 2010 significantly reduced urban carbon emissions, and after a series of robustness tests such as the parallel trend test, PSM-DID and placebo test were still true. From the perspective of dynamic effects, the carbon emission reduction effect appeared in the third year after the issuance of regional integration policy. At the same time, compared with general hierarchy cities, regional integration had a greater effect on carbon emissions reduction of high hierarchy cities. Mechanism verification showed that regional integration policy aggravated urban carbon emissions through the strengthening of economic links between cities, and reduced urban carbon emissions by promoting the upgrading of the industrial structure and the improvement of urban technology. From the perspective of better achieving the goal of high-quality integration in the Yangtze River Delta, it is suggested that the delta should actively explore the cooperation mechanism of carbon emission reduction and green development between cities, and establish a green development evaluation index system that can be monitored and operated. Besides, we should focus on the green transformation of industries and increase investment in green technology research and development among cities in the Yangtze River Delta.

[郭艺, 曹贤忠, 魏文栋, .

长三角区域一体化对城市碳排放的影响研究

地理研究, 2022, 41(1): 181-192.]

DOI:10.11821/dlyj020210506      [本文引用: 1]

长三角地区是中国高质量一体化发展的示范区,也是实现&#x0201c;双碳&#x0201d;目标的重要区域。在中国行政区经济向一体化经济转变的背景下,长三角区域一体化政策在降低行政壁垒,优化要素配置的同时,产生了怎样的碳排放效应?本文基于中国地级及以上城市的面板数据,以2010年《长江三角洲地区区域规划》的颁布视作一项准自然实验,运用双重差分(DID)模型,研究长三角区域一体化对城市碳排放的影响。在此基础上,采用中介效应模型,识别区域一体化碳排放效应的内在机理。结果表明:2010 年实施的长三角一体化政策显著降低了城市碳排放,并经过共同趋势检验、PSM-DID、安慰剂检验等稳健性检验依然成立;从动态效应来看,区域一体化政策的碳减排效应出现在政策实施后的第三年;从城市等级来看,区域一体化政策对高等级城市碳排放减少的促进作用大于一般城市;从作用机理来看,区域一体化政策通过促进产业结构的升级和城市技术水平的提高,显著降低了城市碳排放,而通过城市间经济联系的增强,在一定程度上增加了城市碳排放。因此,建议建立长三角城市间碳减排与绿色发展的互动合作机制,构建可监测、可操作的绿色发展评价指标体系,加大长三角城市绿色科技联合攻关力度,推动产业低碳化发展。

Zhou Di, Zhou Fengnian, Wang Xueqin.

Impact of low-carbon pilot policy on the performance of urban carbon emissions and its mechanism

Resources Science, 2019, 41(3): 546-556.

DOI:10.18402/resci.2019.03.12      [本文引用: 1]

Low-carbon pilot project is an important policy to realize the development of low-carbon economy in China. Objectively evaluating its implementation effect is not only conducive to better promoting low-carbon work in low-carbon pilot project areas, but also of great significance for the further promotion of low-carbon pilot policy. However, there is no consistent conclusion on whether the low-carbon pilot policy can enhance the performance of carbon emissions. Taking the second batch of low-carbon pilot projects as an example and using city panel data from 2012 to 2016, this study examined the impact of low-carbon pilot policy on the reduction of local carbon emission intensity by using the Propensity Score Matching-Difference in Difference (PSM-DID) method in order to effectively reduce the processing effect bias caused by the problem of sample selection and policy endogeneity. It was found that the low-carbon pilot policy had a significant and sustained effect on local carbon intensity reduction. Further mechanism identification results show that low-carbon pilot areas mainly achieve a decline in carbon intensity through the improvement of energy efficiency and upgrading of industrial structure, and the upgrading of industrial structure shows a trend of increase year by year. However, the goal of reducing carbon emissions by raising the level of carbon sink in urban green spaces has not yet been achieved. Based on this conclusion, we believe that China should further promote the low-carbon pilot policy and actively explore the development model of low-carbon cities, in particular by further establishing a livable and green urban environment.

[周迪, 周丰年, 王雪芹.

低碳试点政策对城市碳排放绩效的影响评估及机制分析

资源科学, 2019, 41(3): 546-556.]

DOI:10.18402/resci.2019.03.12      [本文引用: 1]

低碳试点是实现中国低碳经济发展的一项重要政策,客观评价其实施效果,不仅有利于低碳试点地区更好地推进低碳工作,而且对于低碳试点政策的进一步推广具有重要意义,但低碳试点政策能否实现碳排放绩效的提升尚未得出一致的结论。本文以第二批低碳试点政策为例,基于2012&#x02014;2016年的地级市面板数据,采用倾向得分匹配&#x02014;双重差分(PSM-DID)方法研究低碳试点政策对降低城市碳排放强度的影响,以有效降低样本自选择及政策内生性等问题导致的处理效应偏差。研究发现:低碳试点政策对城市的碳排放强度下降具有显著且持续的推动作用;进一步的机制识别结果显示,低碳试点城市主要是通过能源效率的提高以及产业结构升级等方式实现碳强度的下降,且产业升级的效果有逐年增强的趋势,但通过城市绿地碳汇水平的提高而降低碳排放的目标尚未实现。基于此结论,本文认为中国应进一步推广低碳试点政策,积极探索低碳城市的发展模式,特别是提升宜居绿色的城市环境。

Ding Fei, Zhuang Guiyang, Liu Dong.

