地理学报  2015 , 70 (12): 1859-1869 https://doi.org/10.11821/dlxb201512001

Orginal Article

土壤安全:从地球关键带到生态系统服务

朱永官12, 李刚1, 张甘霖3, 傅伯杰24

1. 中国科学院城市环境研究所 中国科学院城市环境与健康重点实验室,厦门 361021
2. 中国科学院生态环境研究中心 城市与区域生态国家重点实验室,北京 100085
3. 中国科学院南京土壤研究所 土壤与农业可持续发展国家重点实验室,南京 210008
4. 北京大学城市与环境学院,北京 100871

Soil security: From Earth's critical zone to ecosystem services

ZHU Yongguan12, LI Gang1, ZHANG Ganlin3, FU Bojie24

1. Key Lab of Urban Environment and Health, Institute of Urban Environment, CAS, Xiamen 361021, China
2. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, CAS, Beijing 100085, China
3. Institute of Soil Science, CAS, Nanjing 210008, China
4. College of Urban and Environmental Sciences, Peking University, Beijing 100871, China

通讯作者:  傅伯杰(1958-), 男, 陕西咸阳人, 博士, 研究员, 中国科学院院士, 中国地理学会理事长(S110001618M), 主要从事自然地理学和景观生态学研究。E-mail: bfu@rcees.ac.cn

收稿日期: 2015-11-5

修回日期:  2015-11-20

网络出版日期:  2015-12-25

版权声明:  2015 《地理学报》编辑部 本文是开放获取期刊文献,在以下情况下可以自由使用:学术研究、学术交流、科研教学等,但不允许用于商业目的.

基金资助:  国家自然科学基金项目(41390464) [Foundation: National Natural Science Foundation of China, No.41390464]

作者简介:

作者简介:朱永官(1967-), 男, 浙江桐乡人, 博士, 研究员, 主要从事土壤生物地球化学研究。E-mail: ygzhu@iue.ac.cn

展开

摘要

土壤是人类赖以生存和文明建设的重要基础资源。作为地球关键带的核心要素,土壤圈是地球表层系统最为活跃的圈层,而且土壤过程是控制地球关键带中物质、能量和信息流动与转化的重要节点。由于土壤的多重功能不断得到重视,传统的土壤概念已经无法全面反应土壤的功能和作用,为此本文提出了土壤安全的概念。土壤安全是一种基于土壤可持续发展目标而提出一种系统战略框架,为土壤资源的可持续利用和保护提供了理论基础。本文重点论述了地球关键带和土壤安全的内涵以及两者之间的差异和紧密关系。此外,还对土壤安全框架下的生态系统服务进行了梳理和总结,最后对面向生态系统服务的土壤安全需求进行了展望。

关键词: 土壤圈 ; 土壤安全 ; 地球关键带 ; 生态系统服务

Abstract

Soil is an important natural resource that humans rely on and civilization is based upon. As the critical component of the Earth's critical zone, pedosphere is most active in Earth's surface system. Moreover, soil processes are considered as the control point for the flows and transformations of material, energy and information. In wake of the increasing attention to soil's multi-functions, traditional soil concept on its functions and roles is being challenged. Therefore, the concept of soil security is proposed, which is a strategic framework with the aim of soil sustainable development, and it can provide guidelines for the sustainable utilization and conservation of soil resources. In this review, the connotations of Earth's critical zone and soil security, and the difference and close relationship between each other are discussed. The ecosystem services in the framework of soil security are summarized. Finally, perspectives on future soil security research needs in the context of ecosystem services are proposed.

Keywords: pedosphere ; soil security ; Earth's critical zone ; ecosystem services

0

PDF (1461KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

朱永官, 李刚, 张甘霖, 傅伯杰. 土壤安全:从地球关键带到生态系统服务[J]. , 2015, 70(12): 1859-1869 https://doi.org/10.11821/dlxb201512001

ZHU Yongguan, LI Gang, ZHANG Ganlin, FU Bojie. Soil security: From Earth's critical zone to ecosystem services[J]. 地理学报, 2015, 70(12): 1859-1869 https://doi.org/10.11821/dlxb201512001

1 引言

土壤是人类赖以生存的最基本自然资源。传统的土壤资源似乎只是与一个与农业或人类温饱相关的问题。事实上,土壤不仅为人类提供了食物和纤维,而且在确保环境安全和能源安全,记录地球与人类的演化历史,以及保护生物多样性等方面都发挥了不可替代的作用,故土壤是保障地球生态系统结构和功能的核心。自农耕文明出现以来,人类对土壤的开发和使用已被视为理所当然。从早期的农业文明到现在的快速城市化,人类对土壤的开发和利用不断强化并在全球扩散。当前,作为地球上最大的土地利用类型,农业用地占地球上无冰土地的38%,其中分别约有12%和26%的无冰土地用于作物和草地[1]。但是,全球范围内,由于人类过度或不恰当的利用已经导致大约33%的土壤处于退化状态[2]。为了提升全球对土壤资源的重视,2013年12月20日第68届联合国大会决议通过了12月5日为世界土壤日,并宣布2015年为国际土壤年,主题为“健康土壤带来健康生活”。联合国制定的2016-2030年可持续发展目标也直接或间接地体现了土壤重要性。为应对土壤退化对人类可持续发展的挑战,协调世界各国土壤研究、保护和管理,FAO于2012年发起成立了“全球土壤伙伴计划”(Global Soil Partnership),旨在通过协调和汇聚土壤研究、土壤利用和土壤管理各利益相关方的力量,更有效地利用和保护土壤资源,服务全球可持续发展。

土壤具有社会、生态、经济、文化和精神层面的价值[3]。正是由于土壤的多重功能,传统的土壤资源概念已经不能全面反映土壤的整体功能和价值,因此土壤安全的概念开始形成。土壤安全是指土壤持续地为人类提供食物、纤维和淡水资源等生态系统服务,同时维持生物多样性和相对稳定性的一种状态[4-5]。因此,土壤安全的概念有效整合了土壤的多重功能,为在更高的层面来研究土壤、利用土壤和保护土壤提供了一个战略框架(图1)。

图1   土壤安全的战略框架

Fig. 1   Strategic framework of soil security

2 地球关键带

传统上不同学科分门别类研究地球表层各组分,如生物学家研究植被,水文学家研究地表水和地下水,地质学家研究岩石和沉积物等[6]。这些研究虽然有助于理解地球表层各组分的状态,但是无法在全局掌握地表系统的整体动态和行为。因此,2001年地球科学家提出一个地球表层过程的系统科学框架,即地球关键带科学。地球关键带(Earth's critical zone)是由地球表层各部分和相互作用过程组成的一个综合系统,具体而言其是近地球表面、有渗透性、介于大气圈和岩石圈之间的地带,垂直方向的范围从树的冠层往下直到地下水深层[7]图2)。地球关键带控制着土壤的发育、水的质量和流动、化学与生物循环,其在调控自然生境的同时,还供应着经济社会发展所需的资源,故这一地带对维持地表生命非常重要。因而,美国国家委员(National Research Council, NRC)确定地球关键带科学是21世纪亟需研究的重点科学领域,NRC认为通过对地球关键带的研究,将促进一系列社会、环境和生态问题的解决[7]。美国地质调查局(United States Geological Survey, USGS)在2012年制定和发布了《美国地质调查局核心科学体系科学战略(2013-2023)》,也将地球关键带列为其核心科学体系的重要研究对象,该战略是美国地质调查局在“大数据时代”的背景下提出的地球科学研究的新思维,其提出了针对关键带的结构和过程进行调查并最终建立关键带的模块式科学框架[8-9]

图2   地球关键带示意图(箭头表示的是物质、能量和基因信息的流动和转移[7, 10])

Fig. 2   Schematic diagram of Earth's critical zone (Arrows indicate the flow and migration of substance, energy and genetic information)[7,10]

地球关键带是地球表层系统中最活跃、最富有活力的部分。其包括异质性的近地表环境,岩石、土壤、水、空气和生物在其中发生着复杂的相互作用。在横向上,关键带覆盖不同的生态系统类型;在纵向上,关键带自上边界植物冠层向下穿越了土壤层、非饱和包气带、饱和含水层,下边界通常为地下水深层[7]。关键带是一个复杂的自然反应器,其通过太阳光照获得能量,驱动植物光合作用,进而驱动地表的水文和生物地球化学循环[11]。其结构和功能不仅取决于生物的多样性,还直接与土壤、沉积物、风化层和地下水等非生物要素密切相关。因此,关键带科学涉及多种学科,包括水文学、地貌学、地质学、地球化学、地球物理学、土壤学和生态学等,并涵盖包括人在内的一切生物活动[12]

