地理学报, 2022, 77(6): 1461-1474 doi: 10.11821/dlxb202206011

区域发展

“雷霆扫毒”对贩卖毒品犯罪的影响及后续时空分布变化——以ZG市主城区为例

柳林,1,2, 刘慧婷1, 陈建国,1, 肖露子1, 祝卫莉3, 孙秋远1

1.广州大学公共安全地理信息分析中心 广州大学地理科学与遥感学院,广州 510006

2.辛辛那提大学地理系,美国 辛辛那提市 OH45221-0131

3.广东警官学院侦查系,广州 510440

The impact of "Thunder Anti-drug" operation on drug dealing crime: A case study of the main urban area of ZG city

LIU Lin,1,2, LIU Huiting1, CHEN Jianguo,1, XIAO Luzi1, ZHU Weili3, SUN Qiuyuan1

1. Center of GeoInformatics for Public Security, School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China

2. Department of Geography, University of Cincinnati, Cincinnati OH45221-0131, Ohio, USA

3. Investigation Department, Guangdong Police College, Guangzhou 510440, China

通讯作者: 陈建国(1980-), 男, 湖北松滋人, 讲师, 研究方向为毒品犯罪。E-mail: chenjg@gzhu.edu.cn

收稿日期: 2021-01-8   修回日期: 2022-01-26  

基金资助: 国家自然科学基金项目(42071184)
国家自然科学基金项目(41531178)
广东省自然科学基金研究团队项目(2014A030312010)
广州市科学研究计划重点项目(201804020016)

Received: 2021-01-8   Revised: 2022-01-26  

Fund supported: National Natural Science Foundation of China(42071184)
National Natural Science Foundation of China(41531178)
Research Team Program of Natural Science Foundation of Guangdong Province(2014A030312010)
Key Project of Science and Technology Program of Guangzhou City, China(201804020016)

作者简介 About authors

柳林(1965-), 男, 湖南湘潭人, 教授, 博导, 主要从事人文地理信息科学、犯罪时空分析与模拟研究。E-mail: lin.liu1@yahoo.com

摘要

贩卖毒品是实现毒品犯罪经济利益的重要环节,是危害最为严重的毒品犯罪类型之一。现有研究主要关注毒品犯罪与建成环境之间的关系,没有顾及打击后贩卖毒品犯罪空间转移现象以及影响因素的变化。本文基于日常活动理论、犯罪模式理论和社会解组理论,以中国ZG市主城区为例,融合多源时空数据,分别对2013年8月开始的“雷霆扫毒”前后的贩卖毒品犯罪构建负二项回归模型,分析微观尺度下半公共空间、室外公共空间和室内私人空间对贩卖毒品犯罪影响的变化。研究发现“雷霆扫毒”行动后:① 贩卖毒品犯罪案件数量显著下降;② 半公共空间对贩卖毒品犯罪的影响作用减弱;③ 室外公共空间对贩卖毒品犯罪影响作用增强,室内私人空间对贩卖毒品犯罪的影响上升。结果表明:“雷霆扫毒”专项行动开展后一年,贩卖毒品犯罪的“主阵地”发生变化,由城市半公共空间逐渐向室外公共空间和室内私人空间转移。特别的是,“雷霆扫毒”对大毒枭及贩毒团伙的打击成效突出,促使2014年贩毒案件大幅度下降,实现了专项行动开展的目的。后续一系列专项行动进一步提升了对贩卖毒品犯罪的发现和查处能力,显示出专项行动对打击隐性犯罪的明显效果。研究表明公安执法部门必须对毒品贩卖犯罪进行持续的、有针对性的打击,对发生地的变动进行定期的监控,不能一蹴而就。

关键词: 贩卖毒品犯罪; 犯罪空间转移; 建成环境; 雷霆扫毒; 负二项回归模型

Abstract

Drug dealing is closely related with economic benefits, which brings great damage to the society. Many strict measures have been taken to crack down drug-related crimes in China, but there is a lack of research on the spatial displacement and influencing factors' changes of drug dealing after crackdown. Based on the routine activity theory, crime pattern theory and social disorganization theory, this study built negative binomial regression models before and after the "Thunder Anti-drug" operation respectively, and analyzed how the impacts of semi-public, outdoor and private spaces on drug dealing had changed in the microcosmic scale. The findings are as follows: (1) Drug dealing crimes dropped significantly immediately after the operation. (2) The impact of the semi-public space, such as hotels, stores, supermarkets and entertainment places, on drug dealing crimes decreased after the crackdown. (3) The impact of outdoor public space, such as main roads, branch lines, bus-stops and parks, on drug dealing crime strengthened after the intensified crackdown. Private space such as residential areas had significant positive influence on drug dealing crimes, and the impact strengthened after the crackdown. The results show that drug dealing crimes moved to outdoor public space and private space from semi-public space. The "Thunder Anti-drug" operation was effective to crackdown top drug traffickers and drug dealing gangs, which led to a massive decline in drug dealing crimes in 2014. The follow-up operations further improved the ability for investigating hidden drug crimes. The results show that law enforcement department must carry out sustained and targeted operations on drug related crimes, to ensure continuous effect.

Keywords: drug dealing; crime displacement; built environment; Thunder Anti-drug; negative binomial regression

PDF (2513KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

柳林, 刘慧婷, 陈建国, 肖露子, 祝卫莉, 孙秋远. “雷霆扫毒”对贩卖毒品犯罪的影响及后续时空分布变化——以ZG市主城区为例. 地理学报, 2022, 77(6): 1461-1474 doi:10.11821/dlxb202206011

LIU Lin, LIU Huiting, CHEN Jianguo, XIAO Luzi, ZHU Weili, SUN Qiuyuan. The impact of "Thunder Anti-drug" operation on drug dealing crime: A case study of the main urban area of ZG city. Acta Geographica Sinica, 2022, 77(6): 1461-1474 doi:10.11821/dlxb202206011

1 引言

1978年改革开放以来,受国际毒潮持续泛滥和国内多种因素影响,毒品犯罪活动在中国蔓延开来[1]。贩卖毒品犯罪是涉毒犯罪中最为常见的犯罪类型之一,其衍生的健康问题及社会公共安全问题给个人、家庭和社会带来沉重负担。现行刑法明确规定,贩卖毒品犯罪是指明知是毒品而非法销售或者以贩卖为目的非法收买毒品的行为[2],该犯罪活动有很强的隐性特征,常规的案件发现方法难以侦破,尤其是近年来各类新型毒品不断涌现,给该类犯罪活动发展、蔓延、不断扩大规模提供了便利条件。ZG市所在省制贩毒活动发展到危害十分严重的情形,2013年8月省级公安机关牵头开展“雷霆扫毒”专项行动[3]

根据情境犯罪预防理论(Situational Crime Prevention),犯罪干预措施会对犯罪分子产生威慑作用,从而减少犯罪的发生[4],但干预后往往出现正反两面效应即效益扩散和犯罪空间转移现象[5-6]。前人大多以盗窃类犯罪和暴力犯罪为研究对象,对犯罪空间转移和效益扩散现象开展研究[7-10],而贩卖毒品犯罪却鲜有涉及。在“雷霆扫毒”行动背景下,毒品供给与需求关系出现失衡。为维持毒品市场,毒贩是转移“主阵地”从而“另起炉灶”?抑或就此“销声匿迹”,并将打击效益扩散到周边地区?Eck认为与其他类型犯罪相比,贩卖毒品犯罪可能更容易出现空间转移[11],一旦打击行动松懈或停止往往会反弹或转移到附近社区[12-13]。但也有学者研究发现对贩卖毒品犯罪采取干预措施后,实验区出现效应扩散现象,毒品交易市场整体规模缩小[14-17]。当前国内对此现象的关注不够,缺少相关的实证研究。

毒品交易行为受打击后,涉毒人员将面临空间再决策问题,影响贩卖毒品犯罪的因素可能随之变化。前人研究发现影响贩卖毒品犯罪的因素主要包括经济因素[18]、社会环境因素[19-22]和建成环境因素[23-25]。其中,城市建成环境是涉毒人员空间意识的重要组成部分,也是进行毒品交易的空间载体。依据形态与性质,城市建成环境即城市空间可分为不同类型。如Newman提出的防御空间理论强调防御空间设计需明确界定私人、公共和半公共空间3种类型的空间,以加强社区居民的领域感,从而减少犯罪的发生[26-27]。王发曾将城市空间细分为公共空间、非公共空间、边际空间和移动空间等多种空间类型[28-29],并指出犯罪高发区与不同空间类型盲区具有直接或间接的关系,需要针对不同类型的空间盲区提出预防犯罪综合治理办法[30-31]。室外公共空间是城市中最为“显性”的空间类型,具有公众性和非排他性等一般公共资源特性,此类空间内的行为活动全公开[30];室内私人空间具有排他性和隐蔽性特征,比起“露天”的公共空间更具犯罪吸引性;半公共空间介于室外公共空间和室内私人空间之间,兼具开放与封闭两种形式,其空间内的活动与街道活动隔离,但仍然是公共性质的空间[32-33]。随着大数据采集技术的发展,在交通规划[34-35]、地理大数据与城市研究[36-37]和犯罪地理研究[38-41]等领域,兴趣点(Point of Interest, POI)常被用于表征城市建成环境。部分研究利用POI数据,基于日常活动理论和犯罪模式理论,以微观地理环境视角分析发现,吸引大量潜在毒品购买者的酒吧、俱乐部、酒店和零售商店等半公共空间是涉毒人员青睐的交易地点[42-44],出租屋等隐蔽性强的室内私人空间也是毒品犯罪的风险因素[42],公交站点和主干道等可达性高的室外公共空间为毒品交易市场得以维持提供有利环境[45-46]。已有研究尚未考虑在禁毒行动背景下,半公共空间、室外公共空间和室内私人空间对贩卖毒品犯罪影响的变化。

综上,本文以ZG市主城区的贩卖毒品犯罪为研究对象,基于日常活动理论、社会解组理论和犯罪模式理论,探讨禁毒行动对贩卖毒品犯罪的影响,分析微观尺度下半公共空间、室外公共空间和室内私人空间对贩卖毒品犯罪影响的变化。本文研究内容主要包括:①“雷霆扫毒”行动背景下贩卖毒品犯罪的空间格局是否发生变化?其规律如何?②“雷霆扫毒”前后半公共空间、室外公共空间和室内私人空间对贩卖毒品犯罪空间格局的影响变化如何?