Environmental regulation, industrial agglomeration and urban carbon emission intensity: Empirical analysis based on panel data of 282 prefectural-level cities in China

Journal of China University of Geosciences (Social Sciences Edition), 2020, 20(3): 90-104.

[本文引用: 2]

[丁斐, 庄贵阳, 刘东.

环境规制、工业集聚与城市碳排放强度: 基于全国282个地级市面板数据的实证分析

中国地质大学学报(社会科学版), 2020, 20(3): 90-104.]

[本文引用: 2]

Wu Kang, Fang Chuanglin, Zhao Miaoxi.

The spatial organization and structure complexity of Chinese intercity networks

Geographical Research, 2015, 34(4): 711-728.

DOI:10.11821/dlyj201504010      [本文引用: 2]

Fuelled by globalization, informatization and rapid urbanization, the Chinese urban system has witnessed dramatic changes in the past four decades, which shows a combined changing characteristic in both expanded geographical scope and intensified intercity connections. This paper investigates an integrated network-based approaches and spatial analysis to explore the spatial organization process and the basic regularity of Chinese intercity networks. More specifically, this study examines how 330 Chinese cities are connected through 108,570 ownership linkages of 307,915 local corporations for the year 2010. Major findings include: (1) the backbone of the Chinese intercity corporate network is diamond-shaped and anchored by four major metropolitan areas (Beijing in the North; Shanghai, East; Guangzhou-Shenzhen, South; Chengdu, West), intercity network strengths reveal a significant spatial heterogeneity; (2) urban network organization is a complicated process that involve both preferential attachment and geographic proximity interactions; (3) the overall structure of the intercity corporate networks undergo a transition process that from a simple random period to a complex but orderly one and also features small-world network properties; (4) city degree distribution of Chinese intercity networks is characterized by weak assortativity and rich-club effects; and (5) a combination interpretation of clustering coefficient and degree distribution identifies hierarchical and regional tendencies.

[吴康, 方创琳, 赵渺希.

中国城市网络的空间组织及其复杂性结构特征

地理研究, 2015, 34(4): 711-728.]

DOI:10.11821/dlyj201504010      [本文引用: 2]

全球化、信息化与快速城市化深刻影响了中国的城市体系,多区位企业组织所形成的城市网络正处于日益复杂的空间嬗变过程。基于2010年企业名录的总部&#x02014;分支机构型关联数据,研究构建了330&#x000D7;330的地级以上城市网络连接关系,并运用复杂网络分析工具来探索中国城市网络的空间组织特征。研究发现:① 中国的城市网络联系呈现以&#x0201c;北京&#x02014;上海&#x02014;广深&#x02014;成都&#x0201d;为核心的菱形空间结构,不同等级的网络流强度具有显著的空间异质性,城市网络的空间组织是一个择优性和地理邻近性复杂作用的过程;② 中国城市网络正处于一个简单随机向复杂有序结构的转化期,整体大尺度的网络结构还有待形成;③ 中国城市网络整体表现出明显的小世界网络效应;④ 中国城市的二值点度网络为明显的异配性连接特征,而加权强度网络连接则一定程度上表现出&#x0201c;富人圈&#x0201d;的现象;⑤ 中国城市网络的层级性并不明显,城市网络的点度和强度的关系呈非线性增加特征。

Pan F, Bi W, Liu X, et al.

Exploring financial centre networks through inter-urban collaboration in high-end financial transactions in China

Regional Studies, 2020, 54(2): 162-172.

DOI:10.1080/00343404.2018.1475728      URL     [本文引用: 2]

Sheng Kerong, Yang Yu, Zhang Hongxia.

Cohesive subgroups and underlying factors in the urban network in China

Geographical Research, 2019, 38(11): 2639-2652.

DOI:10.11821/dlyj020180729      [本文引用: 2]

Cohesive subgroup constitutes a bridge connecting individual cities and urban network. This paper aims to analyze the cohesive subgroups and their mechanisms in the urban network in China. First, data on headquarter and branch locations of China's top 500 public companies in 2016 are subjected to ownership linkage model to approximate the urban network, resulting in a 294×294 valued urban network. Second, four measures of cohesive subgroup analysis, i.e. cliques, k-cores, lambda sets and core-periphery techniques are employed to generalize about the link strengths between cities. Finally, the influencing factors of the cohesive subgroups in the urban network are examined by using quadratic assignment procedure, and the mechanisms are explored under a conceptual framework of urban network growth. Three main findings are concluded. First, the four measures of cliques, k-cores, lambda sets and core-periphery techniques all indicate the presence of cohesive subgroups, revealing the hierarchical structure of link strengths in the urban network in China. The cohesive subgroups are mainly composed of core cities of urban agglomerations, and the cities in the eastern and central regions have more active economic ties compared to the cities in the western region. Second, key resources possessed by cities, such as economic scale, political resources, and knowledge capital, are important factors underlying the formation of cohesive subgroups. Links are more likely to occur between cities with larger economies, richer political resources and more intensive knowledge capital. Temporal distance, geographical location and path dependence also have a profound influence on the spatial pattern of cohesive subgroups. Third, network homophily and path dependence are the dynamic mechanisms underlying the development of cohesive subgroups, and the key resources and location advantages of cities will be further translated into network competitiveness. In the network environment, China's urban governance system and urbanization policies need to be adjusted accordingly. The Chinese government needs to promote network cooperation between cities on a larger spatial scale, and actively respond to the widening economic gap between cities under the network environment.