关键带中发生的复杂物理、化学和生物过程相互耦合使其成为有机联系和不断变化的动态系统。按照其性质与作用,这些过程大致可分为三类:生态过程、生物地球化学过程和水文过程[13]。生态过程是生态系统中维持生命的物质循环和能量转换过程。其主要研究土壤—生物—大气中的水循环和水平衡、养分循环、能量、微量气体产生、输送和转化、有机物及金属元素的分解、积累、传输等微观过程。由于人类活动对生态过程的影响越来越大,人类活动可被看作是生态过程的一部分。生物地球化学过程将生物过程与非生物过程联系在一起,通过流体、沉积和气体作用,使碳、氮等化学元素和物质在空间上的分布发生变化,重点研究各种化学物质的来源、存在数量和状态以及迁移转化规律,以及生物有机体参与下发生的地球化学过程。水文过程是通过水分运移转化使物质和能量在空间上重新分布的动态过程。生物地球化学过程和水文过程相互耦合,推动了生态过程的持续进行,又共同决定了关键带的整体形态和功能[14]。这种多重的交互作用构成了一个巨大的科学挑战,如何理解关键带动态组成之间的联系和连锁响应,这需要一个新的协同科学理论框架和观测方法集成在一起的学科。迫切需要包括地貌学家、地球化学家、水文学家、土壤科学家、生态学家和许多其他相关领域专家的协作研究来推动对关键带科学的理解和应用以维持人类的生存发展,这也是国际地学界提出地球关键带概念的意义所在[13, 15]。自从地球关键带的科学概念提出之后,国际上先后在美国、英国、德国和中国等国家发起并建立了60多个关键带观测站(Critical Zone Observatories, CZO),并且建立了具有全球环境变化梯度的国际关键带观测网络[16]。目前,人们对关键带的观测途径包括两大类:一类是在微观尺度上利用传感器技术和测量技术进行点上监测;另一类则是在宏观尺度上利用遥感技术进行大面积面上监测。而针对介于二者之间的中观尺度的观测技术还很不成熟,还有待于进一步的研究。关键带观测站的建立,使我们从调查关键带入手,将系统内的各组分作为一个整体来开展研究,可以使我们预测气候和人类活动的变化对关键带演化和功能的影响,特别是对水资源再生、土壤的发育、水的质量和流动、化学循环、能源和矿物资源等发生的影响。

如上所述,地球关键带是一个有生命的历史自然体,具有活跃的代谢过程,即能量流动的物理、化学和生物过程[17]。能量流动驱动了物质(生源要素和人为活动带来的化学品等)与遗传信息在关键带各组分之间的转化与迁移,推动了关键带结构和功能的演化。关键带代谢的核心是生物与地表物质的相互作用,包括从生物与岩石风化,生物地球化学循环,到生物与景观地貌的修饰[18]

3 土壤与地球关键带

土壤是指地球表面上能够生长植物的疏松表层,由各种颗粒状矿物质、有机物质、水分、空气和微生物等组成,是在地球演化过程中,通过气候、生物、母质、地形和年龄等5个自然因素和人为活动共同作用而形成的历史自然体[19]。Matson于1938年首次概括了土壤圈的内涵,并指出土壤是岩石圈、水圈、生物圈和大气圈相互作用的产物[20]。在20世纪80-90年代,中国科学家进一步丰富了土壤圈的内涵,认为土壤圈是覆盖于地球表面和浅水域底部的土壤所构成的一种连续体或覆盖层,在一定程度上类似于生物体的生物膜。土壤圈是地球表层系统最活跃的圈层,其是地圈系统中联接大气圈、水圈、生物圈与岩石圈的核心要素[21-24]图3)。相对于地球表层系统其他圈层,土壤圈不像大气圈可以快速进行物理扩散,不像水圈可以迅速流动,不像生物圈由于可分为不同的个体而不受环境变化的影响,也不像岩石圈一样基本不受人类和生物活动的破坏。土壤圈是一种独特的、相对稳定并容易受到人类活动影响的圈层。因此,作为一个相对固定的原位历史自然体,土壤圈可以在不同的时间尺度上反应和记录气候、生物和人类活动所引起的环境变化[13]。故通过对土壤变化的观测能够很好的对环境变化做出评估。

图3   土壤圈和其他圈层的关系

Fig. 3   Pedosphere and its relationship to other spheres

关键带是陆地生态系统中土壤圈及其与大气圈、生物圈、水圈和岩石圈进行物质迁移和能量交换的交汇区域(图2),而土壤是地球关键带的核心组成部分,并且在不同时空尺度上受到一系列广泛的物理、化学和生物过程之间的相互作用。关键带的主要研究内容包括揭示控制关键带界面物质循环的物理、化学和生物过程,解析关键带物理、化学和生物风化过程耦合的机制,提出基于生物地球化学过程的保障土壤和水资源长期稳定性和可持续发展的模式,以及阐明关键带生态系统在不同时空间尺度的上演变过程与规律。作为地球关键带动态的核心要素,土壤过程是控制关键带物质、能量和信息流动与转化的重要节点[7]。因此,土壤不仅起到生物质生产、营养物质和水的储存、过滤和转化,而且是地球上生物多样性最丰富的栖息地、地质历史与人文演化的记录等多重功能。因此,对土壤过程的认知是地球关键带研究的核心内容。

人口增加和经济发展对全球土壤和水资源形成了前所未有的压力。在未来40年内,世界总人口预计会增加到97亿,同时全球经济总量翻两番。因此所需的食物和清洁水将分别增加一倍和50%[25-26]。为了满足这些需求,全球农业用地预计需要增加3.2~8.5亿hm2,这将超过地球总环境容量的10%~45%。同时,在当前形势下,人类对全球范围内的土壤造成了前所未有的压力,由于各种原因造成土壤流失的速率远大于土壤形成速率(100倍或更高)[27]。因此,作为一种有限的资源,如何更好的保护土壤的需求变得日益迫切。国际上高度关注土壤资源安全利用和保护,2006年,针对土壤侵蚀、盐渍化、有机质减少和滑坡等土壤环境问题,欧盟委员会发布了土壤保护主题战略,将传统的1~2 m深的土壤层扩展到地表至基岩之间的未固结土层进行调查和研究。该战略界定了全球土壤胁迫以及土壤所提供的生态系统服务,并且规定了保护土壤功能为优先研究领域,主要研究土壤的生物、物理、化学过程的时空变异性以及定量化研究影响土壤生态系统服务的环境变化和威胁土壤安全的生态、社会和经济驱动力[28]。2007年,中国将土壤保护战略作为重要环境要素战略之一[24]。欧盟委员会于2009年启动了“欧洲流域土壤变化”项目(SoilTrEC),其中一项重要任务是对地球关键带中的土壤进行长期观测。该项目强调土壤是地球关键带的核心,将土壤监测作为地球关键带长期观测的重点。根据土壤形成的不同阶段,分别在欧盟4个典型地点建立了瑞典的Damma Glacier CZO(原始土壤形成阶段),奥地利的Fuchsenbigl CZO(土壤肥力发展阶段),捷克的Lysina CZO(森林土壤遭到酸雨破坏后人工恢复阶段)和希腊的Koiliaris 河流CZO(土壤受荒漠化威胁阶段),研究关键带中土壤的形成演化和生态系统服务的可持续性[26]。此外,欧盟的英国、法国和瑞典、美国以及中国也均建立了CZO来研究土地利用、酸雨、大气沉降、地形以及集约化农业生产对土壤过程的影响[26]

作为地球关键带的核心部分,土壤在地球关键带中的具有多重功能,主要包括养分循环、水分保蓄、生物多样性和栖息地、物质储存、过滤、缓冲和转化,以及物质供应保障[29]。土壤安全与人类的安全、生存和发展也有密切联系[30]。此外,在解决全球现实问题特别是食品安全、生物多样性、气候变化以及水循环调控等方面,土壤居于中心地位,但是到目前为止还没有建立一种有效协调土壤各项功能的方法。同时,全球土壤的退化速度惊人,从20世纪中叶以来有20亿hm2的土壤资源退化,并且这种趋势还在不断增强[31]。因此,迫切需要建立以水、土资源为核心的政策,以防止土壤退化和促进可持续发展。土壤安全概念的提出能够有效整合土壤与环境可持续发展之间的联系,是在全球土壤面临日益严重问题的背景下提出的一种新概念,丰富了对土壤的系统认知。这与地球关键带的概念有类似之处,但是地球关键带的概念涵盖了土壤安全所包含的内容,并且关键带科学研究的内容更广泛和系统。土壤安全包含了土壤的数量、质量和可利用性等方面的特点,基于这些概念能够更好地维持和管理土壤的状态,使其有效发挥功能和提供服务[32-34]。但是土壤安全的内涵和研究内容更广泛,与目前全球所面临的以下主要环境挑战密切相关:① 食品安全。土壤主要通过提供生物质生产比如养分、物质和水分以及降低污染来影响食品安全;② 水安全。土壤能够保持水分,并且在化合物的过滤和转化以及养分循环中发挥重要,故土壤安全对水分的安全供应具有重要意义;③ 能源安全。土壤通过生产生物质能源作物而对能源安全产生影响;④ 减缓气候变化。作为全球陆地生态系统最大的碳汇,土壤通过影响碳固定而减缓气候变化,同时还影响作物产量和粮食安全;⑤ 保护生物多样性。生物多样性方面,土壤是最大的基因库和物种栖息地,并且这些生物积极参与并影响土壤的形成过程和功能。其生物多样性对促进养分、水和能量分循环,改善土壤结构以及控制土传病害方面具有重要作用;⑥ 输送生态系统服务。土壤在生产植物、输送养分、提供基因库、调控养分和水文循环、处置废弃物、提供建筑材料以及文化和美学需求等方面提供生态系统服务。因此,土壤安全在解决这些环境挑战中均能够发挥重要作用[35]