2 研究区概况、数据来源与方法

2.1 研究区概况

ZG市是中国南方特大城市之一,拥有优越的地理位置,便捷的交通运输条件,开放包容的人文环境。1978年改革开放以来,ZG市在国际毒潮和贩毒势力的渗透蔓延下,成为走私毒品通道的重要中转地、毒品销售地和进出总口岸,是国内毒品犯罪较为严重、复杂的地区,并且是2013年“雷霆扫毒”行动重点打击的地区之一。本文的研究区是ZG市的主城区(图1),区域总面积约为325.4 km2,2013年人口约为420万人,是该市人口最集中,经济最发达的区域。

图1

图1   研究范围

Fig. 1   Study area


2.2 数据来源

研究数据主要包括毒品犯罪接警数据,第六次人口普查数据、道路网络数据和POI数据。① 毒品犯罪接警数据由ZG市公安局提供,数据内容包括确认警情类别、案发地点和确认警情时间等信息。毒品犯罪确认警情类别包括贩卖毒品案,容留他人吸毒案,运输毒品案等毒品犯罪案件。由于“雷霆扫毒”于2013年8月启动,研究的时间跨度分为打击前(2012年8月—2013年7月)和打击后(2013年9月—2014年8月)。剔除与本文不相关的毒品犯罪类型以及排除研究区域外的案件点,最后获得打击前和打击后贩毒毒品犯罪案件分别为455起和387起。② POI和路网数据均来自道道通电子地图导航公司(http://www.ritu.cn/),其提供2014年的POI数据和2016年的路网数据。POI数据主要包括娱乐场所设施,零售商业设施,旅游住宿设施以及公共交通服务设施。路网数据包括城市主干道、次干道和城市支路等道路等级信息。③ 居民区数据来源于OpenStreetMap(http://download.geofabrik.de/asia/china.html)开源地图数据集[47]。研究区范围和边界来源于基础地理数据库。④ 社会环境特征数据来源于以社区为尺度的第六次人口普查数据,包含外来人口户口在本省其他县市,外来人口户口登记为省外和各学历阶层人数等社会属性信息。NPP-VIIRS年合成夜间灯光数据通过Harvard Dataverse平台(https://doi.org/10.7910/DVN/YGIVCD)下载获得[48]

2.3 研究方法

参考前人的研究[38,49],本文将研究区域划分为150 m×150 m的网格。利用ArcGIS生成贩卖毒品犯罪的核密度图以及计算格网内不同类型POI的占比,将格网划分为半公共空间、室外公共空间和室内私人空间3类空间类型,探究“雷霆扫毒”行动前后贩卖毒品犯罪空间格局的变化,继而分别建立打击前后的负二项回归模型,对贩卖毒品犯罪的影响因素进行分析。

模型的因变量为贩卖毒品案件数量,数值是非负整数,贩卖毒品犯罪是小概率事件,通常考虑采用泊松回归模型或负二项回归模型[50]。本文采用的犯罪案件数量具有过度分散的特征,即方差大于均值[51]。泊松回归模型的约束条件为因变量的均值等于它的方差,因此不适用于本文。负二项回归模型是泊松回归模型的推广,相较于泊松回归模型,其在拟合过度离散变量时,具有更好的拟合效果。因此,采用负二项回归模型分析贩卖毒品犯罪的建成环境因素,负二项分布的概率密度函数表达式为:

pr(Y=yμ,α)=Γα-1+yΓα-1+Γ(y+1)α-1α-1+μα-1μμ+α-1y

式中:Y为因变量,即ZG市主城区的贩毒案件数量;Γ是Gamma积分,其设定了积分参数阶乘;μ=E(y)是期望函数;α为Gamma分布的离散参数,当α趋向于0时,即数据不存在过度离散问题,负二项接近泊松分布。当α > 1,且显著时,说明负二项回归模型更适合对数据的拟合。

模型解释变量的边际效应称为发生率比(Incidence Rate Ratio, IRR),表示解释变量x每增加一个单位,事件发生率将增加为原来的IRR倍。IRR值是由系数β转换得到的,转换公式:

IRR=expβi

式中:βi为第i个解释变量的回归系数;IRR值用于两个时期相同变量回归系数大小的比较。

2.3.1 概念框架

根据日常活动理论,毒品交易的地点是买卖双方基于各自的日常活动进行协商的结果[52],监管的缺失为顺利完成毒品交易创造机会[25]。在日常活动理论基础上,犯罪模式理论对活动空间的描述更详细[53],其将拥有大量犯罪机会的场所归为犯罪发生地(Crime Generators)和吸引地(Crime Attractors)[54],这些场所既是人们进行合法日常活动的场所和设施,也是毒贩寻找毒品购买者或进行交易的特定区域和场所[45]。鉴于城市空间类型多样,本文将犯罪发生地和吸引地细分为半公共空间、室外公共空间和室内私人空间。社会解组理论强调混乱的社区环境是犯罪活动增加的原因之一[55]。贩卖毒品是一种非法的商业活动,由于受到严格的管控,毒贩选择的交易地点以高人口流动性、社区贫困和种族异质性为典型特征[22,56 -57]

基于以上理论及相关文献,本文选取代表城市建成环境中的半公共空间、室外公共空间和室内私人空间的场所(POI)作为自变量表征犯罪发生地和吸引地;警力布控点作为监管的衡量变量[38,41]。受教育水平的赫芬达尔系数、外来人口占比、夜间灯光均值均作为控制变量,分别为人口异质性[58-59]、人口流动性[60]和经济发展水平[61]的度量指标共同表征社会解组程度(图2)。

图2

图2   概念框架

Fig. 2   Conceptual framework


2.3.2 变量的选取和描述性统计

本文分别以打击前后的贩卖毒品犯罪案件数量为因变量构建模型。变量的描述性统计如表1所示,两个时期的贩卖毒品犯罪案件数量的方差均大于平均值。

表1   变量的描述统计

Tab. 1  Descriptive statistics of dependent and independent variables

变量平均值方差最小值最大值
因变量打击前贩卖毒品犯罪案件数量(个)0.0300.059014
打击后贩卖毒品犯罪案件数量(个)0.0260.044013
建成环境变量宾馆酒店(个)0.0880.14706
旅店旅舍(个)0.0100.01204
便利店(个)0.0940.12305
商场超市(个)0.1320.24006
娱乐场所(个)0.0220.02704
停车场(个)0.2480.46208
公交站点(个)0.1040.16907
公园广场(个)0.0080.01105
主干道占比(%)6.3003.8000100
支路占比(%)25.90013.8000100
居民区面积占比(%)9.3005.3000100
社会环境变量外来人口占比(%)1.6616.371038.070
受教育水平赫芬达尔系数0.0450.00500.605
夜间灯光均值25.511129.231066.689
正式社会控制变量警力布控点(个)0.0780.16607

新窗口打开| 下载CSV


(1)城市建成环境表征犯罪机会变量中的犯罪发生地和吸引地,具体分为半公共空间、室外公共空间和室内私人空间。半公共空间包括旅店旅社、宾馆酒店、便利店、商场超市、娱乐场所和停车场;室外公共空间包括主干道、支路、公交站点和公园广场;室内私人空间包括居民区。建成环境变量中的POI均是网格内此类设施的个数;主干道和支路的占比是网格内此类道路类型长度与所有道路长度的比值,若网格内没有任何道路则赋值为0;居民区面积占比是居民区面积与网格面积的比值。

(2)社会人口经济特征作为控制变量,主要选取外来人口占比、夜间灯光均值和受教育水平的赫芬达尔系数。外来人口占比为外来人口数量与社区总人口的比值。最后通过空间网格化,将其值按各网格单元占社区面积的比例分配到每个分析单元。夜间灯光亮度均值是将2013年类NPP-VIIRS夜间灯光数据重采样后统计每个格网内的亮度值均值。此外,在中国社会背景下,参考前人的研究[58-59],用受教育水平的赫芬达尔系数衡量人群的异质性,公式如下:

1-A2+B2+C2+D2+E2+F2(A+B+C+D+E+F+G)2

式中:ABCDEFG分别代表格网内的小学、初中、高中、大学专科、本科、研究生和未上过学人数。赫芬达尔系数范围在0~1之间,值越高表示人群构成异质性越强。

(3)将研究区内的警力布控点作为正式社会控制变量,包括治安岗亭、派出所和警务室。通过计算方差膨胀因子(VIF)检验自变量之间的多重共线性,两个时期最大的VIF值均小于4。一般认为VIF值小于10说明自变量之间不存在严重的多重共线性问题[54]

3 贩卖毒品犯罪时空分布及其热点变化

“雷霆扫毒”行动前一年的贩卖毒品犯罪案件波动起伏较大,有明显的高峰和低谷;打击后的贩卖毒品犯罪案件变化趋于平稳(图3)。打击前贩卖毒品犯罪案件高发月份为11月和3月,即春节假期前后;打击后无明显高峰,11月和3月贩卖毒品犯罪案件数量显著下降。以上信息表明在2013年“雷霆扫毒”专项行动的打击下,贩卖毒品犯罪案件总量下降,整体毒品市场规模缩小,打击效果显著。

图3

图3   2012年8月—2014年8月ZG市主城区贩卖毒品犯罪变化趋势

Fig. 3   Temporal patterns of drug dealing crime in central urban area of ZG city from August 2012 to August 2014


用核密度分析方法(Kernel Density Estimation)对贩卖毒品犯罪案件的空间分布特征进行分析,得到打击前后的贩卖毒品犯罪案件核密度分布图(图4)。打击前后,贩卖毒品犯罪都存在明显的空间聚集特征。贩毒案件主要聚集在中心城区的西北区域,呈西北—东南走向带状分布,呈现“T”型的分布特征。打击前后贩卖毒品犯罪的空间分布特征有明显变化。打击前贩卖毒品犯罪案件集中在C5、D4区域。C5为贩卖毒品犯罪高发区,其靠近ZG市著名的非裔集中居住区,便利的商品贸易进出口通道和适宜的气候条件吸引了“三非”人员在此区域聚集;高发区D4位于ZG市老城区的商业繁华地带,有着悠久的历史文化、远近闻名的商业街以及完善的交通运输系统,不仅本地人口集中,并且具有巨大的外源客流量;中低发区B4、C3、D5、F4、E6、G6和H6区域,为ZG市老城区的住宅分布区,也是ZG市城中村分布区域,大量的外来人口在此聚集。打击后,C4和D4区域的犯罪热点向东南方向转移,C5区域西南部的高发热点消失。B4和C3区域由案件中发区变为低发区。F4、D3、C2和H6区域贩卖毒品犯罪案件数量逐渐下降,其邻近的区域D2、C3和E4犯罪案件数量增加,并且D2、E7和F6区域新增零星犯罪热点。