[盛科荣, 杨雨, 张红霞.

中国城市网络的凝聚子群及影响因素研究

地理研究, 2019, 38(11): 2639-2652.]

DOI:10.11821/dlyj020180729      [本文引用: 2]

凝聚子群特征及形成机理的研究是理解城市网络发育规律及其动力机制的重要切入点。利用2016年中国上市公司500强企业总部-分支机构数据,研究了中国城市网络凝聚子群的多维度特征,定量测度了城市间链接关系的影响因素,探索性的分析了凝聚子群的形成机理。结果发现:派系、k-核、lambda集合、核心-边缘方法都表明中国城市网络存在凝聚子群现象,揭示了城市网络链接强度的层级特征;经济规模、政治资源、知识资本是凝聚子群发育的重要影响因素,网络邻近性、地理区位和历史基础也深刻的影响着凝聚子群的空间格局;择优链接和路径依赖是凝聚子群发育的动力机制,城市关键资源和区位优势将进一步转化为城市网络竞争优势。在网络发展环境下,中国政府需要在更大空间尺度上推动城市间合作,并积极应对城市间发展差距趋于扩大的问题。

Li Tao, Zhou Rui.

Urban hinterworld in Yangtze River Delta: Empirical comparison of two network-based methods

Acta Geographica Sinica, 2016, 71(2): 236-250.

DOI:10.11821/dlxb201602005      [本文引用: 2]

From the perspective of interlocking network, this paper compares two methods of defining urban hinterworld in the Yangtze River Delta, including the measurement of connectivity and relative connectivity. According to the theory of space of flows, relational data of enterprise branches is selected on the county-level space units in the 16 core cities. Three features have been identified. First, regional network structure could be revealed through the measurement of connectivity but the relative weak connections would be omitted. Second, administrative economy and cross-border connections could be examined deeply through the measurement of relative connectivity, especially to those space units with smaller aggregated connectivity. Third, combining these two methods together, a new way of defining urban hinterworld is proposed which could both reflect the connections between cities and also show the spaciality in the region. The findings of this paper are meaningful when the regional policies are formulated. The division of hinterworld is helpful for assessing the influences of cities and determining reasonable urban system. Empirical results enrich our understanding of the hinterworld in which both relatively strong and relatively weak connections exist at the same time. New perspectives and ways are provided to describe and analyze the relationship between center city and its hinterworld. In the new background and theoretical system, only through analysis of multi-angle observation and combination of a variety of methods we could have a deeper understanding of the regional city network, which is also an important area for future research concern.

[李涛, 周锐.

长三角地区网络腹地划分的关联测度方法比较

地理学报, 2016, 71(2): 236-250.]

DOI:10.11821/dlxb201602005      [本文引用: 2]

从城市关联网络的视角,以企业分支数据为基础,以长三角地区16个核心城市的区市县单元为研究对象,将两种网络腹地的划分方法----网络关联度法和相对关联度法进行了实证分析和比较.结果发现,网络关联度法更能体现区域网络的主要格局,有利于把握区域内主要空间单元的网络联系,但是却会忽略绝对值较小,相对值较大的网络联系;而相对关联度法则可以更为深入的揭示行政区经济和跨行政区联系的特征,特别适用于分析总关联度较低单元(郊区,县,县级市)的网络腹地.在此基础上,本文尝试将两种方法结合起来,既能够体现流动空间中的跨区域网络联系,也能兼顾网络腹地的地域性.实证分析的结论丰富了对于网络腹地的认识,即存在绝对联系较强(弱),相对联系较弱(强)的网络格局,并提供了描述和分析"中心--腹地"关系的新视角和新途径.

Peng Chong, Lin Yingzi, Gu Chaolin.

Evaluation and optimization strategy of city network structural resilience in the middle reaches of Yangtze River

Geographical Research, 2018, 37(6): 1193-1207.

DOI:10.11821/dlyj201806010      [本文引用: 1]