土壤安全既具有自然属性(土壤的物理,化学和生物学过程变化),又具有社会属性(经济、政策、法规)[36]。由于土壤安全的多重属性,因而需要一个多指标和多学科的方法来判定土壤的最佳状态和当前状态,以达到有效利用土壤资源的目的。为此,Mcbratney等[35]提出了评估土壤安全的5个方面指标:性能,状态,资本性,关联性以及政策法规。具体来讲,土壤性能是指其已经具有的功能和潜在功能,而土壤状态是指土壤现在的状况与参照体系相比所发生的变化,主要包括物理状态、化学状态和生物状态。土壤的状态决定了土壤的最佳性能,同时土壤的性能也能够反映土壤的状态,而两者共同构成了土壤的生产力。土壤资本性是指土壤所提供的影响整个生态系统功能和生态系统服务能力,包括其自身的价值和潜在的生产力;土壤的关联性是土壤安全社会属性方面的指标,其主要指负责管理土壤的人是否已经掌握正确的知识和资源来管理土壤以达到其最佳性能,关联性主要是为了更好的管理土壤和改善土壤环境质量;土壤安全的以上4个指标最终都要通过政策和法规来进行约束和规范,以保障土壤安全和土壤资源的可持续发展[35]。评估土壤安全这5个方面的指标构成了土壤可持续发展和利用的理论框架。故土壤安全的概念具有多维性,并且涵盖社会、经济和生物物理等学科,比“土壤质量”、“土壤健康”和“土壤保护”的概念更宽广、更综合,因而土壤安全提供了一种解决人类面临的环境问题的理论框架,将土壤放在这种理论框架的核心位置能够更好的为可持续发展提供决策依据。

地球关键带强调各要素之间的相互作用,土壤和地球关键带其他要素之间相互作用的界面正是发挥土壤功能的区域,如母质风化提供土壤形成骨架,并向植物提供养分;植物生长和有机质积累将大气中温室气体CO2转化为土壤碳汇;土壤—水相互作用影响地下水和地表水质量并很大程度上发挥过滤功能提供清洁水源;土壤形成和物质转化过程促进碳氮磷等营养元素储存。所以,土壤安全与地球关键带又有密切联系。目前面临的主要挑战是,在关键带范畴内理解和认识土壤中物质的量和通量平衡以及其组分和功能,以应对当前所面对的6种环境问题。由于土壤在关键带中居于中心地位,与其他组分进行物质、能量和信息的流动和交换,故关键带科学所提供的整体性框架能够定量化描述土壤过程以及阐明环境变化如何影响土壤过程,而这样的理论框架符合土壤安全的综合考虑。

4 地球关键带中土壤生态系统服务

生态系统及其过程是维持人类赖以生存和发展的自然环境条件和提供多种产品的基础。生态系统服务是指对人类生存和生活质量有贡献的生态系统产品和生态系统功能,主要有两大方面,即生态系统提供的人类生活必须的生态产品和保证人类生活质量的生态功能[37-39]。20世纪70年代,Westman首次使用“自然的服务(nature's services)”的概念,并尝试对自然生态系统的人类服务价值进行评估[40]。Ehrlich等[41]第一次提出了“生态系统服务”的概念,并考察了物种灭绝和人工替代与生态系统服务的关系。1997年Daily研究小组通过对以往的生态系统服务整理和总结出版了《生态系统服务:人类社会对自然生态系统的依赖性》一书,其对生态系统服务的内涵、定义和分类进行了详细介绍[42]。Costanza等[43]在Nature发文阐述了生态系统服务价值评估方法,并对全球生态系统服务的经济价值进行了估算,使得生态系统服务经济价值的评估研究成为生态学的研究热点和前沿。2000年世界环境日,联合国秘书长安南正式宣布启动千年生态系统评估计划(Millennium Ecosystem Assessment, MEA),这是人类首次对生态系统的过去、现在及未来状况进行了系统研究,并重点对生态系统服务进行了评估[37]。结果发现全球生态系统有60%的功能项正在退化,而且影响了人类的生存发展和区域的生态安全,这种评估为加强生态系统保护和可持续利用,提高生态系统对人类福祉的贡献奠定了科学基础[44]。2004年,美国生态学会提出的“21世纪美国生态学会行动计划”中,将生态系统服务科学作为生态学应对拥挤地球的首个生态学重点问题[45]。2006年,英国生态学会也在提出的100个与政策制订相关的生态学问题中将生态系统服务列为第一个主题[46]。这表明生态系统服务目前已成为国际上生态学和生态经济学研究的热点和前沿。生态系统服务的类型有4种:① 物质供给服务。生态系统的物质或能量输出,包括食物、水和其他资源;② 调控服务。包括影响水质量过程,调控洪水和疾病;③ 生境服务。植物或动物个体生存所需的条件,包括遗传多样性的维持;④ 文化服务。娱乐、教育和美学方面的服务[47]

土壤生态系统服务是指满足人们日常生活中文化与追求的基本必需品,包括支持、供给、调节和文化服务。Daily等[48]首次提出了土壤生态系统服务,并将土壤生态系统服务主要总结为:① 缓冲和调节水文循环;② 植物的物理支持;③ 植物养分的供应和保持;④ 废弃物和有机残体的处理;⑤ 土壤肥力的恢复;⑥ 调控主要的养分循环。很多研究人员对土壤生态系服务的内涵进行了扩展[49-53]。这些土壤的生态系统服务也可以分为生境服务、调控服务、物质供给服务和文化服务4种类型和相应的服务内容(表1)。早在2006年,欧盟就将土壤生态系统服务列为优先研究领域[28]。最近,欧盟资助的很多项目都将土壤生态系统服务涵盖进来,比如SoilTrEC项目[26],SOIL SERVICE项目以及EcoFINDERS项目(欧洲土壤生态功能与生物多样性指标)[3]。在更广义范围内,对于生态系统服务的框架结构还在讨论和精简中。生态系统服务的概念目前还没有一个统一的定义,比如Daily[42]将生态系统的状态和过程以及生命支持功能都包含在生态系统服务内;Costanza等[43]则认为生态系统服务是生态系统功能所产生可被人类利用的产品和服务;MEA[44]则认为服务就是福利。土壤生态系统服务也面临相同的挑战,到目前为止还没有普遍认可的理论框架。

表1   土壤的生态系统服务[48, 51]

Tab. 1   Soil Ecosystem services

种类服务内容
生境服务植物养分的补充、保持和供应
生境和基因库(也是自然资本)
调控服务调控主要养分循环
缓冲、过滤和调节水文循环
处理废弃物和有机质
物质供给服务建筑材料
植物的物理固定和支撑
文化服务文化遗产
艺术品的考古保护
精神价值
宗教地点

新窗口打开

土壤科学发展的一个新的视角是将土壤视为自然资本[51-52, 54]。自然资本是指能从中输出有利于生计的资源流和服务的自然资源存量,而生态系统服务则是由自然资本的物质流、能量流和信息流构成[43]。Palm等[55]首次将土壤视为自然资本;Robinson等[51]基于物质、能量和结构对土壤自然资本进行了类型学分析;Dominati等[52]将土壤生态系统服务和自然资本的框架整合在一起来定量化评估自然资本和土壤生态系统服务,这种框架能够很好地展示如何利用土壤特性来表征土壤自然资本以及如何将土壤生态系统服务跟土壤性质建立联系。2015年6月联合国粮农组织(Food and Agriculture Organization of the United states, FAO)修订了《世界土壤宪章》,其所列的13项原则依然有效,但是根据这30多年来积累的科学知识给予更新和修订,主要包括:土壤污染及其对环境的影响,气候变化适应与减缓,城市扩展对土壤可供给量和功能的影响以及土壤生态系统服务的概念[56]。《宪章》重点就土壤生态系统服务进行了阐述,认为只有这些服务得到维持或增强,才能使得提供这些服务的土壤功能或生物多样性不造成重大损害。同时认为土壤管理是实现土壤可持续发展的关键要素。目前土壤科学所面临的最大挑战就是如何防止土壤退化[27],土壤退化必然减少或消除土壤功能及其为人类福利所必需的生态系统服务提供支持的能力。而目前生态系统研究中,自然资本的功能被忽视,以往的重点都在生态系统服务的获得,而对提供生态系统服务的自然资本的存量重视不够。所以,建立土壤生态系统的理论框架需要将土壤生态系统服务和自然资本有效的整合起来,并定量研究土壤资源、储量、通量以及转化过程和评估土壤资源的生态系统服务,以便提出有效的土壤管理策略并开发出相应的决策工具,最终来实现土壤的可持续发展。

土壤安全的理论框架中已经包含了土壤生态系统服务的内容,其中土壤生态系统服务与其他5种环境挑战也密切相关。土壤在地球关键带中居于核心地位,故土壤安全对于关键带各要素的生态系统服务具有重要作用。比如水来说,土壤对水的储存、过滤和转化具有重要作用,所以土壤会对湖泊、河流、浅海以及湿地等与水相关的生态系统服务产生重要影响。土壤生态系统服务包括提供食品、水、能源以及调节气候等方面服务,此外土壤还是地球上最大的栖息地,其生物多样性巨大,一般来说,1 g土壤中含有10亿个细菌和2亿个真菌菌丝[5]。生物多样性被视为是自然资本的一种[57],同时土壤的生物多样性还在保持土壤功能以及维持土壤生态系统服务中发挥着一种根本的作用,因此,为保障这些功能而需要维持土壤生物多样性。近年来土壤生物多样性研究得到世界各国的广泛关注,比如英国的自然环境研究委员会NERC(Natural Environment Research Council, NERC)启动的“土壤生物多样性研究计划”(http://soilbio.nerc.ac.uk/),欧盟的 EcoFINDERS 的项目[58],FAO的国际生物多样性计划(Soil Biodiversity Initiative)(http://www.globalsoilbiodiversity.org/)以及中国科学院战略性先导科技专项(B类)“土壤—微生物系统功能及其调控”[36]。同时,生物多样性对生态服务影响一直是国际研究的热点,但是就两者之间的关系还缺乏统一的共识[37, 39]。所以今后土壤生物多样性对生态服务的影响研究也需要长期的研究与观测,为土壤资源的保护和可持续利用提供理论依据。