图4

图4   打击前后ZG市主城区贩卖毒品犯罪核密度图

Fig. 4   Kernel density map of drug dealing crime in central urban area of ZG city before and after the crackdown


为了更好显示犯罪在不同空间类型之间的转移,本文局部放大3个具有代表性的区域:贩卖毒品犯罪热点区(D4),中发区(B4),中低发区(G6)。如图5所示,D4为贩卖毒品犯罪热点区,打击后发生在该区域内半公共空间的贩卖毒品犯罪案件数量减少,向周边的室外空间转移,室外公共空间的贩卖毒品犯罪案件数量增加。从贩卖毒品犯罪中发区B4来看,打击后贩卖毒品犯罪案件发生在半公共空间的案件明显下降,发生在室外公共空间的案件增加。在案件中低发区G6,发生在室内私人空间的案件增多。与“雷霆扫毒”行动前相比,打击后发生在半公共空间的案件占比下降,而发生在室内私人空间和室外公共空间的贩卖毒品犯罪案件占比上升(图6)。

图5

图5   打击前后贩卖毒品犯罪案件在不同空间类型的分布差异

Fig. 5   The distribution of drug dealing crime in different types of space before and after the crackdown


图6

图6   打击前后不同空间类型中贩毒犯罪案件占比变化

Fig. 6   The proportion of drug dealing crime in different types of space before and after the crackdown


4 ZG市主城区贩卖毒品犯罪影响因素分析

4.1 城市建成环境的影响

虽然贩卖毒品犯罪热点的空间变化及其转移趋势明显,但还需要进一步通过数学模型验证其统计学意义。因此本文采用负二项回归模型检验打击前后城市建成环境与社区环境对贩卖毒品犯罪影响的变化(表2)。首先,两个时期模型的α值均通过LR检验且显著大于0,表明数据具有显著的过度离散特征,适合用负二项回归模型建模。再者,两个模型的AIC值存在差异,即相同变量在两个时期拟合效果不同,进一步表明有必要对打击前后的影响因素进行对比分析。

表2   不同时期贩卖毒品犯罪负二项回归模型结果

Tab. 2  Negative binomial regression model for different years of drug dealing crime

模型一(2012年8月—2013年7月)模型二(2013年9月—2014年8月)
BetaIRRBetaIRR
半公共空间旅店旅社0.080***1.0840.0101.010
宾馆酒店0.186***1.2050.180***1.197
便利店0.092**1.0970.0461.047
商场超市0.176***1.1930.086**1.090
娱乐场所0.067*1.0690.0521.053
停车场0.0621.0640.078*1.081
室外公共空间主干道0.204***1.2260.219***1.245
支路0.177***1.1930.205***1.227
公交站点0.083**1.0870.110***1.116
公园广场0.057*1.0590.101***1.106
室内私人空间居民区0.0541.0550.145***1.157
控制变量警力布控点0.0181.0180.0201.020
外来人口0.305***1.3560.208***1.231
夜间灯光亮度0.392***1.4790.302***1.352
受教育水平的赫芬达尔系数0.236***1.2660.417***1.518
常数-4.3000.014-4.5140.011
AIC3269.4582858.849
BIC3398.8612988.252

注:***表示p < 0.01,**表示p < 0.05,*表示p < 0.1;Beta为模型标准化系数。

新窗口打开| 下载CSV


4.1.1 半公共空间的影响

打击前后半公共空间对贩卖毒品犯罪均有正向影响(表2)。在两个模型中,旅店旅社对贩卖毒品犯罪的影响均为正,它们通常为吸毒人员吸毒的场所以及毒贩的藏毒之地,是贩卖毒品犯罪的高风险因素[42-43]。打击前旅店旅社系数为正值,且在0.01水平下显著。其IRR值为1.084,表明每增加一个单位的旅店旅社,贩卖毒品犯罪案件发生率将增加8.4%。打击后其系数不显著,IRR值为1.010。与打击前相比,贩卖毒品犯罪案件发生率比下降7.4%。在两个时期宾馆酒店对贩卖毒品犯罪均有显著正向影响,IRR值分别为1.205、1.197,打击后边际效应变小。可能的原因是公安部门对旅店旅社和宾馆酒店的重点打击以及实名登记入住制度的严格执行,毒品交易双方谨慎选择此类设施进行交易。

经过“雷霆扫毒”的打击,便利店和商场超市对贩卖毒品犯罪的影响降低。打击前便利店对贩卖毒品犯罪起显著的正向作用,结果与前人研究一致[45-46]。便利店规模小,人流量相对较少,其附近的警用视频监控不完全覆盖,为毒品买卖双方提供有利的交易环境。打击后便利店影响系数不显著。商场超市同样属于零售商业设施,其影响系数变化与便利店不同。商场超市在两个时期均对贩卖毒品犯罪起显著的促进作用。相比打击前,商场超市对贩卖毒品犯罪影响的显著性水平降低,IRR值由1.193下降至1.090,即贩卖毒品犯罪案件发生率比下降10.3%,表明打击后商场超市对贩卖毒品犯罪的影响减弱。商场超市规模往往较大,拥有较大的人流量。这可能是由于近年来ZG市加大社会治安管控力度,在人流量大的区域实施盘查等管理措施,对涉毒人员产生威慑作用。

打击前娱乐场所对贩卖毒品犯罪的影响起显著的促进作用。IRR值为1.069,表明每增加一个单位的娱乐场所,贩卖毒品案件将会增加6.9%。娱乐场所人员复杂,其监管长期以来广受诟病,经常被涉毒人员所提及[62-63],缉毒警察早已盯上这个“污秽之地”。经过“雷霆扫毒”专项行动打击,娱乐场所对贩卖毒品犯罪的影响不显著。

停车场的影响较为复杂,国外一些研究表明停车场对贩卖毒品犯罪具有抑制作用[25,45],另一些研究认为其是毒品犯罪的风险因素[42,64]。在本文中,打击前后停车场对贩卖毒品犯罪均为正向影响。这可能是驾车运毒可以降低被查获的风险,并且一旦被警察盯上,驾车逃逸更容易。实地调研发现贩卖毒品热点区域的停车场多位于室内,宽敞开阔,人流稀疏,自然监视作用弱,为秘密交易提供有利的环境。打击后停车场的系数显著且IRR值上升,表明打击后停车场对贩卖毒品犯罪的影响增强。

4.1.2 室外公共空间的影响

打击后室外公共空间变量对贩卖毒品犯罪的影响均增强。其中,主干道和支路在两个模型中对贩卖毒品犯罪的影响都为正值且显著,表明它们对贩卖毒品犯罪有显著的促进作用,这与国外研究一致[65-66]。涉毒人员通常基于可达性和安全性的考虑选取交易地点[45],交易地点位于主干道和支路附近既方便毒品交易双方到达,也方便他们交易后快速逃离。打击前后支路IRR值分别为1.193和1.227,打击后支路对贩卖毒品犯罪的影响显著增强,贩卖毒品犯罪案件发生率比上升3.4%。打击后主干道的IRR值变大,表明主干道对贩卖毒品犯罪的影响增强。

两个模型中公交站点均对贩卖毒品犯罪起显著的促进作用,其IRR值分别为1.087、1.116。打击前每增加一个单位的公交站点,其附近的贩毒案件发生概率将增加8.7%,打击后贩毒案件发生概率增加11.6%,这表明打击后公交站点对贩卖毒品犯罪的影响增强。公交站点密集的区域交通可达性高,为涉毒人员提供较大的耦合机会,且公共交通为吸毒人员提供低成本的出行方式。此外,同为室外公共空间的公园广场,在两个时期也对贩卖毒品犯罪有显著的正向影响,结果与Groff等在美国的研究类似[67]。公园广场为秘密交易提供了适宜的城市公共空间,涉毒人员可作为游客混进去而不被监管发现。相较于打击前,打击后贩卖毒品案件发生率比上升4.7%,表明打击后公园广场对贩卖毒品犯罪影响上升,这可能是公安机关对娱乐场所、旅店旅社和宾馆酒店等半公共空间的重点打击,迫使涉毒人员向监管较弱的公园广场转移。

4.1.3 室内私人空间的影响

打击前后居民区对贩卖毒品犯罪的影响变化明显。打击前居民区对贩卖毒品犯罪的正向影响不显著,打击后其影响具有显著性,IRR值为1.157,表明每增加一个单位的居民区,其附近的贩毒案件发生概率将增加15.7%。打击后居民区IRR值上升,贩卖毒品案件发生率比上升10.2%,表明随着打击行动的推进,居民区对贩卖毒品犯罪的影响增强。毒品交易过程通常具有高度的保密性。居民区为室内私人空间,可以有效隔离陌生人的监视,为非法交易提供秘密空间。

4.2 控制变量的影响

贩卖毒品犯罪与基层警力布控点无明显相关关系,这一结果与其他犯罪类型研究结论不一致[38,41],可能是由于贩卖毒品犯罪特点与其他犯罪类型特点不同所致。在这两个模型中,外来人口对贩卖毒品犯罪影响系数均为正值且显著,说明人口流动性和人口异质性与贩卖毒品犯罪显著正相关。夜间灯光亮度对贩卖毒品犯罪有显著的促进作用,灯光亮度值高的区域经济繁荣,拥有较多的毒品购买人群,毒品销售市场广阔。受教育水平的赫芬达尔系数与贩卖毒品犯罪显著正相关,说明人群构成复杂和居住不稳定会导致更高的贩卖毒品犯罪发生的概率。