The structural resilience of a city network is a rising concept in the field of regional resilience; it focuses on how structural properties affect a region responding to external shocks, as well as recovering, maintaining, or improving the characteristics and key functions of the original system, which is of great significance to the healthy development of regional space. With the help of the Gephi social network analysis tool, this article takes the urban agglomeration in the middle reaches of the Yangtze River as the example and constructs three kinds of networks of economy, information, and transportation, and attempts to measure the structural resilience of the network and spatial characteristics of urban agglomerations. The results show that the structure of the urban agglomeration in the middle reaches of the Yangtze River has a certain resilience. Specifically, the study includes four distinct dimensions: (1) Hierarchy. Economy and information networks have higher levels of hierarchy, and regional locking is more prominent. (2) Assortativity. The disassortativity of information and transportation networks is evident, and they have heterogeneous and diverse contact paths. The economy network has weak disassortativity, leading to an inhibited structural resilience. (3) Transmission. The average path length of the above three networks is generally long and the diffusion efficiency of the material flow is satisfactory. (4) Clustering. Although the spatial clustering of the three network types is different, the aggregation degree is high and the level is equivalent. In a word, the aggregation effect of the three networks is obvious. From the perspective of spatial structure, the structural resilience presents three characteristics. (1) Disparity of the overall morphological patterns. The economy network mainly presents the structural model of "broken core-heterogeneous nested triangle". The information network mainly presents the structural model of "core triangle-star radiation". The transportation network mainly presents the structural model of "core triangle + heterogeneous star radiation". (2) Dislocation of the classified central cities. Wuhan urban agglomeration shows a unique network structure characteristic, which will be summarized as "a single core + edge cities". The Changsha-Zhuzhou-Xiangtan city group exhibits a local network of the city's balanced trend, the performance of "core group + edge city". The comprehensive level of the Poyang Lake urban agglomeration is low, and is mainly based on the isolated structure model of the "single core" of Nanchang. (3) Diversification of the network connection characteristics. The measure of structural toughness is not dependent on the single index value—it should be combined with hierarchy, match, transmission, and clustering. Furthermore, some suggestions are put forward to optimize the spatial structure of urban agglomeration in the aspects of general structure, area structure, and element flow.

[彭翀, 林樱子, 顾朝林.

长江中游城市网络结构韧性评估及其优化策略

地理研究, 2018, 37(6): 1193-1207.]

DOI:10.11821/dlyj201806010      [本文引用: 1]

城市网络结构韧性是国际上区域韧性(regional resilience,也译作区域弹性)研究领域正在兴起的概念,着眼于城市网络结构对区域应对冲击并恢复、保持或改善原有系统特征和关键功能的影响力,对区域空间的健康发展意义重大。以长江中游城市群为研究对象,在构建经济、信息、交通三类联系网络的基础上,借助于Gephi社会网络分析工具,尝试评估城市群城市网络的结构韧性能力及其空间特征。结果表明:长江中游城市群网络具有一定韧性能力,结构韧性的层级性和匹配性差异较大,传输性和集聚性差距不明显;在空间上呈现出总体形态模式差异化、分区形态模式错位化、网络联系特征多样化的特征。进而,对城市群空间结构在总体结构、片区结构和要素流动等方面的优化提出建议。

Sun Dongqi, Lu Dadao, Sun Bindong, et al.

From network description to network performance: Preface to the special issue "Urban Network Externalities"

Geographical Research, 2022, 41(9): 2325-2329.

DOI:10.11821/dlyj020220811      [本文引用: 1]

In recent years, network analysis has been widely used to understand urban and regional organizational patterns and their spatial effects. A single city benefits from the scale economy of 'networking' in the inter-city synergy relationship. Some cities or regions also suffer from the loss of resources or elements due to more convenient connections to other cities. The traditional urban endogenous growth theory emphasizing agglomeration economy is no longer suitable to explain the urban and regional organization shaped by 'spaces of flow' alone. The externality of urban network has become another important factor affecting urban growth and regional integration. At present, the existing research (especially in China) is relatively scarce, and most of the studies focus on the spatial pattern and process of the network, and the effects (externalities) of network connections are relatively ignored, i.e., how the urban network externalities interact with the agglomeration economy, which types of cities will benefit or suffer from urban network externalities, and what are the conditions for generating urban network externalities. The above need to be discussed urgently. In order to call on academia to shift more attention on network research to the scientific exploration of 'what' and 'how' regarding the effects of urban and regional development and its optimization, this special issue has selected 15 related papers which carry out the systematic theoretical discussion and empirical research aiming at the 'urban network externalities'. They outline the research agenda on Chinese experience of urban network externalities, and use this as a starting point to promote the deepening of urban network research from pattern description to network performance.

[孙东琪, 陆大道, 孙斌栋, .

从网络描述走向网络绩效: “城市网络外部性”专辑序言

地理研究, 2022, 41(9): 2325-2329.]

DOI:10.11821/dlyj020220811      [本文引用: 1]

近年来,网络分析被广泛应用至理解城市与区域组织模式及其空间效应中。单个城市在城际协同关系中借助&#x0201c;网络化&#x0201d;的规模经济而受益,一些城市或地区也因更便捷地连接其他城市从而导致资源或要素的流失。传统强调集聚经济的城市内生增长理论不再适宜用来单独解释&#x0201c;流动空间&#x0201d;塑造下的城市与区域组织,而城市网络的外部性成为影响城市增长、区域一体化的另一重要动因。目前,已有的研究(特别在国内)相对匮乏,多集中在网络的空间格局、过程等方面,针对网络联系的效应(外部性)较为忽视,比如城市网络外部性与集聚经济如何相互作用,哪些类型的城市将从城市网络外部性中获益或受损,城市网络外部性的产生条件如何等问题亟需探讨。为呼吁学术同行将更多对网络研究的关注移向探究城市网络对城市与区域发展有何作用、如何作用、怎样优化的科学探索,本专辑精心遴选了15篇相关论文,针对&#x0201c;城市网络外部性&#x0201d;开展系统的理论探讨与实证研究,勾勒城市网络外部性的研究议程与中国经验,并以此为起点推动城市网络研究从格局描述走向网络绩效的研究深化。

Pan F, Yang C, Wang H, et al.