5 面向生态系统服务的土壤安全研究的未来需求

(1)在地球关键带科学思想的框架下,发展以“土壤安全”为导向的土壤利用和保护策略,研究在不同土地利用方式下土壤生态过程与服务的关系,研究土壤生态服务的权衡,保证土壤生态系统服务的可持续性,是土壤安全在区域乃至全球生态文明建设中发挥应有的作用。

(2)土壤是地球上生物多样性最丰富的栖息地,目前随着基因组学等生物学和大数据科学的快速发展,土壤生物多样性的研究迎来发展的最佳时期。未来着重研究土壤生物的组成及其时空分异规律、土壤生物多样性的功能及其调控、土壤生物多样性与生态系统健康等方面。

(3)建立基于“土壤安全”的土壤生态系统服务评价的框架,发展相关评价的理论和方法,系统开展不同土地利用方式、不同生态环境条件和不同社会经济发展水平下的土壤生态系统服务的价值评估[59]

(4)制定和完善土壤保护和利用的系统性政策法规,构建中国土壤保护体系,建立土壤的生态补偿制度和加强土壤管理机制,为维持土壤的生态系统服务提供体制性保障。

The authors have declared that no competing interests exist.


参考文献

[1] Foley J A, Ramankutty N, Brauman K A, et al.

Solutions for a cultivated planet.

Nature, 2011, 478(7369): 337-342.

https://doi.org/10.1038/nature10452      URL      PMID: 21993620      [本文引用: 1]      摘要

Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world's future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture's environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing 'yield gaps' on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste. Together, these strategies could double food production while greatly reducing the environmental impacts of agriculture.
[2] Lal R.

Restoring soil quality to mitigate soil Degradation.

Sustainability, 2015, 7(5): 5875-5895.

https://doi.org/10.3390/su7055875      URL      [本文引用: 1]      摘要

Feeding the world population, 7.3 billion in 2015 and projected to increase to 9.5 billion by 2050, necessitates an increase in agricultural production of ~70% between 2005 and 2050. Soil degradation, characterized by decline in quality and decrease in ecosystem goods and services, is a major constraint to achieving the required increase in agricultural production. Soil is a non-renewable resource on human time scales with its vulnerability to degradation depending on complex interactions between processes, factors and causes occurring at a range of spatial and temporal scales. Among the major soil degradation processes are accelerated erosion, depletion of the soil organic carbon (SOC) pool and loss in biodiversity, loss of soil fertility and elemental imbalance, acidification and salinization. Soil degradation trends can be reversed by conversion to a restorative land use and adoption of recommended management practices. The strategy is to minimize soil erosion, create positive SOC and N budgets, enhance activity and species diversity of soil biota (micro, meso, and macro), and improve structural stability and pore geometry. Improving soil quality (i.e., increasing SOC pool, improving soil structure, enhancing soil fertility) can reduce risks of soil degradation (physical, chemical, biological and ecological) while improving the environment. Increasing the SOC pool to above the critical level (10 to 15 g/kg) is essential to set-in-motion the restorative trends. Site-specific techniques of restoring soil quality include conservation agriculture, integrated nutrient management, continuous vegetative cover such as residue mulch and cover cropping, and controlled grazing at appropriate stocking rates. The strategy is to produce 鈥渕ore from less鈥 by reducing losses and increasing soil, water, and nutrient use efficiency.
[3] Robinson D A, Hockley N, Dominati E, et al.

Natural capital, ecosystem services, and soil change: why soil science must embrace an ecosystems approach.

Vadose Zone Journal, 2012, 11(1): 1-6.

https://doi.org/10.2136/vzj2011.0051      URL      [本文引用: 2]      摘要

Soil is part of the Earth's life support system, but how should we convey the value of this and of soil as a resource? Consideration of the ecosystem services and natural capital of soils offers a framework going beyond performance indicators of soil health and quality, and recognizes the broad value that soil contributes to human wellbeing. This approach provides links and synergies between soil science and other disciplines such as ecology, hydrology, and economics, recognizing the importance of soils alongside other natural resources in sustaining the functioning of the Earth system. We articulate why an ecosystems approach is important for soil science in the context of natural capital, ecosystem services, and soil change. Soil change is defined as change on anthropogenic time scales and is an important way of conveying dynamic changes occurring in soils that are relevant to current political decision-making time scales. We identify four important areas of research: (i) framework development; (ii) quantifying the soil resource, stocks, fluxes, transformations, and identifying indicators; (iii) valuing the soil resource for its ecosystem services; and (iv) developing decision-support tools. Furthermore, we propose contributions that soil science can make to address these research challenges.
[4] Koch A,

McBratney A, Lal R. Global soil week: Put soil security on the global agenda.

Nature, 2012, 492(7428): 186-186.

[本文引用: 1]     

[5] Zhu Y G, Meharg A A.

Protecting global soil resources for ecosystem services

. Ecosystem Health and Sustainability, 2015, 1(3): art11.

https://doi.org/10.1890/EHS15-0010.1      URL      [本文引用: 2]      摘要

2015 is the International Year of Soils, as adopted by the United Nations, and reflects the global importance of soil resources in ecosystem sustainability. Soil is not only required for food production, but is also critical for biodiversity conservation and a broad range of ecosystem services. However, soil degradation and loss through anthropogenic activities is highly worrying and reaching a crisis point. Protecting the physical, chemical, and biological integrity of soil is, therefore, of vital importance in securing human and ecosystem health.
[6] Allen P A.

Earth Surface Processes

. Hoboken: John Wiley & Sons, 2009.

[本文引用: 1]     

[7] National Research Council (NRC). Basic Research Opportunities in Earth Science. Washington, D.C.: National Academies Press, 2001.

[本文引用: 6]     

[8] Bristol R S, Euliss Jr N H, Booth N L, et al.

Science Strategy for Core Science Systems in the US Geological Survey, 2013-2023: Public Review Release. Technical Report.

US Geological Survey, 2012.

URL      [本文引用: 1]      摘要

ABSTRACT Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that grew out of the 2007 Science Strategy, "Facing Tomorrow's Challenges: U.S. Geological Survey Science in the Decade 2007-2017." This report describes the vision for this USGS mission and outlines a strategy for Core Science Systems to facilitate integrated characterization and understanding of the complex earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science. The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet - food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or effect ecosystems. The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex earth and biological systems through research, modeling, mapping, and the production of high quality data on the nation's natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish results, and identify potential collaborations that transcend all USGS missions. The framework is designed to improve the efficiency of scientific work within USGS by establishing a means to preserve and recall data for future applications, organizing existing scientific knowledge and data to facilitate new use of older information, and establishing a future workflow that naturally integrates new data, applications, and other science products to make it easier and more efficient to conduct interdisciplinary research over time. Given the increasing need for integrated data and interdisciplinary approaches to solve modern problems, leadership by the Core Science Systems mission will facilitate problem solving by all USGS missions in ways not formerly possible. The report lays out a strategy to achieve this vision through three goals with accompanying objectives and actions. The first goal builds on and enhances the strengths of the Core Science Systems mission in characterizing and understanding the earth system from the geologic framework to the topographic characteristics of the land surface and biodiversity across the nation. The second goal enhances and develops new strengths in computer and information science to make it easier for USGS scientists to discover data and models, share and publish results, and discover connections between scientific information and knowledge. The third goal brings additional focus to research and development methods to address complex issues affecting society that require integration of knowledge and new methods for synthesizing scientific information. Collectively, the report lays out a strategy to create a seamless connection between all USGS activities to accelerate and make USGS science more efficient by fully integrating disciplinary expertise within a new and evolving science paradigm for a changing world in the 21st century.
[9] Yang Zongxi, Tang Jinrong, Zhou Ping, et al.

Earth Science research in U.S. Geological Survey under the Big Data Revolution.

Geological Bulletin of China, 2013, 32(9): 1337-1343.

https://doi.org/10.3969/j.issn.1671-2552.2013.09.001      URL      [本文引用: 1]      摘要

2010年,美国地质调查局为适应社会需求,将以往以学科为主线的组织架构调整为以重大问题 为主线,新增了核心科学体系的科学使命,并于2012年制定和发布了《美国地质调查局核心科学体系科学战略(2013-2023)》,作为其今后10年核 心科学研究的纲领。该战略是美国地质调查局在“大数据时代”的背景下提出的地球科学研究的新思维.将临界带视为其重点研究对象,按生态系统的内在逻辑构建 了模块式科学框架,突出数据密集型科学研究新范式与地球科学研究的结合.以期形成为变化世界服务的科学体系,以增强地质调查满足社会需求的能力和解决复杂 的经济一社会问题的能力,也代表了地球系统科学未来发展的一个新方向。

[杨宗喜, 唐金荣, 周平, .