4.3 “雷霆扫毒”行动后续影响

“雷霆扫毒”专项行动后一年贩毒案件明显下降(图7)。“雷霆扫毒”专项行动开展前毒情严峻,但公安机关对毒品犯罪案件的发现和查处能力相对偏低,案件数与毒情不成正比。“雷霆扫毒”专项行动的开展明显提升了贩卖毒品犯罪案件的发现和查处成效,特别是对大毒枭及贩毒团伙的打击成效突出,导致2014年贩毒犯罪案件大幅度下降,实现了专项行动开展的目的。后续ZG市所在省又陆续开展了为期3年的“全民禁毒工程”“禁毒2018两打两控”暨“粤剑扫毒”专项行动、“飓风行动”“净边行动”等一系列专项行动。在这些专项行动的影响下,虽然贩卖毒品犯罪方式方法在不断变化,但公安机关对毒品犯罪案件的发现和查处能力持续保持在高位(图7),显示出专项行动对打击隐性犯罪的明显效果。此外,由于新型毒品制贩、走私和滥用问题日益突出,2015年公安部、国家食品药品监督管理总局、国家卫生计生委和国家禁毒委员会办公室联合制定了《非药用类麻醉药品和精神药品列管办法》,新增116种新精神活性物质管制品种,这也在一定程度上导致2015年开始贩卖毒品犯罪保持高发态势[68]

图7

图7   2013—2019年贩毒案件年变化

Fig. 7   Annual variation in drug dealing crime in 2013-2019


“雷霆扫毒”专项行动后发生在旅店旅社、娱乐场所等半公共空间的贩卖毒品案件先下降然后趋于稳定,打击行动后此类场所一直是警方关注的重点区域,贩毒案件得到有效控制(图8);发生在室内私人空间的案件上升后保持稳定,对半公共空间的打击促使毒品交易向更私密的室内私人空间转移,因室内私人空间的封闭性和排外性不易被发现,这种上升的趋势很快趋于稳定;以公园广场为代表的室外空间监管难度大,此类场所的案发量与是否开展禁毒行动密切相关,导致发生在室外空间的贩卖毒品案件起伏波动。对于贩卖毒品犯罪而言,交易场所会随着打击行动的开展而发生变化,执法部门务必持续关注,动态调整需要重点打击的场所。

图8

图8   贩毒案件在不同空间类型占比的变化

Fig. 8   Drug dealing crime in different types of space


5 结论与讨论

本文以ZG市主城区的贩卖毒品犯罪为研究对象,综合日常活动理论、犯罪模式理论和社会解组理论,分析打击前后贩卖毒品犯罪时空格局和影响因素的变化。研究结论为:

(1)“雷霆扫毒”行动前后贩卖毒品犯罪时空上存在差异。“雷霆扫毒”专项行动的开展明显提升了贩卖毒品犯罪案件的发现和查处成效,特别是对大毒枭及贩毒团伙的打击成效突出,导致贩毒犯罪案件大幅度下降。打击前贩卖毒品案件数量波动起伏大,春节假期前后是明显的高发期,空间聚集热点明显。打击后贩卖毒品案件数量处于平稳状态,无明显高峰低谷,热点区域减少。

(2)打击前后不同类型空间对贩卖毒品犯罪影响变化趋势不同。打击后半公共空间对贩卖毒品犯罪的影响显著下降;室外公共空间对贩卖毒品犯罪存在显著的促进作用且影响增强;室内私人空间对贩卖毒品犯罪的影响显著上升。总体上,贩卖毒品犯罪的“主阵地”由半公共空间逐渐向室外公共空间和室内私人空间转移。

(3)后续一系列专项行动进一步提升了对毒品犯罪案件的发现和查处能力,显示出专项行动对打击隐性犯罪的明显效果。同时在一系列禁毒行动下,不同空间类型的贩毒案件占比也发生变化,以上均表明公安执法部门必须对毒品贩卖犯罪进行持续的、有针对性的打击,不能一蹴而就。

本文研究结果与已有研究存在异同。相同之处在于证实了犯罪模式理论中的犯罪发生地和吸引地与贩卖毒品犯罪存在关联,例如宾馆酒店[42-43]、便利店[45-46]、娱乐场所[62-63]、公交站点[64]、主干道和支路[65-66]对贩卖毒品犯罪起到显著的促进作用。不同之处在于前人研究局限于毒品犯罪与建成环境的关系,没有考虑到打击行动等人工干预措施的影响,而本文侧重分析打击前后贩卖毒品犯罪空间转移现象及其影响因素的变化。具体的贡献包括:① 关注禁毒专项行动背景下,贩卖毒品犯罪空间转移现象。② 将城市建成环境细分为半公共空间、室外公共空间和室内私人空间3种空间类型,分析它们在禁毒专项行动打击前后对贩卖毒品犯罪影响的变化。

以上贩卖毒品犯罪空间转移规律可以为精准化缉毒提供科学依据。① 建议定期对贩卖毒品犯罪警情进行分析与预测,识别其时空热点,以动态调整贩卖毒品犯罪打击和防控策略;② 毒品犯罪打击的不同阶段,需要关注的犯罪热点区域以及重点场所不同。日常巡防的重点区域也需要随着犯罪空间转移而动态调整,实现精准打击,提高防控效益。本文的研究也存在不足,由于数据的难获取性,城市建成环境、社会经济特征数据与贩卖毒品犯罪数据时间不完全一致,这在微观犯罪研究中比较常见。

参考文献

Supreme People's Court.

White Paper on Anti-drug Work of People's Court (2012-2017)

People's Court Daily, 2017-06-21.

[本文引用: 1]

[最高人民法院.

《人民法院禁毒工作白皮书》(2012—2017)

人民法院报, 2017-06-21.]

[本文引用: 1]

Hu Kangsheng, Lang sheng. Interpretation of the Criminal Law of the People's Republic of China. Beijing: Law Press·China, 2004.

[本文引用: 1]

[胡康生, 朗胜. 中华人民共和国刑法释义. 北京: 法律出版社, 2004.]

[本文引用: 1]

Xu Yuanyuan, Qiu Zhixin.

On the status quo and developing trend of drug-making crimes in Guangdong province and countermeasures

Journal of Political Science and Law, 2015, 32(5): 20-25.

[本文引用: 1]

[徐媛媛, 丘志馨.

论广东制造毒品犯罪的现状、趋势与对策

政法学刊, 2015, 32(5): 20-25.]

[本文引用: 1]

Clarke R V G. Situational Crime Prevention. Monsey: Criminal Justice Press, 1997.

[本文引用: 1]

Johnson S, Guerette R T, Bowers K.

Crime displacement and diffusion of benefits//Welsh B C, Farrington D P

The Oxford Handbook of Crime Prevention. New York: Oxford University Press, 2012: 337-353.

[本文引用: 1]

Telep C W, Weisburd D, Gill C E, et al.

Displacement of crime and diffusion of crime control benefits in large-scale geographic areas: A systematic review

Journal of Experimental Criminology, 2014, 10(4): 515-548.

DOI:10.1007/s11292-014-9208-5      URL     [本文引用: 1]

Wang Z L, Liu L, Zhou H L, et al.

Crime geographical displacement: Testing its potential contribution to crime prediction

ISPRS International Journal of Geo-Information, 2019, 8(9): 383. DOI: 10.3390/ijgi8090383.

URL     [本文引用: 1]

Bowers K J, Johnson S D.

Measuring the geographical displacement and diffusion of benefit effects of crime prevention activity

Journal of Quantitative Criminology, 2003, 19(3): 275-301.

DOI:10.1023/A:1024909009240      URL     [本文引用: 1]

Ratcliffe J H, Taylor R B, Askey A P, et al.

The Philadelphia predictive policing experiment

Journal of Experimental Criminology, 2021, 17(1): 15-41.

DOI:10.1007/s11292-019-09400-2      URL     [本文引用: 1]

Liu Lin, Li Lu, Zhou Hanlin, et al.

The effects of police CCTV camera on crime displacement and diffusion of benefits: A case study from Gusu district in Suzhou, China

Scientia Geographica Sinica, 2020, 40(10): 1601-1609.

DOI:10.13249/j.cnki.sgs.2020.10.003      [本文引用: 1]

Ever since the Closed-Circuit Television (CCTV) has been widely installed in mainland China, the police CCTV plays an indispensable role in the police strategy. According to the theory of situational crime prevention and the theory of crime prevention through environmental design, the police CCTV cameras should deter the potential offenders by increasing the risk of being exposed or arrested, and thus reduce crime. The crime reduction schemes can lead to crime displacement or diffusion of benefits. The installation of CCTV will not only affect crime in the surveillance areas of CCTV, but also the surrounding environments. Scholars have found that whether CCTV causes crime displacement or diffusion of benefits varies among different crime types. Existing research has applied the weighted displacement quotient (WDQ) to study the effect of crime displacement and diffusion of benefits in many countries. However, WDQ will not work properly when the denominator is equal to zero. Additionally, little research investigates the effect of crime displacement and the diffusion of benefits related to police CCTV in China. This paper attempts to fill the aforementioned research gaps and propose an appropriate approach to assess the impact of CCTV on the surrounding environment in a Chinese city. Based on difference-in-differences (DID) and WDQ, this study introduces a new quadrant estimation method, which displays the result plots after calculating DID between the target area and the control area and DID between the buffer area and the control area. This method not only avoids the problem in WDQ calculation but also exhibits the phenomenon of crime displacement and diffusion of benefits more intuitively. Taking the Gusu district in Suzhou city as the study area, this paper applies this new method to investigate crime displacement and diffusion of benefits related to CCTV from three aspects: all crime, different types of crime, and crimes in the different temporal periods. This study investigates the impact of the police CCTV cameras on crime events from 2014 to 2016 in Gusu. The results show that when any crime reduction at a site could be observed after the open-street CCTV implementation, diffusion of benefits rather than crime displacement was the norm. In terms of variations among crime types, the crime displacement phenomenon of theft is more obvious than all other three types of crime: fraud, fighting, and violation of public order; and electric vehicle battery theft's displacement is more obvious than that of electric vehicle theft. In terms of the temporal variations, the phenomenon of crime displacement is more obvious in holidays and daytime, while diffusion of benefits is more obvious in weekdays and evenings.

[柳林, 李璐, 周翰林, .