Linking global financial networks with regional development: A case study of Linyi, China

Regional Studies, 2020, 54(2): 187-197.

DOI:10.1080/00343404.2019.1599844      URL     [本文引用: 1]

Shi S A, Wong S K, Zheng C.

Network capital and urban development: An inter-urban capital flow network analysis

Regional Studies, 2022, 56(3): 406-419.

DOI:10.1080/00343404.2021.1955098      URL     [本文引用: 2]

Cao Zhan, Dai Liang, Yang Yu, et al.

Knowledge collaboration patterns of Chinese cities and their impacts on knowledge output: An empirical study based the "buzz-and-pipelines" model

Acta Geographica Sinica, 2022, 77(4): 960-975.

DOI:10.11821/dlxb202204013      [本文引用: 1]

With the rise of the knowledge economy and network society, knowledge collaboration networks have become vital to understanding innovation processes. There are two types of collaboration patterns within interurban knowledge collaboration networks, namely "local buzz" and "global pipelines". This study discusses the characteristics of intraregional and interregional collaboration linkages and their impacts on the knowledge output based on the logic and hypotheses of the "buzz-and-pipelines" model. First, the study proposes novel measures of buzz and pipelines. Second, the study constructs knowledge collaboration networks among 215 cities at prefecture-level and above across 20 urban agglomerations in China based on the co-publication data drawn from the Web of Science. An investigation of the evolution paths and combination patterns of buzz and pipelines in the networks identifies different collaboration patterns among Chinese cities. Finally, the impacts of buzz and pipelines on cities' scientific output are examined. The results show that: (1) The evolution of buzz and pipelines in China's interurban collaboration networks presents cumulative and self-reinforced path dependences. (2) Chinese cities can be categorized into four types, namely "networked", "outward-oriented", "inward-oriented" and "isolated" cities. Different kinds of cities present distinct features in terms of collaboration trajectories and knowledge production. (3) There is an inverted U-shaped relation between intraregional linkages and the knowledge output performance of Chinese cities, whereas the relation between interregional linkages and knowledge output is significantly positive. The relationship between intraregional and interregional linkages is complementary in facilitating cities' knowledge production processes.

[曹湛, 戴靓, 杨宇, .

基于“蜂鸣—管道”模型的中国城市知识合作模式及其对知识产出的影响

地理学报, 2022, 77(4): 960-975.]

DOI:10.11821/dlxb202204013      [本文引用: 1]

知识经济与网络社会时代,知识合作网络成为理解城市创新过程的重要视角。在知识合作网络中,存在两种不同类型的合作模式,即&#x0201c;本地蜂鸣&#x0201d;和&#x0201c;全球管道&#x0201d;。本文以&#x0201c;蜂鸣&#x02014;管道&#x0201d;模型的逻辑思想和理论假设为基础,探讨区域内和跨区域两种不同城市知识合作模式的特征及其对城市知识产出的影响。首先提出了蜂鸣与管道的测度方法;然后以&#x0201c;Web of Science&#x0201d;数据库为基础构建了中国20个城市群的知识合作网络,考察了网络中蜂鸣和管道的演化路径和组合特征,归纳出城市知识合作模式的不同类型;最后,通过计量模型揭示了蜂鸣和管道对城市知识产出的影响。结果显示:① 中国城市知识合作网络中的蜂鸣与管道表现出渐进积累和自我强化的空间演化特征;② 根据蜂鸣和管道的组合特征,可将城市划分为&#x0201c;网络型&#x0201d;&#x0201c;外向型&#x0201d;&#x0201c;孤岛型&#x0201d;&#x0201c;内向型&#x0201d;4类,不同类型的城市在知识网络中的空间分布规律和发展演进路径存在差异;③ 根据负二项回归模型发现,蜂鸣与城市知识产出呈倒&#x0201c;U&#x0201d;型关系;管道与城市知识产出显著正相关;此外,两种合作模式在促进城市知识生产的过程中存在互补效应。

Zhao Miaoxi, Wang Yankai, Hu Yuke, et al.

Examining performance of urban borrowed size based on the towns' network externalities of Guangzhou-Foshan metropolitan areas

Geographical Research, 2022, 41(9): 2367-2384.