大数据时代下美国地质调查局的科学新观

. 地质通报, 2013, 32(9): 1337-1343.]

https://doi.org/10.3969/j.issn.1671-2552.2013.09.001      URL      [本文引用: 1]      摘要

2010年,美国地质调查局为适应社会需求,将以往以学科为主线的组织架构调整为以重大问题 为主线,新增了核心科学体系的科学使命,并于2012年制定和发布了《美国地质调查局核心科学体系科学战略(2013-2023)》,作为其今后10年核 心科学研究的纲领。该战略是美国地质调查局在“大数据时代”的背景下提出的地球科学研究的新思维.将临界带视为其重点研究对象,按生态系统的内在逻辑构建 了模块式科学框架,突出数据密集型科学研究新范式与地球科学研究的结合.以期形成为变化世界服务的科学体系,以增强地质调查满足社会需求的能力和解决复杂 的经济一社会问题的能力,也代表了地球系统科学未来发展的一个新方向。
[10] Banwart S, Menon M, Bernasconi S M, et al.

Soil processes and functions across an international network of Critical Zone Observatories: Introduction to experimental methods and initial results.

Comptes Rendus Geoscience, 2012, 344(11/12): 758-772.

URL      [本文引用: 2]     

[11] Anderson S P, Blum J, Brantley S L, et al.

Proposed initiative would study Earth's weathering engine.

Transactions American Geophysical Union, 2004, 85(28): 265-269.

https://doi.org/10.1029/2004EO280001      URL      [本文引用: 1]      摘要

ABSTRACT At the Earth's surface, a complex suite of chemical, biological, and physical processes combines to create the engine that transforms bedrock into soil (Figure 1). Earth's weathering engine provides nutrients to nourish ecosystems and human society, mediates the transport of toxic components within the biosphere, creates water flow paths that carve and weaken bedrock, and contributes to the evolution of landscapes at all temporal and spatial scales. At the longest time scales, the weathering engine sequesters CO2, thereby influencing long-term climate change. Despite the importance of soil, our knowledge of the rate of soil formation is limited because the weathering zone forms a complex, ever-hanging interface, and because scientific approaches and funding paradigms have not promoted integrated research agendas to investigate such complex interactions. No national initiative has promoted a systems approach to investigation of weathering science across the broad array of geology, soil science, ecology, and hydrology. Such a program is certainly needed, and this article describes a platform on which to build the initiative to answer the following question: How does the Earth weathering engine break down rock to nourish ecosystems, carve terrestrial landscapes, and control carbon dioxide in the global atmosphere?
[12] Lin H, Hopmans J W, Richter D D.

Interdisciplinary sciences in a global network of Critical Zone Observatories.

Vadose Zone Journal, 2011, 10(3): 781-785.

https://doi.org/10.2136/vzj2011.0084      URL      [本文引用: 1]      摘要

This preface for the special section, Interdisciplinary Sciences in Critical Zone Observatories (CZOs), provides a brief background of the emerging Critical Zone science and its related CZOs. Highlights of 14 papers included in this special section are summarized to illustrate initial research outcomes from several CZOs on both disciplinary and interdisciplinary topics across soil science, hydrology, biogeochemistry, geomorphology, geophysics, and ecosystem ecology. In closing, a brief future outlook is presented for moving forward the science that can be generated from a global network of CZOs.
[13] Lin H.

Earth's Critical zone and hydropedology: Concepts, characteristics, and advances.

Hydrology and Earth System Sciences 2010, 14(1): 25-45.

https://doi.org/10.5194/hessd-6-3417-2009      URL      [本文引用: 3]      摘要

The Critical Zone (CZ) is a holistic framework for integrated studies of water with soil, rock, air, and biotic resources in terrestrial environments. This is consistent with the recognition of water as a unifying theme for research on complex environmental systems. The CZ ranges from the top of the vegetation down to the bottom of the aquifer, with a highly variable thickness (from 10 km). The pedosphere is the foundation of the CZ, which represents a geomembrance across which water and solutes, as well as energy, gases, solids, and organisms are actively exchanged with the atmosphere, biosphere, hydrosphere, and lithosphere to create a life-sustaining environment. Hydropedology - the science of the behaviour and distribution of soil-water interactions in contact with mineral and biological materials in the CZ - is an important contributor to CZ research. This article reviews and discusses the basic ideas and fundamental features of the CZ and hydropedology, and suggests ways for their advances. An "outward" growth model, instead of an "inward" contraction, is suggested for propelling soil science forward. The CZ is the right platform for synergistic collaborations across disciplines. The reconciliation of the geological (or "big") cycle and the biological (or "small") cycle that are orders of magnitude different in space and time is a key to understanding and predicting complex CZ processes. Because of the layered nature of the CZ and the general trend of increasing density with depth, response and feedback to climate change take longer from the above-ground zone down to the soil zone and further to the groundwater zone. Interfaces between layers and cycles are critical controls of the landscape-soil-water-ecosystem dynamics, which present fertile grounds for interdisciplinary research. Ubiquitous heterogeneity in the CZ can be addressed by environmental gradients and landscape patterns, where hierarchical structures control the landscape complex of flow networks embedded in mosaics of matrices. Fundamental issues of hydropedology are linked to the general characteristics of the CZ, including (1) soil structure and horizonation as the foundation of flow and transport characteristics in field soils; (2) soil catena and distribution pattern as a first control of water movement over the landscape; (3) soil morphology and pedogenesis as signatures of soil hydrology and soil change; and (4) soil functional classification and mapping as carriers of soil hydrologic properties and soil-landscape heterogeneity. Monitoring changes in the crucible of terrestrial life (soil) is an excellent (albeit complex) environmental assessment, as every soil is a "block of memory" of past and present biosphere-geosphere dynamics. Our capability to predict the behaviour and evolution of the CZ in response to changing environment can be improved significantly if a global alliance for monitoring, mapping, and modeling of the CZ can be fostered.
[14] Yang Jianfeng, Zhang Cuiguang.

Earth's critical zone: A holistic framework for geo-environmental researches.

Hydrogeology and Engineering Geology, 2014, 41(3): 98-110.

URL      [本文引用: 1]      摘要

当今经济社会所面临的资源、环 境和生态问题相互关联、相互耦合,迫切需要打破传统的学科界限,搭建一个新的技术框架,进行跨学科、多领域系统研究。地球关键带将与经济社会最密切的近地 表环境作为独立的开放系统,为这种需求提供了一个完整的系统框架。本文在界定地球关键带内涵与特征的基础上,分析了关键带科学研究的DPSIR(驱动力- 压力-状态-影响-响应)体系框架和3M(填图-监测-建模)循环体系框架,从填图、监测、建模三个方面总结了关键带研究进展。通过将地质学、水文学、土 壤学、生态学等学科进行融合,关键带科学为气候变化、生态管护、水资源安全、自然灾害防治等重大问题的解决展示了一种新的图景。在此基础上,提出了对我国 地质调查工作的建议:将地球关键带作为重点靶区开展基础地质和水工环地质综合调查,建立三维地质框架;选择基础条件较好的小流域建设关键带观测站,为地质 学与其他学科的融合搭建一个开放平台。

[杨建锋, 张翠光.

地球关键带: 地质环境研究的新框架

. 水文地质工程地质, 2014, 41(3): 98-110.]

URL      [本文引用: 1]      摘要

当今经济社会所面临的资源、环 境和生态问题相互关联、相互耦合,迫切需要打破传统的学科界限,搭建一个新的技术框架,进行跨学科、多领域系统研究。地球关键带将与经济社会最密切的近地 表环境作为独立的开放系统,为这种需求提供了一个完整的系统框架。本文在界定地球关键带内涵与特征的基础上,分析了关键带科学研究的DPSIR(驱动力- 压力-状态-影响-响应)体系框架和3M(填图-监测-建模)循环体系框架,从填图、监测、建模三个方面总结了关键带研究进展。通过将地质学、水文学、土 壤学、生态学等学科进行融合,关键带科学为气候变化、生态管护、水资源安全、自然灾害防治等重大问题的解决展示了一种新的图景。在此基础上,提出了对我国 地质调查工作的建议:将地球关键带作为重点靶区开展基础地质和水工环地质综合调查,建立三维地质框架;选择基础条件较好的小流域建设关键带观测站,为地质 学与其他学科的融合搭建一个开放平台。
[15] Richter D D, Mobley M L.

Monitoring Earth's Critical Zone.

Science, 2009, 326: 1067-1068.

URL      [本文引用: 1]     

[16] Banwart S, Chorover J, Gaillardet J, et al.

2013. Sustaining Earth's critical zone basic science and interdisciplinary solutions for global challenges.

Sheffield: University of Sheffield, 2013.

[本文引用: 1]     

[17] Chorover J, Troch P A, Rasmussen C, et al.

How water, carbon, and energy drive critical zone evolution: The Jemez-Santa Catalina Critical Zone Observatory.

Vadose Zone Journal, 2011, 10(3): 884-899.

https://doi.org/10.2136/vzj2010.0132      URL      [本文引用: 1]      摘要

The structure of the critical zone (CZ) is a result of tectonic, lithogenic, and climatic forcings that shape the landscape across geologic time scales. The CZ structure can be probed to measure contemporary rates of regolith production and hillslope evolution, and its fluids and solids can be sampled to determine how structure affects CZ function as a living filter for hydrologic and biogeochemical cycles. Substantial uncertainty remains regarding how variability in climate and lithology influence CZ structure and function across both short (e. g., hydrologic event) and long (e. g., landscape evolution) time scales. We are addressing this issue using a theoretical framework that quantifies system inputs in terms of environmental energy and mass transfer (EEMT, MJ m(-2) yr(-1)) in the recently established Jemez River Basin (JRB)-Santa Catalina Mountains (SCM) Critical Zone Observatory (CZO). We postulate that C and water fluxes, as embodied in EEMT, drive CZ evolution and that quantifying system inputs in this way leads to predictions of nonlinear and threshold effects in CZ structure formation. We are testing this hypothesis in the JRB-SCM CZO, which comprises a pair of observatories-in northern New Mexico within the Rio Grande basin (JRB) and in southern Arizona within the Colorado River basin (SCM). The JRB-SCM CZO spans gradients in climate, lithology, and biota representative of much variation found in the larger U. S Southwest. Our approach includes in situ monitoring of zero-order basins nested within larger CZO watersheds and measurement-modeling iterations. The initial data collected at the ecosystem, pedon, and catchment scales indicates a strong role of coupled C and water flux in regulating chemical denudation of catchments in the JRB site.
[18] Amundson R, Richter D D, Humphreys G S, et al.

