中国城市网络地位对碳排放效率的影响
|
盛科荣, 李晓瑞, 孙威, 王传阳
|
Examining the impacts of network position on urban carbon emissions efficiency in China
|
SHENG Kerong, LI Xiaorui, SUN Wei, WANG Chuanyang
|
|
表3 面板Tobit模型基准回归结果(n=1132)
|
Tab. 3 The baseline regression results of panel Tobit model
|
|
| (1) | (2) | (3) | (4) | (5) | (6) | Degree | 0.0474*** (0.013) | 0.0378** (0.015) | | | | | Between | | | 0.0209*** (0.006) | 0.0166** (0.007) | | | Eigen | | | | | 0.0042*** (0.001) | 0.0039*** (0.001) | Urban | | -0.1194*** (0.045) | | -0.1210*** (0.046) | | -0.1360*** (0.047) | Indust | | 0.1900*** (0.052) | | 0.1886*** (0.052) | | 0.1928*** (0.052) | Reasch | | 0.0031 (0.005) | | 0.0041 (0.005) | | 0.0023 (0.005) | FDI | | 0.0049* (0.003) | | 0.0050* (0.003) | | 0.0048* (0.003) | Passe | | 0.0097** (0.004) | | 0.0100*** (0.004) | | 0.0091** (0.004) | Gov | | -0.0025 (0.003) | | -0.0031 (0.003) | | -0.0032 (0.003) | 个体效应 | 是 | 是 | 是 | 是 | 是 | 是 | 时间效应 | 是 | 是 | 是 | 是 | 是 | 是 | 常数项 | 0.4007*** (0.014) | 0.3388*** (0.053) | 0.4253*** (0.010) | 0.3531*** (0.054) | 0.4184*** (0.011) | 0.3651*** (0.055) | Log likelihood | 762.93 | 776.43 | 761.58 | 775.94 | 762.74 | 777.22 | LR test | 499.46*** (0.000) | 467.33*** (0.000) | 513.36*** (0.000) | 471.50*** (0.000) | 495.92*** (0.000) | 459.84*** (0.000) | Wald chi2(10) | 112.64*** (0.000) | 142.56*** (0.000) | 110.08*** (0.000) | 141.71*** (0.000) | 112.13*** (0.000) | 144.13*** (0.000) |
|
|
|