警用视频监控的犯罪转移和效益扩散

地理科学, 2020, 40(10): 1601-1609.]

DOI:10.13249/j.cnki.sgs.2020.10.003      [本文引用: 1]

基于加权转移系数法和双重差分法提出象限统计法,分析了警用治安视频监控对苏州市姑苏区2014—2016年警情数据的犯罪转移和效益扩散现象。研究结果表明,警用治安视频监控设备的安装对于总体犯罪、不同类型案件、不同时段案件均有效益扩散现象,且效益扩散现象比犯罪转移现象更加明显。在案件类型上,盗窃类案件及违反公共秩序类案件的犯罪转移现象较为明显,斗殴类案件次之,而诈骗类案件最不明显。盗窃电动车电瓶类案件的犯罪转移情况相对于盗窃电动车案件更为明显。在时间维度上,节假日和白天的犯罪转移现象更为明显,而工作日和夜晚的效益扩散现象更为明显。

Eck J E.

The threat of crime displacement

Criminal Justice Abstracts, 1993, 25: 527-546.

[本文引用: 1]

Caulkins J.

Measurement and analysis of drug problems and drug control efforts

Criminal Justice, 2000, 4: 391-449.

[本文引用: 1]

Hunt E D, Sumner M, Scholten T J, et al.

Using GIS to identify drug markets and reduce drug-related violence//Thomas Y, Richardson D, Cheung I

Geography and Drug Addiction. New York: Springer, 2008: 395-413.

[本文引用: 1]

Weisburd D, Wyckoff L A, Ready J, et al.

Does crime just move around the corner? A controlled study of spatial displacement and diffusion of crime control benefits

Criminology, 2006, 44(3): 549-592.

DOI:10.1111/j.1745-9125.2006.00057.x      URL     [本文引用: 1]

Weisburd D, Green L.

Measuring immediate spatial displacement:Methodological issues and problems//Eck J E, Weisburd D

Crime and Place. Monsey: Criminal Justice Press, 1995: 349-361.

[本文引用: 1]

Taniguchi T A, Rengert G F, Mccord E S.

Where size matters: Agglomeration economies of illegal drug markets in Philadelphia

Justice Quarterly, 2009, 26(4): 670-694.

DOI:10.1080/07418820802593378      URL     [本文引用: 1]

Weisburd D, Green L.

Policing drug hot spots: The Jersey City drug market analysis experiment

Justice Quarterly, 1995, 12(4): 711-735.

DOI:10.1080/07418829500096261      URL     [本文引用: 1]

Johnson L T, Taylor R B, Ratcliffe J H.

Need drugs, will travel? The distances to crime of illegal drug buyers

Journal of Criminal Justice, 2013, 41(3): 178-187.

DOI:10.1016/j.jcrimjus.2013.01.003      URL     [本文引用: 1]

Willits D, Broidy L M, Denman K.

Schools and drug markets: Examining the relationship between schools and neighborhood drug crime

Youth & Society, 2015, 47(5): 634-658.

[本文引用: 1]

Wooditch A, Lawton B, Taxman F S.

The geography of drug abuse epidemiology among probationers in Baltimore

Journal of Drug Issues, 2013, 43(2): 231-249.

DOI:10.1177/0022042612470643      URL     [本文引用: 1]

Torres C E, D'Alessio S J, Stolzenberg L.

The replacements: The effect of incarcerating drug offenders on first-time drug sales offending

Crime & Delinquency, 2021, 67(3): 449-471.

[本文引用: 1]

Freisthler B, Lascala E A, Gruenewald P J, et al.

An examination of drug activity: Effects of neighborhood social organization on the development of drug distribution systems

Substance Use & Misuse, 2005, 40(5): 671-686.

[本文引用: 2]

Sytsma V A, Connealy N, Piza E L.

Environmental predictors of a drug offender crime script: A systematic social observation of google street view images and CCTV footage

Crime & Delinquency, 2021, 67(1): 27-57.

[本文引用: 1]

Escudero J A, Ramírez B.

Risk terrain modeling for monitoring illicit drugs markets across Bogota, Colombia

Crime Science, 2018, 7(1): 3. DOI: 10.1186/s40163-017-0075-z.

URL     [本文引用: 1]

Bernasco W, Jacques S.

Where do dealers solicit customers and sell them drugs? A micro-level multiple method study

Journal of Contemporary Criminal Justice, 2015, 31(4): 376-408.

DOI:10.1177/1043986215608535      URL     [本文引用: 3]

Newman O.

Creating Defensible Space

Washington, DC: US Department of Housing and Urban Development Office of Policy Development and Research, 1996.

[本文引用: 1]

Newman O. Defensible Space:People and Design in the Violent City. London: Architectural Press, 1973.

[本文引用: 1]

Wang Fazeng.

Study on the comprehensive treatment of spatial blind areas in urban crime

Geographical Research, 2010, 29(1): 57-67.

[本文引用: 1]

[王发曾.

城市犯罪空间盲区的综合治理研究

地理研究, 2010, 29(1): 57-67.]

[本文引用: 1]

Wang Fazeng.

The spatial anti-urban crime

Journal of Henan University (Natural Science), 2012, 42(5): 563-570.

[本文引用: 1]

[王发曾.

城市犯罪的空间防控

河南大学学报(自然科学版), 2012, 42(5): 563-570.]

[本文引用: 1]

Wang Fazeng.

The public spatial blind area in urban crime and its comprehensive treatment

Human Geography, 2003, 18(3): 8-12.

[本文引用: 2]

[王发曾.

城市犯罪中的公共空间盲区及其综合治理

人文地理, 2003, 18(3): 8-12.]

[本文引用: 2]

Wang Fazeng.

The non-public and blind area in urban crime and its comprehensive management

Human Geography, 2002, 17(4): 1-5.

[本文引用: 1]

[王发曾.

城市犯罪中的非公共空间盲区及其综合治理

人文地理, 2002, 17(4): 1-5.]

[本文引用: 1]

Hunter K, Park J N, Allen S T, et al.

Safe and unsafe spaces: Non-fatal overdose, arrest, and receptive syringe sharing among people who inject drugs in public and semi-public spaces in Baltimore City

International Journal of Drug Policy, 2018, 57: 25-31.

DOI:S0955-3959(18)30096-3      PMID:29660732      [本文引用: 1]

The spaces in which drug use occurs constitutes a key aspect of the "risk environment" of people who inject drugs (PWID). We aimed to add nuance to the characterization of "safe" and "unsafe" spaces in PWID's environments to further understand how these spaces amplify the risk of morbidities associated with injection drug use. PWID were recruited through the Baltimore City syringe service program and through peer referral. Participants completed a socio-behavioral survey. Multivariable logistic regression was used to identify associations between utilization of public, semi-public and private spaces with arrest, non-fatal overdose, and receptive syringe sharing. The sample of PWID (N = 283) was mostly 45 years and older (54%), male (69%), Black (55%), and heroin users (96%). Compared to PWID who primarily used private settings, the adjusted odds of recent overdose were greater among PWID who mostly used semi-public and public locations to inject drugs. We also found independent associations between arrest and semi-public spaces, and between receptive syringe sharing and public spaces (all p < 0.05). This study highlights the need for safe spaces where PWID can reduce their risk of overdose, likelihood of arrest and blood-borne diseases, and the dual potential of the environment in promoting health and risk.Copyright © 2018 Elsevier B.V. All rights reserved.

Linas B S, Latkin C, Westergaard R P, et al.

Capturing illicit drug use where and when it happens: An ecological momentary assessment of the social, physical and activity environment of using versus craving illicit drugs

Addiction, 2015, 110(2): 315-325.

DOI:10.1111/add.12768      PMID:25311241      [本文引用: 1]

To understand the environmental and contextual influences of illicit cocaine and heroin use and craving using mobile health (mHealth) methods.Interactive mHealth methods of ecological momentary assessment (EMA) were utilized in the Exposure Assessment in Current Time (EXACT) study to assess drug use and craving among urban drug users in real time. Participants were provided with mobile devices and asked to self-report every time they either craved (without using) or used heroin or cocaine for 30 days from November 2008 through May 2013.Baltimore, MD, USA.A total of 109 participants from the AIDS Linked to the IntraVenous Experience (ALIVE) study.For each drug use or craving event, participants answered questions concerning their drug use, current mood and their social, physical and activity environments. Odds ratios (OR) of drug use versus craving were obtained from logistic regression models with generalized estimating equations of all reported events.Participants were a median of 48.5 years old, 90% African American, 52% male and 59% HIV-infected. Participants were significantly more likely to report use rather than craving drugs if they were with someone who was using drugs [adjusted odds ratio (aOR) = 1.45, 95% confidence interval (CI) = 1.13, 1.86), in an abandoned space (aOR = 6.65, 95% CI = 1.78, 24.84) or walking/wandering (aOR = 1.68, 95% CI = 1.11, 2.54). Craving drugs was associated with being with a child (aOR = 0.26, 95% CI = 0.12, 0.59), eating (aOR = 0.54, 95% CI = 0.34, 0.85) or being at the doctor's office (aOR = 0.31, 95% CI = 0.12, 0.80).There are distinct drug using and craving environments among urban drug users, which may provide a framework for developing real-time context-sensitive interventions.© 2014 Society for the Study of Addiction.

Wang N C, Liu Y F, Wang J Z, et al.

Investigating the potential of using POI and nighttime light data to map urban road safety at the micro-level: A case in Shanghai, China

Sustainability, 2019, 11(17): 4739. DOI: 10.3390/su11174739.

URL     [本文引用: 1]

Jia R, Khadka A, Kim I.

Traffic crash analysis with point-of-interest spatial clustering

Accident Analysis & Prevention, 2018, 121: 223-230.

DOI:10.1016/j.aap.2018.09.018      URL     [本文引用: 1]

Gao Feng, Li Shaoying, Wu Zhifeng, et al.

Spatial-temporal characteristics and the influencing factors of the ride destination of bike sharing in Guangzhou city

Geographical Research, 2019, 38(12): 2859-2872.