DOI:10.11821/dlyj020211036      [本文引用: 1]

In the context of urban network externalities, the borrowed size can empower towns to break through the restrictions of geographical distance and size, but realize the joint economic growth of cities and towns through network connections. By virtue of the theoretical analysis, this research examines, in the framework of network externalities, the role of urban borrowed-size performance on urban economic growth from the perspective of the borrowed-size effect of urban networks. Based on the review of network externalities theories, this research has taken towns in the Guangzhou-Foshan urban area as the object and firstly, adopted the deviation from the mean standard deviation multiplier method to investigate the features of regional performance and agglomeration shadows. Secondly, it established a multiple regression model to test the mechanism of network externalities, by incorporating the coupling effects of town size, borrowed size, transportation network accessibility, and science and technology innovation spillover, etc., on the economic growth of towns. The research has found that (1) with the population size of 100,000 as the cut-off point of performance characteristics, the smaller the existing population size of the town, the lower the value of regional performance, whereas towns with a population size greater or less than 100,000 showcase borrowed-size performance and agglomeration shadow respectively. (2) Regional performance based on the number of newly registered enterprises and enterprise network point degree demonstrate more notable circled spatial characteristics, and the spatial divergence based on the enterprise network point degree test is more prominent; the performance of the suburban near the main urban area is quite notable, while the agglomeration shadow phenomenon of the distant suburbs near the main urban area is more significant. (3) The performance of the number of newly registered enterprises is most closely related to the established size of the town, and the elasticity coefficients of such explanatory variables as regional transportation hub, borrowed size, borrowed-size performance and cross-town cooperation patent decrease decrease in order; besides, the improvement of regional transportation networks and technical cooperation channels is conducive to promoting the agglomeration of urban factors and influencing the urbanization development of urban areas with network externalities effects.

[赵渺希, 王彦开, 胡雨珂, .

广佛都市圈网络外部性的城镇借用规模绩效检验

地理研究, 2022, 41(9): 2367-2384.]

DOI:10.11821/dlyj020211036      [本文引用: 1]

在城市网络外部性的环境下,借用规模可以使城镇突破地理距离和规模等级限制,通过网络联系实现城镇经济的共同增长。基于理论辨析,以城市网络的借用规模效应为视角,检验网络外部性下城镇借用规模绩效对城镇经济增长的作用。在回顾网络外部性理论的基础上,以广佛都市圈城镇作为研究对象,首先利用偏离均值标准差倍数的方法解析区域绩效、集聚阴影等特征;其次,基于城镇规模、借用规模、交通网络通达性、科技创新外溢性对城镇经济增长的耦合作用,建立多元回归模型检验网络外部性的发生机制。研究发现:① 城镇既有人口规模越小,区域绩效值越低,10万人的人口规模是绩效特征的分界点,大于和小于10万人的城镇分别呈现出借用规模绩效和集聚阴影特征;② 基于新增注册企业数量和企业网络点度的区域绩效均呈现出较为明显的圈层式空间特征,且基于企业网络点度检验的空间分异特征更为突出;都市圈主城区近郊圈层城镇的绩效较明显,而主城区远郊圈层城镇的集聚阴影现象显著;③ 新增注册企业数的绩效与城镇既有规模关系最为紧密,与区域交通枢纽、借用规模、借用绩效、跨镇合作专利等解释变量的弹性系数依次降低;区域交通网络、技术合作网络的提升有利于促进城镇要素集聚,并通过网络外部性效应影响都市圈的城镇化发展。

Ding Liang, Xu Zhiqian, Zhang Junshen, et al.

Spatial heterogeneity of urban network externalities in the Yangtze River Delta

Geographical Research, 2022, 41(9): 2433-2447.

DOI:10.11821/dlyj020220172      [本文引用: 1]

Is there is a phenomenon of "low-end locking" in the urban network? Can low-grade cities benefit from the urban network? Have high-grade cities played a leading role in the urban network? These issues are related to the strategic orientation of the development of urban agglomeration, which is still lack of in-depth research. Urban network externalities refer to cities benefited by connecting with other cities, which provides a theory for answering the above questions and has become a new hotspot in urban network research. Existing studies focus on the overall characteristics of urban network externalities, but ignore the differences of urban network externalities between cities. In this paper geographical weighted regression model is used to accurately measure the urban network externalities to each city and reveal the spatial heterogeneity of urban network externalities. Taking 41 cities in the Yangtze River Delta region as case studies, we construct the urban network according to the scale of mutual investment of enterprises between cities. Then we analyze the influence of network connection on urban development, which proves that there exist urban network externalities in the study area. The results are as follows: (1) Although the urban network externalities are not dominant, joining urban networks has played a positive role in the urban development of Jiangsu, Zhejiang and Shanghai. (2) There are great regional differences in urban network externalities. The urban network externalities of cities in Jiangsu are generally stronger than those of Zhejiang, while those in Anhui are not strong. Urban development is still mainly determined by the local agglomeration of people, land and capital. (3) The urban network externalities in the Yangtze River Delta are formed mainly under the influence of Shanghai, but the influence of the three provincial capitals — Nanjing, Hefei and Hangzhou — is limited. (4) Although low-grade cities have not benefited from the network, they are not "low-end locking" either. High-grade cities do not form a "cluster shadow" around them. This paper hopes to improve the theory of urban network externalities and provide theoretical support for regional network development.

[丁亮, 徐志乾, 章俊屾, .

长三角城市网络外部性的空间异质性

地理研究, 2022, 41(9): 2433-2447.]