Coupling between biota and earth materials in the critical zone.

Elements, 2007, 3(5): 327-332.

https://doi.org/10.2113/gselements.3.5.327      URL      [本文引用: 1]      摘要

The surface of our planet is the result of billions of years of feedback between biota and Earth materials. The chemical weathering
[19] Chen Huaiman. Environmental Soil (2nd edition). Beijing: Scientific Press, 2010.

URL      [本文引用: 1]     

[陈怀满. 环境土壤学. 2版. 北京: 科学出版社, 2010.]

URL      [本文引用: 1]     

[20] Mattson S.

The constitution of the pedosphere.

Annals of the Agricultural College of Sweden, 1938, 5: 261-276.

[本文引用: 1]     

[21] Zhao Qiguo.

Material cycling in pedosphere and advancement of soil science.

Soils, 1991, 23(1): 1-3.

URL      [本文引用: 1]      摘要

文章阐述了土壤圈物质循环的科究意义、内容及其与土壤学发展的关系。

[赵其国.

土壤圈物质循环研究与土壤学的发展

. 土壤, 1991, 23(1): 1-3.]

URL      [本文引用: 1]      摘要

文章阐述了土壤圈物质循环的科究意义、内容及其与土壤学发展的关系。
[22] Zhao Qiguo.

Pedopshere and its role in global change.

Soils, 1994, 26(1): 4-7.

URL      摘要

作者对土壤的圈概念,内涵,功能我国面临的环境问题及其对全球变化的影响作了详细地论述。

[赵其国.

土壤圈及其在全球变化中的作用

. 土壤, 1994, 26(1): 4-7.

URL      摘要

作者对土壤的圈概念,内涵,功能我国面临的环境问题及其对全球变化的影响作了详细地论述。
[23] Zhao Qiguo.

The meaning and research content of pedosphere in global change.

Earth Science Frontiers, 1997, 4(1/2): 153-162.

https://doi.org/10.1007/BF02951625      URL      摘要

土壤圈是地圈系统的重要组成部 分,它处于地圈系统,即气圈、水圈、生物圈与岩石圈的交界面,是最活跃、最富生命力的圈层。土壤圈的物质循环是全球变化中物质循环的重要内容,因此,研究 土壤圈及其物质循环的结构与功能,对全球变化,特别对全球土壤变化有密切关系。土壤圈在全球土壤变化中的研究内容包括:土壤圈与地圈各圈层的物质循环;水 土资源的时空变化;土壤肥力变化与农业持续发展,区域治理与环境建设等,这些都是全球土壤变化,特别是中国全球变化的主题,应引起高度重视。

[赵其国.

土壤圈在全球变化中的意义与研究内容

. 地学前缘, 1997, 4(1/2): 153-162.]

https://doi.org/10.1007/BF02951625      URL      摘要

土壤圈是地圈系统的重要组成部 分,它处于地圈系统,即气圈、水圈、生物圈与岩石圈的交界面,是最活跃、最富生命力的圈层。土壤圈的物质循环是全球变化中物质循环的重要内容,因此,研究 土壤圈及其物质循环的结构与功能,对全球变化,特别对全球土壤变化有密切关系。土壤圈在全球土壤变化中的研究内容包括:土壤圈与地圈各圈层的物质循环;水 土资源的时空变化;土壤肥力变化与农业持续发展,区域治理与环境建设等,这些都是全球土壤变化,特别是中国全球变化的主题,应引起高度重视。
[24] Zhao Qiguo, Luo Yongming.

The macro strategy of soil protection in China.

Bulletin of Chinese Academy of Sciences, 2015, 30(4): 452-458.

URL      [本文引用: 2]      摘要

从土壤安全角度研究我国土壤保 护战略问题,对持续利用和保护土壤资源,改善土壤环境质量,保障农业生产与食物质量安全具有重大的现实意义和深远的历史意义。文章在分析我国土壤存在的主 要问题的基础上,提出了我国土壤保护宏观战略研究中亟需解决的一些关键问题,即土壤保护的战略思想、战略方针、战略目标、战略任务及战略重点,保护战略的 实施对策,以及土壤安全工程创建思想,为制定国家土壤安全战略规划提供指导。

[赵其国, 骆永明.

论我国土壤保护宏观战略

. 中国科学院院刊, 2015, 30(4): 452-458.]

URL      [本文引用: 2]      摘要

从土壤安全角度研究我国土壤保 护战略问题,对持续利用和保护土壤资源,改善土壤环境质量,保障农业生产与食物质量安全具有重大的现实意义和深远的历史意义。文章在分析我国土壤存在的主 要问题的基础上,提出了我国土壤保护宏观战略研究中亟需解决的一些关键问题,即土壤保护的战略思想、战略方针、战略目标、战略任务及战略重点,保护战略的 实施对策,以及土壤安全工程创建思想,为制定国家土壤安全战略规划提供指导。
[25] Godfray H C J, Beddington J R, Crute I R, et al.

Food security: The challenge of feeding 9 billion people.

Science, 2010, 327(5967): 812-818.

https://doi.org/10.1126/science.1185383      URL      PMID: 20110467      [本文引用: 1]      摘要

Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.
[26] Banwart S, Bernasconi S M, Bloem J, et al.

Soil processes and functions in critical zone observatories: Hypotheses and experimental design.

Vadose Zone Journal, 2011, 10(3): 974-987.

https://doi.org/10.2136/vzj2010.0136      URL      [本文引用: 4]      摘要

European Union policy on soil threats and soil protection has prioritized new research to address global soil threats. This research draws on the methodology of Critical Zone Observatories (CZOs) to focus a critical mass of international, multidisciplinary expertise at specific field sites. These CZOs were selected as part of an experimental design to study soil processes and ecosystem function along a hypothesized soil life cycle rom incipient soil formation where new parent material is being deposited, to highly degraded soils that have experienced millennia of intensive land use. Further CZOs have been selected to broaden the range of soil environments and data sets to test soil process models that represent the stages of the soil life cycle. The scientific methodology for this research focuses on the central role of soil structure and soil aggregate formation and stability in soil processes. Research methods include detailed analysis and mathematical modeling of soil properties related to aggregate formation and their relation to key processes of reactive transport, nutrient transformation, and C and food web dynamics in soil ecosystems. Within this program of research, quantification of soil processes across an international network of CZOs is focused on understanding soil ecosystem services including their quantitative monetary valuation within the soil life cycle. Further experimental design at the global scale is enabled by this type of international CZO network. One example is a proposed experiment to study soil ecosystem services along planetary-scale environmental gradients. This would allow scientists to gain insight into the responses of soil processes to increasing human pressures on Earth's critical zone that arise through rapidly changing land use and climate.
[27] Banwart S.

Save our soils.

Nature, 2011, 474(7350): 151-152.

[本文引用: 2]     

[28] European Commission.

Thematic strategy for soil protection.

Commission of the European Communities, 2006.

URL      [本文引用: 2]     

[29] Koch A, McBratney A, Adams M, et al.

Soil security: Solving the global soil crisis.

Global Policy, 2013, 4(4): 434-441.

https://doi.org/10.1111/1758-5899.12096      URL      [本文引用: 1]      摘要

Soil degradation is a critical and growing global problem. As the world population increases, pressure on soil also increases and the natural and the natural capital of soil faces continuing decline, international policy makers have recognized this and a range of initiatives to address it have emerged over recent years. However, a gap remains between what the science tells us about soil and its role in underpinning ecological and human sustainable development, and existing policy instruments for sustainable development. Functioning soil is necessary for ecosystem service delivery, climate change abatement, food and fiber production and fresh water storage. Yet key policy instruments and initiatives for sustainable development have under-recognised the role of soil in addressing major challenges including food and water security, biodiversity loss, climate change and energy sustainability. Soil science has not been sufficiently translated to policy for sustainable development. Two underlying reasons for this are explored and the new concept of soil security is proposed to bridge the science policy divide. Soil security is explored as a conceptual framework that could be used as the basis for a soil policy framework with soil carbon as an exemplar.
[30] Amundson R, Berhe A A, Hopmans J W, et al.

Soil and human security in the 21st century.

Science, 2015, 348(6235): 1261071.

[本文引用: 1]     

[31] Gibbs H K, Salmon J M.

Mapping the world's degraded lands.

Applied Geography, 2015, 57: 12-21.

https://doi.org/10.1016/j.apgeog.2014.11.024      URL      [本文引用: 1]      摘要

Degraded lands have often been suggested as a solution to issues of land scarcity and as an ideal way to meet mounting global demands for agricultural goods, but their locations and conditions are not well known. Four approaches have been used to assess degraded lands at the global scale: expert opinion, satellite observation, biophysical models, and taking inventory of abandoned agricultural lands. We review prominent databases and methodologies used to estimate the area of degraded land, translate these data into a common framework for comparison, and highlight reasons for discrepancies between the numbers. Global estimates of total degraded area vary from less than 1billionha to over 6billionha, with equally wide disagreement in their spatial distribution. The risk of overestimating the availability and productive potential of these areas is severe, as it may divert attention from efforts to reduce food and agricultural waste or the demand for land-intensive commodities.
[32] Doran J W, Zeiss M R.