DOI:10.11821/dlyj020190081      [本文引用: 1]

Since the emergence of dockless bike sharing in China, it has provided convenience and non-motorized travel mode for residents' short distance trips. Bike sharing plays an important role in improving the accessibility of public transportation and reducing the motorized pollution. At the same time, it also brings out urban issues, such as excessive amount of bike sharing, and mismatch between supply and demand of bike sharing. The main reason for these problems is the lack of accurate prediction and effective scheduling for bike sharing ride. Exploring the spatial and temporal characteristics of bike sharing ride and detecting the influencing factors can provide scientific decision-making basis for precise prediction and effective scheduling of bike sharing. Even though some studies have paid attention to the influencing factors of bike-sharing ride behaviors, most of them focused on the starting point but neglected the destination. Moreover, the temporal difference of influencing factors and the interaction between the factors were seldom revealed in the previous studies. Taking mobike in Guangzhou city as an example, this study aims to analyze the spatial and temporal characteristics of the ride destination of bike sharing. We detect the temporal differences of the influencing factors of bike sharing ride destination, and further explores the interaction between the determinants by using geographical detector. The results show that: (1) The usage of bike sharing in morning-peak time is greater than that in evening-peak time, and the spatial distribution of bike sharing ride destination has obvious temporal differences. The ride destinations of bike sharing at morning peak period are mainly distributed at CBD, zone of information industry and job-housing balance areas. While the ride destinations at evening peak period are mainly distributed along Metro Line 3 from Tiyuxi station to Huashi station as well as high-density residential areas. (2) The element of service facilities has the greatest impacts on the ride destinations of bike sharing, followed by the accessibility, land use and natural environment elements. To be more specifically, the influencing degree of the factors ranks as follows: residential communities distribution, catering facilities distribution, corporate distribution, shopping facilities distribution, road density, distance to metro station entrances and POI diversity. (3) The influence of each factor has remarkable temporal differences, for example, the influence of corporate distribution factor grows rapidly during the morning peak period. (4) The interaction effect of any two factors on the ride destinations of bike sharing is greater than the effect of one single factor. Among them, the interaction effect of factors which belong to service facilities elements are the greatest, followed by the interaction effects between factors of service facilities and accessibility.

[高枫, 李少英, 吴志峰, .

广州市主城区共享单车骑行目的地时空特征与影响因素

地理研究, 2019, 38(12): 2859-2872.]

DOI:10.11821/dlyj020190081      [本文引用: 1]

已有共享单车骑行影响因素研究主要关注起点,大多忽略目的地,在探讨其影响因素的时间差异及交互作用方面较少。以广州市主城区为例,引入地理探测器,精细分析目的地分布影响因素的时间差异,并进行交互探测。研究发现:① 早高峰到达量大于晚高峰,早高峰目的地多分布在CBD,信息产业园和职住平衡地区,晚高峰多分布在地铁3号线体育西至华师站沿线和高密度住宅区。② 服务设施类是影响最显著的类别,其次是交通可达、土地利用和自然环境类别,其中影响力较大的因子依次是住宅、餐饮、公司、购物设施分布、路网密度、距地铁站口距离和POI多样性。③ 各因子影响力存在明显时间差异,所有建成环境因子在早晚高峰时段影响力均大于其他时段,其中公司企业分布因子的影响力在早高峰时段迅速增强。④ 因子间均为双因子增强关系,其中服务设施分布类别中因子交互作用最显著,服务设施分布与交通可达类别的因子交互作用次之。

Ta Na, Zeng Yutian, Zhu Qiuyu, et al.

Relationship between built environment and urban vitality in Shanghai downtown area based on big data

Scientia Geographica Sinica, 2020, 40(1): 60-68.

DOI:10.13249/j.cnki.sgs.2020.01.008      [本文引用: 1]

Research on urban vitality has drawn more attention from different disciplines and perspectives such as urban geography, urban planning and urban government. Urban vitality is not only an important symbol of urban sustainable development, but also an important factor for cities to retain high-skilled talents, which could improve the competitiveness of the city. Studying urban vitality is conducive for us to re-understanding the city in a new perspective and improving urban human-oriented planning and management for the government, especially for some megacities and international cities which contain a large population. Urban vitality, consisting of economic vitality, social vitality and cultural vitality, reflects the level of urban development capacity and quality of life, which is also closely related to the citizens. In order to discover the urban vitality in Shanghai, this paper uses multi-source data, including dianping’s data which counts the number of businesses in the studying area to reflect the economic vitality, urban taxi arrival data in one week to reflect the social vitality and cultural facilities data in the studying area to reflect cultural vitality, to measure urban vitality from two scale: both block and sub-district level. Based on this comprehensive measurement, this article intends to analyze the spatial outcome characteristics of urban vitality in different blocks and sub-districts. This article also establishes a regression models for analyzing the impact mechanism of urban built environment which consists of multiple elements on urban vitality. It is found that the urban vitality of Shanghai is higher in the central area, decreasing from the central area to the surrounding area in the city. In the meanwhile, the value of urban vitality in Puxi area is higher than Pudong area, which means the daily activities and communication in Puxi area are more dynamic than these in Pudong area. Apart from differences between Puxi and Pudong areas, there are also distinctions regarding to the factors of built environments effecting the urban vitality between block level and street level. On the block level, it is found that the built environments effect significantly to different types of urban vitality and the comprehensive vitality. What’s more, for each vitality, the effect shows in different ways. Specifically, the increase of population density will influence the urban vitality by firstly in an active way then in a passive one. Especially for social and cultural vitality, the high density of population is not beneficial. For the facilities, increase of POI density and road network density presenting completeness and POI mixing degree presenting the variety of land use will promote all kinds of the vitality and comprehensive vitality. In the respect of the design, the increase of average building layers and building density will reduce the social vitality and cultural vitality, but will enhance the economic vitality and comprehensive vitality of the block at the same time. And in terms of the access to public transportation, the distance to the nearest bus station will increase the economic vitality of the block. According to the discoveries about the spatial pattern and the effecting factors of urban vitality, this article proves improving the built environment is meaningful to the development of urban.

[塔娜, 曾屿恬, 朱秋宇, .

基于大数据的上海中心城区建成环境与城市活力关系分析

地理科学, 2020, 40(1): 60-68.]

DOI:10.13249/j.cnki.sgs.2020.01.008      [本文引用: 1]

运用大众点评数据、出租车到达数据与文化设施POI数据测度城市活力的经济、社会和文化维度,在街区和街道层面分析城市活力的空间结构特征,建立计量模型分析城市建成环境对城市活力的影响关系。结果表明:①上海中心城区城市活力表现出明显的空间差异,主要表现为由中心向四周递减、浦西优于浦东的总体特征;②街区和街道尺度影响城市活力的建成环境因素存在差异;③街区尺度建成环境对城市社会、经济和文化活力的影响存在差异:提升人口密度对经济活力具有正面影响,过高的人口密度可能不利于社会和文化活力发展;增加POI密度、路网密度和POI混合度有利于城市活力的提升;建筑层数和建筑密度的增加会降低街区的社会活力和文化活力,但会提升街区的经济活力;交通可达性有利于经济活力的提升。

Liu Lin, Liang Siyi, Song Guangwen.

Explaining street contact crime based on dynamic spatio-temporal distribution of potential targets

Journal of Geo-Information Science, 2020, 22(4): 887-897.

[本文引用: 4]

[柳林, 梁斯毅, 宋广文.

基于潜在受害者动态时空分布的街面接触型犯罪研究

地球信息科学学报, 2020, 22(4): 887-897.]

DOI:10.12082/dqxxkx.2020.190709      [本文引用: 4]

街面接触型犯罪是指犯罪者在街面通过采取与受害者身体接触的方式而实施的违反法律的行为,已有文献研究利用了不同类型的大数据代表的周遭人口表征街面接触型犯罪中“潜在受害者”因素,但由于数据的局限性,无法应用在微观的空间尺度上的街面接触型犯罪研究。微信热力图是具有高时空分辨率和高人口覆盖度,能动态地反映人流量热度的程序。因此,本文以经济发达的ZG市的XT街道为例,结合日常活动理论,并基于微信热力图数据代表的周遭人口表征的“潜在受害者”因素,首先定性地描述和识别街面接触型犯罪的时空分布特征,然后划分不同时段分析街道街面接触型犯罪的影响因素。研究发现:① 街面接触型犯罪案件存在时空的集聚性,街道街面接触型犯罪在晚上(18:00—23:59)是高发期,在白天(07:00—17:59)是低发期,在22:00—22:59数量达到最大值,主要聚集在城中村区域,且不同时期的影响因素存在一定的差异;② 微信人口数量在所有时期均对街面接触型犯罪存在显著的正向影响,其代表的周遭人口能很好地表征日常活动理论中的“潜在受害者”因素,且在凌晨—清晨(00:00—06:59)对街面接触型犯罪的影响最大;③ 不同场所对街面接触型犯罪的影响存在时间上的差异,餐饮点在晚上对街面接触型犯罪存在显著的正向影响,KTV、健身房和公交站点分别对应在凌晨—清晨、白天与晚上对街面接触型犯罪有显著的正向影响,而休闲会所在凌晨、清晨、晚上均有显著的影响,与最近巡逻驻点的距离仅在晚上时期显著影响街面接触型犯罪。本文的研究结论可为警方采用微信热力图来分析街面接触型犯罪和经济发达地区警方部署提供参考依据。

Zhang Chunxia, Zhou Suhong, Liu Lin, et al.

Relationship between the built environment and theft cases in star hotels in ZG central city

Progress in Geography, 2020, 39(5): 829-840.