DOI:10.11821/dlyj020220172      [本文引用: 1]

城市网络中是否存在&#x0201c;低端锁定&#x0201d;现象,低等级城市能否从网络中获益,高等级城市是否发挥了辐射带动作用,这些问题关系城市群发展的战略导向,当前仍缺乏深入论证。城市网络外部性是指城市因联系而得到的效益,为回答上述问题提供了理论依据,已成为城市网络研究的新热点。但现有研究主要关注网络外部性的整体特征,忽视区域内城市间的网络外部性差异。本文使用地理加权回归模型将网络外部性测度精确到每个城市,揭示网络外部性的空间异质性特征。研究以长三角地区41个城市为研究对象,按城市汇总企业之间相互投资规模构建城市网络,分析网络联系对城市发展水平的影响,证实了长三角地区存在网络外部性。研究发现:① 虽然网络外部性未成为主导,但嵌入城市网络已经对江浙沪城市发展起到了积极影响。② 网络外部性的地域差异较大,江苏省城市的网络外部性普遍强于浙江省,安徽省的网络外部性不强,城市发展仍主要由人、土地和资本的本地集聚决定。③ 长三角地区的网络外部性主要是在上海的辐射带动作用下形成的,3个省会城市南京、合肥、杭州对周边城市的辐射带动作用有限。④ 低等级城市虽未从网络中获得明显的效益,但也未被&#x0201c;低端锁定&#x0201d;,高等级城市没有在周边形成&#x0201c;集聚阴影&#x0201d;。本文希望能有助于完善城市网络外部性理论,为区域网络化发展提供理论支撑。

Krugman P.

Increasing returns and economic geography

Journal of Political Economy, 1991, 99(3): 483-499.

DOI:10.1086/261763      URL     [本文引用: 1]

Romer P M.

Growth based on increasing returns due to specialization

The American Economic Review, 1987, 77(2): 56-62.

[本文引用: 1]

Ethier W J.

National and international returns to scale in the modern theory of international trade

American Economic Review, 1982, 72(3): 389-405.

[本文引用: 1]

Aghion P, Howitt P W. The Economics of Growth. Cambridge: MIT Press, 2008.

[本文引用: 1]

Bathelt H, Malmberg A, Maskell P.

Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation

Progress in Human Geography, 2004, 28(1): 31-56.

DOI:10.1191/0309132504ph469oa      URL     [本文引用: 2]

The paper is concerned with spatial clustering of economic activity and its relation to the spatiality of knowledge creation in interactive learning processes. It questions the view that tacit knowledge transfer is confined to local milieus whereas codified knowledge may roam the globe almost frictionlessly. The paper highlights the conditions under which both tacit and codified knowledge can be exchanged locally and globally. A distinction is made between, on the one hand, the learning processes taking place among actors embedded in a community by just being there dubbed buzz and, on the other, the knowledge attained by investing in building channels of communication called pipelines to selected providers located outside the local milieu. It is argued that the co-existence of high levels of buzz and many pipelines may provide firms located in outward-looking and lively clusters with a string of particular advantages not available to outsiders. Finally, some policy implications, stemming from this argument, are identified.

Weitzman M L.

Recombinant growth

The Quarterly Journal of Economics, 1998, 113(2): 331-360.

DOI:10.1162/003355398555595      URL     [本文引用: 1]

Acs Z J, Audretsch D B, Lehmann E E.

The knowledge spillover theory of entrepreneurship

Small Business Economics, 2013, 41(4): 757-774.

DOI:10.1007/s11187-013-9505-9      URL     [本文引用: 1]

Kortum S, Lerner J.

Assessing the contribution of venture capital to innovation

RAND Journal of Economics, 2000, 31(4): 674. DOI: 10.2307/2696354.

URL     [本文引用: 1]

Cohen W M, Levinthal D A.

Absorptive capacity: A new perspective on learning and innovation

Administrative Science Quarterly, 1990, 35(1): 128. DOI: 10.2307/2393553.

URL     [本文引用: 1]

Meijers E J, Burger M J, Hoogerbrugge M M.

Borrowing size in networks of cities: City size, network connectivity and metropolitan functions in Europe

Papers in Regional Science, 2016, 95(1): 181-198.

DOI:10.1111/pirs.v95.1      URL     [本文引用: 3]

Jiang Ting, Sun Kunpeng, Nie Huihua.

Administrative rank, total factor productivity and resource misallocation in Chinese cities

Management World, 2018, 34(3): 38-50, 77, 183.

[本文引用: 2]

[江艇, 孙鲲鹏, 聂辉华.

城市级别、全要素生产率和资源错配

管理世界, 2018, 34(3): 38-50, 77, 183.]

[本文引用: 2]

Alderson A S, Beckfield J.

Power and position in the world city system

American Journal of Sociology, 2004, 109(4): 811-851.

DOI:10.1086/378930      URL     [本文引用: 1]

Cooper W W, Seiford L M, Tone K.

Data Envelopment Analysis:A Comprehensive Text with Models

Applications, References and DEA-Solver Software. New York: Springer, 2007.

[本文引用: 2]

Kuang B, Liu J J, Fan X Y.

Has China's low-carbon city construction enhanced the green utilization efficiency of urban land?

International Journal of Environmental Research and Public Health, 2022, 19(16): 9844. DOI: 10.3390/ijerph19169844.