Soil health and sustainability: Managing the biotic component of soil quality.

Applied Soil Ecology, 2000, 15(1): 3-11.

https://doi.org/10.1016/S0929-1393(00)00067-6      URL      [本文引用: 1]      摘要

Soil health is the capacity of soil to function as a vital living system, within ecosystem and land-use boundaries, to sustain plant and animal productivity, maintain or enhance water and air quality, and promote plant and animal health. Anthropogenic reductions in soil health, and of individual components of soil quality, are a pressing ecological concern. A conference entitled ‘Soil Health: Managing the Biological Component of Soil Quality’ was held was held in the USA in November 1998 to help increase awareness of the importance and utility of soil organisms as indicators of soil quality and determinants of soil health. To evaluate sustainability of agricultural practices, assessment of soil health using various indicators of soil quality is needed. Soil organism and biotic parameters (e.g. abundance, diversity, food web structure, or community stability) meet most of the five criteria for useful indicators of soil quality. Soil organisms respond sensitively to land management practices and climate. They are well correlated with beneficial soil and ecosystem functions including water storage, decomposition and nutrient cycling, detoxification of toxicants, and suppression of noxious and pathogenic organisms. Soil organisms also illustrate the chain of cause and effect that links land management decisions to ultimate productivity and health of plants and animals. Indicators must be comprehensible and useful to land managers, who are the ultimate stewards of soil quality and soil health. Visible organisms such as earthworms, insects, and molds have historically met this criterion. Finally, indicators must be easy and inexpensive to measure, but the need for knowledge of taxonomy complicates the measurement of soil organisms. Several farmer-participatory programs for managing soil quality and health have incorporated abiotic and simple biotic indicators. The challenge for the future is to develop sustainable management systems which are the vanguard of soil health; soil quality indicators are merely a means towards this end.
[33] Karlen D, Andrews S, Doran J.

Soil quality: Current concepts and applications.

Advances in Agronomy, 2001, 74: 1-40.

https://doi.org/10.1016/S0065-2113(01)74029-1      URL      摘要

Soil quality has evolved as an educational and assessment tool for evaluating relative sustainability of soil resource management practices and guiding land-use decisions.This review discusses the rapid development of the soil quality concept throughout the decade of the 1990s,addresses misconceptions regarding soil quality efforts,and presents examples to illustrate how soil quality research,education,and technology-transfer activities are being used to help solve various soil resource and agroecosystemproblems.This review stresses that soil quality assessment re .ects biological,chemical,and physical properties,processes,and their interactions within each soil resource unit.By using examples from throughout the United States and around the world,we demonstrate the importance of using soil quality concepts to integrate both inherent and dynamic properties and processes occurring within a living,dynamic medium.We also emphasize that there is no ideal or magic soil quality index value by illustrating a framework for indexing that can be adapted to local conditions.The framework requires identifying critical soil functions,selecting meaningful indicators for those functions,developing appropriate scoring functions to interpret the indicators for various soil resources, and combining the information into values that can be tracked over time to determine if the soil resources are being sustained,degraded,or aggraded.This review is intended to provide a reference and background for land managers,resource conservationists,ecologists,soil scientists,and others seeking tools to help ensure that land-use decisions and practices are sustainable
[34] Bouma J, Droogers P.

Translating soil science into environmental policy: A case study on implementing the EU soil protection strategy in the Netherlands.

Environ Science & Policy, 2007, 10(5): 454-463.

https://doi.org/10.1016/j.envsci.2007.02.004      URL      [本文引用: 1]      摘要

The EU Commission has proposed a way forward towards a Thematic Strategy for Soil Protection based on the distinction of seven soil functions and eight threats. A Technical Working Group on Research defined some 200 general priority research areas in the context of the dynamic DPSIR approach considering drivers, pressures, states, impacts and responses. Though quite valuable as a source document, this may be too generic and academic to be a starting point for new, effective soil research in different regions of the EU. A six-step storyline procedure is therefore proposed aimed at deriving effective operational procedures for a water management unit in a given region, using available soil expertise and defining new research only where needed. The procedure, that was illustrated for a Dutch case study, consists of defining: (i) water management units (wmu's) in a landscape context; (ii) land-use, area hydrology and soil functions (iii) soil threats and relevant soil qualities; (iv) drivers of land-use change and their future impact; (v) improvement of relevant soil qualities; (vi) possibilities to institutionalize soil quality improvement as part of the EU soil protection strategy. A focus on regional wmu's is likely to result in a strong commitment of local stakeholders and governmental officials, allowing a more specific DPSIR approach. But this will only work if local officials also receive legal powers to develop and enforce codified `good practices驴, to be developed in the context of communities of practice. Innovative research topics can be derived from a combined analysis of experiences within different communities of practice in different wmu's and should not be left to researchers to define.
[35] McBratney A, Field D J, Koch A.

The dimensions of soil security.

Geoderma, 2014, 213: 203-213.

https://doi.org/10.1016/j.geoderma.2013.08.013      URL      [本文引用: 3]      摘要

Soil security, an overarching concept of soil motivated by sustainable development, is concerned with the maintenance and improvement of the global soil resource to produce food, fibre and fresh water, contribute to energy and climate sustainability, and to maintain the biodiversity and the overall protection of the ecosystem. Security is used here for soil in the same sense that it is used widely for food and water. It is argued that soil has an integral part to play in the global environmental sustainability challenges of food security, water security, energy sustainability, climate stability, biodiversity, and ecosystem service delivery. Indeed, soil has the same existential status as these issues and should be recognized and highlighted similarly. The concept of soil security is multi-dimensional. It acknowledges the five dimensions of (1) capability, (2) condition, (3) capital, (4) connectivity and (5) codification, of soil entities which encompass the social, economic and biophysical sciences and recognize policy and legal frameworks. The soil security concept is compared with the cognate, but more limited, notions of soil quality, health and protection.
[36] Shen Renfang, Teng Ying.

Concept of Soil security and its application China.

Bulletin of Chinese Academy of Sciences, 2015, 30(4): 468-476.

URL      [本文引用: 2]      摘要

土壤安全是基于社会可持续发展 为目标的一种土壤系统认知,关系到与粮食、纤维和淡水等相关的全球土壤资源利用与保育。土壤对粮食安全、水安全、能源可持续性、气候稳定性、生物多样性及 生态系统服务等方面具有重要作用,这些土壤相关问题受到国际社会高度关注。土壤安全也是一个多属性多指标的概念,不仅具有自然属性(包括土壤物理、化学、 生物学过程变化),而且具有社会属性(包括经济、社会、政策等)。文章在充分认知土壤安全概念以及分析我国土壤安全重要性的基础上,进一步提出了我国土壤 安全的宏观战略对策。

[沈仁芳, 滕应.

土壤安全的概念与我国的战略对策

. 中国科学院院刊, 2015, 30(4): 468-476.]

URL      [本文引用: 2]      摘要

土壤安全是基于社会可持续发展 为目标的一种土壤系统认知,关系到与粮食、纤维和淡水等相关的全球土壤资源利用与保育。土壤对粮食安全、水安全、能源可持续性、气候稳定性、生物多样性及 生态系统服务等方面具有重要作用,这些土壤相关问题受到国际社会高度关注。土壤安全也是一个多属性多指标的概念,不仅具有自然属性(包括土壤物理、化学、 生物学过程变化),而且具有社会属性(包括经济、社会、政策等)。文章在充分认知土壤安全概念以及分析我国土壤安全重要性的基础上,进一步提出了我国土壤 安全的宏观战略对策。
[37] Fu Bojie, Zhou Guoyi, Bai Yongfei, et al.

The main terrestrial ecosystem services and ecological security in China.

Advances in Earth Science, 2009, 24(6): 571-576.

URL      Magsci      [本文引用: 3]      摘要

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 生态系统服务是国际生态学研究的前沿和热点,表现出向生态系统服务机理和区域集成方法两大方向发展的趋势。开展陆地生态系统服务研究,是生态系统恢复、生态功能区划和建立生态补偿机制、保障国家生态安全的重大战略需求。面向国家重大需求和生态系统服务研究的国际前沿,以主要陆地生态系统为对象,&ldquo;中国主要陆地生态系统服务功能与生态安全&rdquo;项目拟解决3个科学问题:①生态系统结构&mdash;过程&mdash;服务功能的相互作用机理;②生态系统服务功能的尺度特征与多尺度关联;③生态系统服务功能评估的指标与模型。通过上述研究,发展生态系统服务研究的理论与方法,为国家的生态建设和环境保护提供科学支撑。<br />&nbsp;</p>

[傅伯杰, 周国逸, 白永飞, .

中国主要陆地生态系统服务功能与生态安全

. 地球科学进展, 2009, 24(6): 571-576.]