DOI:10.18306/dlkxjz.2020.05.011      [本文引用: 1]

As a ticklish social problem, crime committed in hotels has been concerned by both Chinese and Western scholars. Theft is one of the most frequent crime types occurred in hotels, especially in star hotels. Previous studies on influencing factors of hotel theft cases mainly focused on star hotel and personal attributes of victims at the micro level from the perspective of sociology, rather than considering the built environmental factors at the macro level from the perspective of geography. Using the data on the star hotels with theft cases in 2012-2014 in ZG central city obtained from Municipal Public Security Bureau, this study examined the spatial-temporal characteristics of these hotels. Then the environmental indicators within 500 m around the hotels were examined and the negative binomial regression method was used to make a systematic analysis on the factors affecting the theft of different types of star hotels in various time periods. The main results are as follows: 1) The spatial-temporal distribution of star hotels showed obvious agglomeration features. Generally, most of the main hotspots in the high incidence areas of hotel theft were time invariant, all of them are highlighted near the old city central business district, the eastern extension of the main road and the railway station. However, the spatial distribution of secondary hotspots was time-varying. 2) The overall model analysis indicates that the improvement of the service level was the most effective way to reduce the theft cases of all star hotels. The surrounding property and community points of interest (POIs) will significantly increase the opportunity for all star hotels to be stolen, while road intersections play a significant regulatory role in the theft of all star hotels. 3) The results of the sub models demonstrate that the effect of service level on the theft of three-star and five-star hotels is significant, and the effect of road intersection on the theft of four-star hotels often used by guests of business travel is stronger; the number of POIs has more obvious effect on three-star and four-star hotels. Large-scale retail business center can significantly increase the number of theft cases in hotels in the peak season and the weekend, and the number of road intersections is significant for the monitoring of stolen risk of the star hotels in the off-season period and the working days. These results have shown that the built environment played a significant role in affecting the opportunity and cost of hotel theft. The results verify the applicability of the daily activity theory in the study of hotel crimes in large cities in China, and expand the research results of crime geography in the direction of star hotel theft, which has a guiding effect for the prevention of hotel theft.

[张春霞, 周素红, 柳林, .

建成环境对星级酒店内被盗的影响: 以ZG市中心城区为例

地理科学进展, 2020, 39(5): 829-840.]

DOI:10.18306/dlkxjz.2020.05.011      [本文引用: 1]

盗窃是中西方酒店内财产犯罪中最为高发的一种,但鲜有研究关注建成环境对酒店被盗的影响。论文以2012—2014年ZG市中心城区发生过被盗的星级酒店作为研究样本,在综合分析酒店被盗时空特征的基础上,选取酒店周围500 m范围内的建成环境指标,利用负二项回归模型,对分时段各类型的星级酒店被盗的影响因素进行系统建模分析。结果表明:被盗星级酒店的时空分布呈现典型的集聚分布特征。不同时段空间“主热点”分布相对稳定,“次热点”有所不同。整体来看,提高服务水平对降低星级酒店被盗的作用最为稳定,周围的兴趣点(Point of Interest, POI)数量会显著增加星级酒店被盗的机会,道路交叉口则对星级酒店被盗起显著监管作用。分模型结果显示,服务水平对三星级和五星级酒店被盗的抑制作用显著,道路交叉口则对以商务客人为主的四星级酒店被盗的抑制作用更强,而POI数量对等级较低的三星、四星酒店被盗作用更为明显;大型零售商业中心能显著增加旅游旺季及周末时段的酒店被盗的数量,道路交叉口数量则对旅游淡季、工作日2个时段的星级酒店被盗风险的监控作用显著。研究表明建成环境在影响ZG市星级酒店被盗的机会和成本方面作用显著。结果验证了日常活动理论在中国大城市星级酒店被盗方面研究的适用性,拓展了犯罪地理学在星级酒店被盗方面的研究成果,对酒店盗窃预防有指导意义。

Long Dongping, Liu Lin, Feng Jiaxin, et al.

Comparisons of the community environment effects on burglary and outdoor-theft: A case study of ZH peninsula in ZG city

Acta Geographica Sinica, 2017, 72(2): 341-355.

DOI:10.11821/dlxb201702013      [本文引用: 1]

Burglary and outdoor-theft are two frequently studied types of crime. Yet no comprehensive comparisons between their spatial distributions and associating factors in Chinese cities are available to this day. Therefore, drawing on routine activities theory, crime prevention through environmental design (CPTED) and defensible space, utilizing multi-source heterogeneous spatio-temporal data of ZH peninsula, ZG city in southern China, this study aims to examine the effect of the built environment and social environment of neighborhoods on burglary and outdoor-theft, as well as comparative analysis between the two crime types. Results suggest that there are some regularities in ZH peninsula, which means under the background of built environment, the influences of burglary are relatively concentrated, while the influences of outdoor-theft are more dispersed. There exist some relative commonalities and differences in the fact that the social environment and built environment influence and act on burglary and outdoor-theft. On the one hand, the population density, the proportion of juvenile, the density of bus stops and the distance to the city center what show significant impact on the occurrence of burglary and outdoor-theft. What's more, their directions of forces are consistent. On the other hand, the density of road network, the density of retail business, and the density of catering and accommodation are the dominant factor of outdoor-theft. Meanwhile, the education level of residents is the significant factor of burglary. The extension of the results may well provide references for associated prevention and control specific to burglary and outdoor-theft in the communities.

[龙冬平, 柳林, 冯嘉欣, .

社区环境对入室盗窃和室外盗窃影响的对比分析: 以ZG市ZH半岛为例

地理学报, 2017, 72(2): 341-355.]

DOI:10.11821/dlxb201702013      [本文引用: 1]

社区环境的基本属性是影响城市犯罪的重要因素,而这两类犯罪相似的空间形态受社区环境哪些因素的影响及作用方式如何未探寻及验证。因此,本文结合日常活动理论、CPTED理论、可防卫空间等理论,以中国东南沿海地区ZG市ZH半岛为例,融合多源异构时空数据,利用偏最小二乘法,检验社区尺度下的建成环境和社会环境,对入室盗窃和室外盗窃的影响进行对比分析。研究发现:① ZH半岛内具有一定的规律性特征,即在建成环境背景下,入室盗窃的影响因素相对集中,而室外盗窃的影响因素较为分散;② 社会环境和建成环境对两类犯罪的影响及作用力存在着相对的共性和差异性,其共性主要表现在人口密度(-)、青少年人口比重(+)、公交站点密度(-)以及到主中心的距离(-)对入室盗窃和室外盗窃的发生都有显著的影响,且作用力方向一致;差异性主要体现在道路网络密度(-)、零售商业密度(+)和餐饮住宿密度(+)是影响室外盗窃发生的主要因子,而居民文化程度(-)显著影响入室盗窃的发生。研究结果的引申,可为社区层面的入室盗窃和室外盗窃的联合防控提供一些参考。

Zhang Yanji, Zhu Chunwu, Qin Bo.

Spatial distribution of crime number and harm and the influence of the built environment: A longitudinal research on criminal cases in Beijing

Progress in Geography, 2019, 38(12): 1876-1889.

DOI:10.18306/dlkxjz.2019.12.005      [本文引用: 3]

Existing criminal geography research has always focused on the number of cases, but neglected their severity. Limited by the availability of data, cross-sectional analysis was more universal than longitudinal, which would cause endogeneity problems. Furthermore, spatial dependence of different independent variables has not been systematically examined. In order to fill these gaps, this study utilized criminal case records, points of interest, and road network data from 2012 to 2017 in Beijing to explore spatial pattern of crime number and its harm, and clarify the role of urban built environment in their forming process. In order to measure the extent of crime harm, criminal penalty by judicial authorities was used as the indicator. First, this research demonstrated that both crime number and crime harm showed geographical concentration and agglomeration. However, concentration extent of crime harm was higher than crime number, but agglomeration extent of crime harm was lower than crime number. The degree of harmspot's stability was weaker than crimespot, therefore geographical analysis of crime number cannot fully reveal the spatial pattern of social harms caused by criminal cases. Second, permeable space postulated by street eyes theory was unable to inhibit criminal activities, while high density land use, diversified urban functions, convenient transport branch networks, and close spatial proximity to crime-prone areas could lead to the increase of crime number and crime harm, which is consistent with the prediction of defensible space theory. Additionally, crime harm was more susceptible to conducive built environment factors. Third, most influences caused by various characteristics of the built environment showed spatial dependence. Specifically, density, diversity, design of road network, as well as commercial place had agglomeration spillover effect, which meant that both local and neighboring environmental elements had positive relationship with native criminal activities. In contrast, local educational institutions, parks, squares, hotels, bus stops, parking lots, and residential areas that were strictly supervised had no effect or negative effect on native criminal activities, but neighboring attractors had significant positive impact on native criminal patterns. Because of this spatial competition effect, security measures should not confine to local areas and attractors.

[张延吉, 朱春武, 秦波.

犯罪数量与危害的空间分布及建成环境影响: 基于北京市刑事案件的纵向研究

地理科学进展, 2019, 38(12): 1876-1889.]

DOI:10.18306/dlkxjz.2019.12.005      [本文引用: 3]

既有犯罪地理研究存在“重犯罪数量、轻犯罪危害”“多横向分析、少纵向分析”“求本地影响、弃空间依赖”等局限。为此,论文利用2012—2017年北京刑事案件、兴趣点、道路网等3期面板数据,以个案刑罚结果衡量其社会危害性,探究犯罪发生数量与危害程度的空间结构,厘清建成环境对两者的影响异同。研究表明:① 犯罪数量与危害均呈集中集聚格局,但犯罪危害的集中程度高于数量、集聚程度低于数量、稳定程度相对偏弱。② 如防卫空间理论所言,高强度土地利用、多样化城市功能、通达的次干道支路网、邻近诱发地都对犯罪数量和危害发挥正向作用,后者所受影响更大。③ 建成环境的上述影响大多存在空间依赖,3D维度和商业场所具有集聚溢出效应,管制较严的教育科研机构、公园广场、旅馆、公交站、停车场、居民区表现出内低外高式的空间竞争效应。

Zhang Ning, Wang Dawei.

Drug-related crime risk assessment and predictive policing based on risk terrain modeling

Progress in Geography, 2018, 37(8): 1131-1139.

[本文引用: 5]

[张宁, 王大为.

基于风险地形建模的毒品犯罪风险评估和警务预测

地理科学进展, 2018, 37(8): 1131-1139.]

DOI:10.18306/dlkxjz.2018.08.012      [本文引用: 5]

犯罪具有明显的时空特征,研究犯罪问题离不开时间和空间维度分析,以及产生犯罪的社会、地理、生态、环境等因素。风险地形建模是美国学者研发的空间风险评估和警务预测技术,已在全球六大洲45个国家和美国35个州得到了独立测试和验证,被广泛应用于警务预测、国土安全、交通事故、公共医疗、儿童虐待、环境污染、城市发展等多个领域。在毒品、纵火、爆炸、强奸、抢劫、盗窃等犯罪研究领域更是取得了显著成果。本文运用犯罪热点分析和风险地形建模,以长三角地区N市毒品犯罪为研究对象,对该市2015年毒品犯罪的危险因子、空间盲区、风险地形进行分析,探索毒品犯罪的生成机理和演化规律,并对2016年毒品犯罪进行预测。研究结果表明,N市毒品犯罪呈现明显的犯罪热点和冷点;出租屋、酒店、车站、ATM机、停车场、娱乐场所、城市快速路、网吧是N市毒品犯罪的风险性因素。风险地形建模能较好地预测毒品犯罪。公安机关禁毒部门应据此进行严密管控,逐步限制、消除犯罪产生地、犯罪吸引地、犯罪促进地的生存土壤和条件。

Chen J G, Liu L, Liu H T, et al.