URL     [本文引用: 2]

China has implemented the low-carbon city pilot (LCCP) policy in the hopes of efficiently limiting carbon emission intensity to combat global warming and promote green economic growth. Urban land utilization, the second-largest source of carbon emissions, is key to the LCCP policy being able to have the desired effect, which has attracted widespread attention. Based on the panel data from prefecture-level cities in China from 2006 to 2019, this study used the propensity score matching difference-in-differences method (PSM-DID) to examine the impacts of LCCP policy on green utilization efficiency of urban land (GUEUL). The results reveal that LCCP policy has a beneficial impact on GUEUL and can effectively boost the future possibilities of green and low-carbon city development. Due to variances in regional economic and resource endowment level, the impacts of LCCP are different. The pilot has pushed GUEUL in the eastern region, western region, and growing resource-based cities, but has failed to improve GUEUL in other regions. Policymakers should adhere to the long-term sustainability of the LCCP policy and adopt differentiated action strategies to promote GUEUL when implementing it in different regions.

York R, Rosa E A, Dietz T. STIRPAT,

IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts

Ecological Economics, 2003, 46(3): 351-365.

DOI:10.1016/S0921-8009(03)00188-5      URL     [本文引用: 1]

Huang Rui, Wang Zheng, Ding Guanqun, et al.

Trend prediction and analysis of influencing factors of carbon emissions from energy consumption in Jiangsu province based on STIRPAT model

Geographical Research, 2016, 35(4): 781-789.

DOI:10.11821/dlyj201604015      [本文引用: 1]

Quantitative analysis of influencing factors of carbon emissions has an important guiding effect on reducing regional carbon emissions. This article, based on STIRPAT model, made an analysis of several factors influencing carbon emissions from energy consumption in Jiangsu province, respectively population, affluence (in form of per capita GDP), techonology (in form of energy intensity) and urbanization. The results of Ridge regression showed that for 1% change in population, per capita GDP, energy intensity and the level of urbanization, there was 3.467%, (0.242+0.024lnA)%, 0.313%, and 0.151% change in energy carbon emissions in Jiangsu, respectively. Based on this study, the paper set eight scenarios to furthur analyze and predict the future trend of carbon emission in Jiangsu. It is found that low growth rate of population, low growth rate of per capita GDP and high technology progress rate would help to control carbon emissions, and the carbon emissions in 2020 would be 202.81 MtC in that case. To control Jiangsu's future carbon emissions, it is essential to not only improve the technology progress rate and control the population quantity, but also to reduce the growth rate of per capita GDP, which indicates the government should slow down economic development and transform the economic growth mode to New Normal.

[黄蕊, 王铮, 丁冠群, .

基于STIRPAT模型的江苏省能源消费碳排放影响因素分析及趋势预测

地理研究, 2016, 35(4): 781-789.]

DOI:10.11821/dlyj201604015      [本文引用: 1]

定量分析碳排放的影响因素,对降低区域碳排放具有重要的指导意义。利用STIRPAT模型,定量分析江苏省能源消费碳排放量与人口、富裕度(以人均GDP表示)、技术进步(以能源强度表示)和城镇化水平之间的关系,通过岭回归拟合后发现,人口数量、人均GDP、能源强度、城市化水平每变化1%,江苏省能源消费碳排放量将分别发生3.467%、(0.242+0.024 lnA)%、0.313%和0.151%的变化。在以上研究的基础上,设置8种不同的发展情景,分析了江苏省未来能源消费碳排放量的发展趋势。结果表明,当人口、经济保持低速增长,并保持高技术增长率时,有利于控制江苏省的能源消费碳排放量,2020年江苏省的能源消费碳排放量预测值为202.81 MtC。

Baron R M, Kenny D A.

The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations

Journal of Personality and Social Psychology, 1986, 51(6): 1173. DOI: 10.1037/0022-3514.51.6.1173.

PMID:3806354      [本文引用: 1]

In this article, we attempt to distinguish between the properties of moderator and mediator variables at a number of levels. First, we seek to make theorists and researchers aware of the importance of not using the terms moderator and mediator interchangeably by carefully elaborating, both conceptually and strategically, the many ways in which moderators and mediators differ. We then go beyond this largely pedagogical function and delineate the conceptual and strategic implications of making use of such distinctions with regard to a wide range of phenomena, including control and stress, attitudes, and personality traits. We also provide a specific compendium of analytic procedures appropriate for making the most effective use of the moderator and mediator distinction, both separately and in terms of a broader causal system that includes both moderators and mediators.

Wang K Y, Wu M, Sun Y P, et al.

Resource abundance, industrial structure, and regional carbon emissions efficiency in China

Resources Policy, 2019, 60: 203-214.

DOI:10.1016/j.resourpol.2019.01.001      URL     [本文引用: 1]

Harris C D, Ullman E L.

The nature of cities

The Annals of the American Academy of Political and Social Science, 1945, 242(1): 7-17.

DOI:10.1177/000271624524200103      URL     [本文引用: 1]

Taylor P J. World Cities Network: A Global Urban Analysis. London: Routledge, 2004.

[本文引用: 1]

Huggins R, Thompson P.

A network-based view of regional growth

Journal of Economic Geography, 2014, 14(3): 511-545.

DOI:10.1093/jeg/lbt012      URL     [本文引用: 2]

Bianconi G. Multilayer Networks:Structure and Function. Oxford: Oxford University Press, 2018.

[本文引用: 1]

/