URL      Magsci      [本文引用: 3]      摘要

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 生态系统服务是国际生态学研究的前沿和热点,表现出向生态系统服务机理和区域集成方法两大方向发展的趋势。开展陆地生态系统服务研究,是生态系统恢复、生态功能区划和建立生态补偿机制、保障国家生态安全的重大战略需求。面向国家重大需求和生态系统服务研究的国际前沿,以主要陆地生态系统为对象,&ldquo;中国主要陆地生态系统服务功能与生态安全&rdquo;项目拟解决3个科学问题:①生态系统结构&mdash;过程&mdash;服务功能的相互作用机理;②生态系统服务功能的尺度特征与多尺度关联;③生态系统服务功能评估的指标与模型。通过上述研究,发展生态系统服务研究的理论与方法,为国家的生态建设和环境保护提供科学支撑。<br />&nbsp;</p>
[38] Fu Bojie.Ecosystem Service and Ecological Security. Beijing: Higher Education Press, 2013.

[傅伯杰. 生态系统服务与生态安全. 北京: 高等教育出版社, 2013.]

[39] Fu B J, Wang S, Su C H, et al.

Linking ecosystem processes and ecosystem services.

Current Opinion in Environmental Sustainability, 2013, 5(1): 4-10.

https://doi.org/10.1016/j.cosust.2012.12.002      URL      Magsci      [本文引用: 2]      摘要

The metaphor of ecosystem service may blind us to the complexity of the natural systems which underpin and produce services. We, reviewed key references and propose a framework to illustrate the social system relying on the ecological system and the relationships between ecosystem composition, ecosystem structure, ecosystem processes and ecosystem services, in order to reduce this complexity. We argue that plans to manage ecosystem services will not be successful without a deep understanding of their link with the ecosystem processes that support them. By linking ecosystem processes and ecosystem services, we explore the possible determinants of the biodiversity components on the quantity, quality and reliability of ecosystem services at all levels, and its usefulness in making targeted decisions. Disentangling the complex interrelationships among multiple ecosystem services from the driven processes is helpful in lowering the risk of unwanted trade-offs, and taking advantage of synergies. In landscape management, it is advisable to design suitable ecosystem structures for maximizing ecosystem services based on knowledge of the natural ecosystem processes.
[40] Westman W.

How much are nature's services worth?

Science, 1977, 197: 960-964.

[本文引用: 1]     

[41] Ehrlich P R, Ehrlich A.

Extinction: The Cause and Consequences of the Disappearance of Species.

New York: Random House, 1981.

[本文引用: 1]     

[42] Daily G C.Nature's Services: Societal Dependence on Natural Ecosystems. Washington D.C.: Island Press, 1997.

URL      [本文引用: 2]     

[43] Costanza R, Arge R, Groot R, et al.

The value of the world's ecosystem services and natural capital.

Nature, 1997, 387(6630): 253-260.

https://doi.org/10.1038/387253a0      URL      [本文引用: 3]      摘要

The services of ecological systems and the natural capital stocks that produce them are critical to the functioning of the Earth's life-support system. They contribute to human welfare, both directly and indirectly, and therefore represent part of the total economic value of the planet. We have estimated the current economic value of 17 ecosystem services for 16 biomes, based on published studies and a few original calculations. For the entire biosphere, the value (most of which is outside the market) is estimated to be in the range of US$16-54 trillion (10) per year, with an average of US$33 trillion per year. Because of the nature of the uncertainties, this must be considered a minimum estimate. Global gross national product total is around US$18 trillion per year.
[44] Millennium Ecosystem Assessment (MEA). Ecosystems and human well-being: Biosynthesis synthesis. Washington, D.C.: World Resources Institute, 2005.

[本文引用: 2]     

[45] Palmer M, Bernhardt E, Chornesky E, et al.

Ecology for a crowded planet.

Science, 2004, 304(5675): 1251-1252.

https://doi.org/10.1126/science.1095780      URL      PMID: 15166349      [本文引用: 1]      摘要

Within the next 50 to 100 years, support and maintenance of an extended human family of 8 to 11 billion people will become difficult at best. Our consumption rates already exceed the supply of many resources crucial to human health, and few places on Earth do not bear the stamp of human impacts (1, 2). Fossil fuel combustion and fertilizer production have doubled the global rate of nitrogen fixation, which has exacerbated ongoing eutrophication while fertilizing remote portions of the planet (3). Increases in global commerce have led to the spread of pests and diseases that do great harm because they are divorced from their natural predators and pathogens (4). Studying the few and rapidly shrinking undisturbed ecosystems is important, but now is the time to focus on an ecology for the future. Because our planet will be overpopulated for the foreseeable future and natural resource consumption shows no signs of slowing, human modifications of the environment will only increase. Thus, a research perspective that incorporates human activities as integral components of Earth's ecosystems is needed, as is a focus on a future in
[46] Sutherland W J, Armstrong-Brown S, Armsworth P R, et al.

The identification of 100 ecological questions of high policy relevance in the UK.

Journal of Applied Ecology 2006, 43(4): 617-627.

https://doi.org/10.1111/j.1365-2664.2006.01188.x      URL      [本文引用: 1]      摘要

Evidence-based policy requires researchers to provide the answers to ecological questions that are of interest to policy makers. To find out what those questions are in the UK, representatives from 28 organizations involved in policy, together with scientists from 10 academic institutions, were asked to generate a list of questions from their organizations. During a 2-day workshop, the initial ...
[47] TEEB.

URL      [本文引用: 1]     

[48] Daily G C, Matson P A, Vitousek P M.Ecosystem services supplied by soils//Daily G C. Nature's Services: Societal Dependence on Natural Ecosystems. Washington, D.C.: Island Press, 1997. 113-132.

URL      [本文引用: 2]      摘要

This chapter is divided into three main parts: (1) characterization of soil; and (2) ecosystem services supplied by soil; and (3) marginal costs of soil loss and degradation. The first of these has the following subdivisions: soil genesis and structure; soil composition. The second is subdivided into: buffering and moderation of the hydrological cycle; physical support of plants; retention and ...
[49] Wall D H.Sustaining Biodiversity and Ecosystem Services in Soils and Sediments. 2nd ed. Washington D.C.: Island Press, 2004.

[本文引用: 1]     

[50] Weber J L.

Accounting for Soil in the SEEA.

Rome: European Environment Agency, 2007.

URL      摘要

Soil is an ecosystem and a natural capital. It is a slowly renewable resource in many cases, a non renewable in extreme conditions. As an ecosystem, soil can be described by stocks of components, resilience (stress and distress), functions and services. Soil has an economic
[51] Robinson D A, Lebron I, Vereecken H.

On the definition of the natural capital of soils: A framework for description, evaluation, and monitoring.

Soil Science Society of America Journal 2009, 73(6): 1904-1911.

[本文引用: 3]     

[52] Dominati E, Patterson M, Mackay A.

A framework for classifying and quantifying the natural capital and ecosystem services of soils.

Ecological Economics, 2010, 69(9): 1858-1868.

https://doi.org/10.1016/j.ecolecon.2010.05.002      URL      [本文引用: 2]      摘要

ABSTRACT The ecosystem services and natural capital of soils are often not recognised and generally not well understood. This paper addresses this issue by drawing on scientific understanding of soil formation, functioning and classification systems and building on current thinking on ecosystem services to develop a framework to classify and quantify soil natural capital and ecosystem services. The framework consists of five main interconnected components: (1) soil natural capital, characterised by standard soil properties well known to soil scientists; (2) the processes behind soil natural capital formation, maintenance and degradation; (3) drivers (anthropogenic and natural) of soil processes; (4) provisioning, regulating and cultural ecosystem services; and (5) human needs fulfilled by soil ecosystem services.
[53] Dominati E J.

Quantifying and valuing the ecosystem services of pastoral soils under a dairy use [D].

Palmerston North: Massey University, 2011.

[本文引用: 1]     

[54] Obst C.

Account for soil as natural capital.

Nature, 2015, 12(527): 165.

[本文引用: 1]     

[55] Palm C, Sanchez P, Ahamed S, et al.

Soils: A contemporary perspective.

Annual Review of Environment and Resources, 2007, 32: 99-129.

https://doi.org/10.1146/annurev.energy.31.020105.100307      URL      [本文引用: 1]      摘要

Soils are viewed in the context of ecosystem services, soil processes and properties, and key attributes and constraints. The framework used is based on the pre
[56] FAO (Food and Agriculture Organization of the United States).

URL      [本文引用: 1]     

[57] Pascual U, Termansen M, Hedlund K, et al.

On the value of soil biodiversity and ecosystem services.

Ecosystem Services, 2015, 15: 11-18.

https://doi.org/10.1016/j.ecolser.2015.06.002      URL      [本文引用: 1]      摘要

ABSTRACT This paper provides a framework to understand the source of the economic value of soil biodiversity and soil ecosystem services and maps out the pathways of such values. We clarify the link between components of the economic value of soil biodiversity and their associated services of particular relevance to soils. We contend that soil biodiversity and associated ecosystem services give rise to two main additive value components in the context of risk and uncertainty: an output value and an insurance value. These are illustrated with examples from soil ecology and a simple heuristic model. The paper also points towards the challenges of capturing such values highlighting the differences between private (individual) and public (global) sources of value.
[58] Lemanceau P.

EcoFINDERS characterize biodiversity and the function of soils in Europe 23 partners in 10 European countries and China.

Biofutur, 2011, 326: 56-58.

[本文引用: 1]     

[59] Fu B J, Zhang L W, Xu Z H, et al.

Ecosystem services in changing land use.

Journal of Soils and Sediments, 2015, 15(4): 833-843.

https://doi.org/10.1007/s11368-015-1082-x      URL      [本文引用: 1]      摘要

Purpose Ongoing population growth and economic development place increasing demands on the supply of services produced in and by ecosystems. The resulting degradation compromises their

/