The spatial heterogeneity of factors of drug dealing: A case study from ZG, China

ISPRS International Journal of Geo-Information, 2020, 9(4): 205. DOI: 10.3390/ijgi9040205.

URL     [本文引用: 3]

Bernasco W, Jacques S.

Where do dealers solicit customers and sell them drugs? A micro-level multiple method study

Journal of Contemporary Criminal Justice, 2015, 31(4): 376-408.

DOI:10.1177/1043986215608535      URL     [本文引用: 1]

Barnum J D, Campbell W L, Trocchio S, et al.

Examining the environmental characteristics of drug dealing locations

Crime & Delinquency, 2017, 63(13): 1731-1756.

[本文引用: 6]

Onat I, Akca D, Bastug M F.

Risk terrains of illicit drug activities in Durham region, Ontario

Canadian Journal of Criminology and Criminal Justice, 2018, 60(4): 537-565.

DOI:10.3138/cjccj.2018-0006.r1      URL     [本文引用: 3]

Cichosz P.

Urban crime risk prediction using point of interest data

ISPRS International Journal of Geo-Information, 2020, 9(7): 459. DOI: 10.3390/ijgi9070459.

URL     [本文引用: 1]

Chen Z Q, Yu B L, Yang C S, et al.

An extended time series (2000-2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration

Earth System Science Data, 2021, 13(3): 889-906.

DOI:10.5194/essd-13-889-2021      URL     [本文引用: 1]

Xu Chong, Liu Lin, Zhou Suhong, et al.

Spatial heterogeneity of micro-spatial factors' effects on street robberies: A case study of DP peninsula

Geographical Research, 2017, 36(12): 2492-2504.

DOI:10.11821/dlyj201712018      [本文引用: 1]

Urban crime has increasingly become a major issue in the context of rapid urbanization in China. Investigating the patterns and effects of spatial factors on urban crime is of great importantce for urban public safety and security. The relationship between robbery and spatial factors has long been a popular topic in crime research. Focusing on the DP peninsula of H City as the study area and using a total number of 373 street robbery incidences obtained from the Public Security Bureau Call for Service Data in the period of 2006-2011, this study examines the spatial heterogeneity in the effects of micro-spatial factors on street robberies by Moran's I, ordinary least squared regression (OLS) model and geographically weighted regression (GWR) model. Firstly, a theoretical framework is developed for analyzing the impacts of micro scale spatial factors on street robbery. Those micro scale spatial variables are identified based on two criminal justice theories - routine activities theory and rational choice theory. Those variables include the number of bus stops, the number of intersections, the length of road net, the distance to the nearest police station, the degree of mixed land use, and the distance to the nearest exit of the peninsula. Secondly, based on the kernel density estimation approach, the variation of crime density is estimated for each grid and is modeled as a function of those contextual micro-spatial variables. The number of micro-spatial variables was cut down with the OLS model test. The analytical results show that spatial heterogeneity exists in the effects of micro-spatial factors on street robberies in the DP peninsula by GWR model test. Especially, the number of bus stops has both positive and negative effects on the crime density, and the effects vary significantly and spatially. The results shed new light on the effects of the spatial factors on crime rate at local scale and suggest the pitfalls of the global averaging model. Overall, the proposed method in this study has the potential to help local police department to identify micro-spatial factors areas with high crime density more explicitly and thus could improve the effectiveness of crime control and prevention efforts centered on street robberies.

[徐冲, 柳林, 周素红, .

微观空间因素对街头抢劫影响的空间异质性: 以DP半岛为例

地理研究, 2017, 36(12): 2492-2504.]

DOI:10.11821/dlyj201712018      [本文引用: 1]

在快速城镇化的背景下,日益严重的城市犯罪问题已经严重影响了城市的安定与繁荣,深入研究城市犯罪的空间影响因素对于未来城市安全发展具有重要意义。以H市DP半岛上2006-2011年发生的373起街头抢劫案件为研究对象,通过将研究区域网格划分为233个样本单元,以核密度处理方式将原始案件点转化为每个格网单元的犯罪强度(密度)作为因变量,结合“日常活动理论”与“理性选择理论”选取微观空间因素作为自变量,最终采用地理加权回归模型分析微观空间因素对街头抢劫案件发生强度的空间异质性现象。研究表明:公交站点个数变量、交叉口个数变量、土地利用混合程度变量与最近出岛口距离变量,对街头抢劫发生的影响程度存在空间异质性现象,尤其是公交站点个数变量在GWR模型中表现出随空间位置的不同呈现显著的正负两种影响效果。警务部门可以参照该结果针对不同局部区域的高影响微观空间因素进行重点防控,提高警务效率,从而更有效地防范和抑制街头抢劫犯罪的发生。

Chen Qiang. Advanced Econometrics and Stata Applications. Beijing: Higher Education Press, 2010.

[本文引用: 1]

[陈强. 高级计量经济学及Stata应用. 北京: 高等教育出版社, 2010.]

[本文引用: 1]

Berk R, Macdonald J M.

Overdispersion and poisson regression

Journal of Quantitative Criminology, 2008, 24(3): 269-284.

DOI:10.1007/s10940-008-9048-4      URL     [本文引用: 1]

Cohen L E, Felson M.

Social change and crime rate trends: A routine activity approach

American Sociological Review, 1979, 44(4): 588-608.

DOI:10.2307/2094589      URL     [本文引用: 1]

Brantingham P J, Brantingham P L, Andresen M A.

The geometry of crime and crime pattern theory//Wortley R, Townsley M

Environmental Criminology and Crime Analysis. New York: Routledge, 2017: 98-115.

[本文引用: 1]

Kinney J B, Brantingham P L, Wuschke K, et al.

Crime attractors, generators and detractors: Land use and urban crime opportunities

Built Environment, 2008, 34(1): 62-74.

DOI:10.2148/benv.34.1.62      URL     [本文引用: 2]

Sampson R J, Groves W B.

Community structure and crime: Testing social-disorganization theory

American Journal of Sociology, 1989, 94(4): 774-802.

DOI:10.1086/229068      URL     [本文引用: 1]

Mosher C.

Predicting drug arrest rates: Conflict and social disorganization perspectives

Crime & Delinquency, 2001, 47(1): 84-104.

[本文引用: 1]

Mccord E S, Ratcliffe J H.

A micro-spatial analysis of the demographic and criminogenic environment of drug markets in Philadelphia

Australian & New Zealand Journal of Criminology, 2007, 40(1): 43-63.

[本文引用: 1]

Bernasco W, Block R.

Robberies in Chicago: A block-level analysis of the influence of crime generators, crime attractors, and offender anchor points

Journal of Research in Crime and Delinquency, 2011, 48(1): 33-57.

DOI:10.1177/0022427810384135      URL     [本文引用: 2]

Demeau E, Parent G.

Impacts of crime attractors and generators on criminality in Montreal

Canadian Journal of Criminology and Criminal Justice, 2018, 60(3): 387-412.

DOI:10.3138/cjccj.2017-0028.r1      URL     [本文引用: 2]

Chen J G, Liu L, Zhou S H, et al.

Spatial variation relationship between floating population and residential burglary: A case study from ZG, China

ISPRS International Journal of Geo-Information, 2017, 6(8): 246. DOI: 10.3390/ijgi 6080246.

URL     [本文引用: 1]

Cui Yongxiang.

Modeling of spatial distribution density and influential factors of urban crimes based on random forests:A case study of Shanghai, China

[D]. Shanghai: East China Normal University, 2018.

[本文引用: 1]

[崔用祥.

基于随机森林的城市犯罪空间分布密度建模与影响因素探析

[D]. 上海: 华东师范大学, 2018.]

[本文引用: 1]

Wang Weimin.

Study on struggle of new types of drug-related crimes in the coastal area of Guangdong province

China Public Security(Academy Edition), 2018(1): 10-13.

[本文引用: 2]

[王维民.

广东沿海遏制新型毒品犯罪问题研究

中国公共安全(学术版), 2018(1): 10-13.]

[本文引用: 2]

Zhao Liangyuan.

Relationship analysis on the characteristics of entertainment venue and drug

Journal of People's Public Security University of China (Social Sciences Edition), 2011, 27(1): 152-156.

[本文引用: 2]

[赵亮员.

娱乐场所特征与涉毒的关联分析

中国人民公安大学学报(社会科学版), 2011, 27(1): 152-156.]

[本文引用: 2]

Hsu K H, Miller J.

Assessing the situational predictors of drug markets across street segments and intersections

Journal of Research in Crime and Delinquency, 2017, 54(6): 902-929.

DOI:10.1177/0022427817714574      URL     [本文引用: 2]

Eck J E.

A general model of the geography of illicit retail marketplaces//Eck J E, Weisburd D

Crime and Place. Monsey: Willow Tree Press, 1995: 67-93.

[本文引用: 2]

Jean P. Pockets of Crime: Broken Windows, Collective Efficacy, and the Criminal Point of View. Chicago: University of Chicago Press, 2007.

[本文引用: 2]

Groff E, Mccord E S.

The role of neighborhood parks as crime generators

Security Journal, 2012, 25(1): 1-24.

DOI:10.1057/sj.2011.1      URL     [本文引用: 1]

Chen Shuaifeng, Zhen Cheng, Shi Luwen.

Study on the changing process of the narcotic drugs and psychotropic substances catalogues of China (1949-2019)

Chinese Journal of New Drugs, 2021, 30(11): 989-996.

[本文引用: 1]

[陈帅锋, 甄橙, 史录文.

中国麻醉药品和精神药品管制品种目录变动历程研究(1949—2019年)

中国新药杂志, 2021, 30(11): 989-996.]

[本文引用: 1]

/