环境变化与农业发展

1981—2019年中国及典型区域热环境变化特征

  • 陈笑 , 1, 3 ,
  • 孙涛 1 ,
  • 孙然好 , 1, 2
展开
  • 1.中国科学院生态环境研究中心 区域与城市生态安全全国重点实验室,北京 100085
  • 2.中国科学院大学,北京 100049
  • 3.云南大学国际河流与生态安全研究院 云南省水土流失防治与绿色发展重点实验室,昆明 650500
孙然好(1981-), 男, 研究员, 主要从事城市景观生态学研究。E-mail:

陈笑(2000-), 男, 硕士生, 研究方向为城市热环境与气候暴露风险。E-mail:

收稿日期: 2023-10-25

  修回日期: 2025-03-07

  网络出版日期: 2025-05-23

基金资助

国家自然科学基金项目(41922007)

Evolution characteristic and typical regional analysis of national thermal environment in 1981-2019

  • CHEN Xiao , 1, 3 ,
  • SUN Tao 1 ,
  • SUN Ranhao , 1, 2
Expand
  • 1. State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences,CAS, Beijing 100085, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China

Received date: 2023-10-25

  Revised date: 2025-03-07

  Online published: 2025-05-23

Supported by

National Natural Science Foundation of China(41922007)

摘要

户外热环境影响人体热舒适进而对公共健康、旅游规划、劳动生产、景观建设产生影响,但当前仍缺乏大尺度、长时序研究。本文基于通用热气候指数(UTCI)、Sen斜率估计和Mann-Kendall显著检验,分析1981—2019年中国UTCI时空演变特征并揭示典型城市群热风险。结果表明,中国UTCI增长趋势普遍存在,但春季增长强度最高、夏季次之,秋冬季大部分地区增长趋势不显著;春季白天UTCI增长更明显而夏季夜晚增长显著,北方增长普遍高于北方,高值增长区集中于西北、高原和盆地,超过0.6 ℃/10a。城市群春季UTCI增长强度最高,均超过0.3 ℃/10a,“暖春”现象明显;不同冷压力等级发生天数普遍降低而热压力天数增加,居民承受更强热压力;虽然全国热压力发生频率仅24.2%但城市群普遍超过60%,热环境由舒适向热不适转变将进一步增加居民热暴露风险。研究结果有助于进一步理解热环境的空间分布和变化情况,为气候变化背景下区域重点治理防控提供依据。

本文引用格式

陈笑 , 孙涛 , 孙然好 . 1981—2019年中国及典型区域热环境变化特征[J]. 地理学报, 2025 , 80(5) : 1339 -1352 . DOI: 10.11821/dlxb202505012

Abstract

The outdoor thermal environment impacts human heat exchange, subsequently affecting public health, travel decisions, labor production, and landscape design. However, there are still lacking large-scale and long time-series studies. Based on the Universal Thermal Climate Index (UTCI), Sen's slope estimation, and Mann-Kendall (MK) significance test, we analyze the spatiotemporal characteristics of UTCI in China from 1981 to 2019 and reveal the heat risk of typical urban agglomerations. The results show that the widespread growth trend of UTCI exists across China, with the highest intensity occurring in spring and the second highest in summer, while the trend is not significant in most areas in autumn and winter. UTCI trend intensity was higher during daytime in spring while nighttime in summer, and overall growth tended to be more pronounced in the north than in the south. High-growth areas are predominantly located in the northwest region, plateau and basin, exceeding 0.6 °C/10a. Urban agglomerations exhibit the highest UTCI growth trend in spring, generally exceeding 0.3 °C/10a, proving the "warm spring" exists. The days of different cold stress levels generally decrease while heat stress days increase thereby subjecting residents to greater levels of heat stress. The frequency of heat stress was only 24.2% in China, and generally exceeded 60% in urban areas, which would increase residents' heat exposure risk as the thermal environment shifts from comfortable to uncomfortable. This study further helps to understand the spatiotemporal patterns of thermal environment variations and provides fundamental insights for regional management, prevention, and control in the context of climate change.

[1]
IPCC. Climate change 2023:Synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. Geneva, 2023: 35-115.

[2]
Park C E, Jeong S. Population exposure projections to intensified summer heat. Earths Future, 2022, 10(2): e2021EF002602. DOI: 10.1029/2021EF002602.

[3]
Li Q X, Sheng B S, Huang J Y, et al. Different climate response persistence causes warming trend unevenness at continental scales. Nature Climate Change, 2022, 12(4): 343-349.

[4]
Zhang Y, Li Q Z, Ge Y, et al. Growing prevalence of heat over cold extremes with overall milder extremes and multiple successive events. Communications Earth & Environment, 2022, 3: 73. DOI: 10.1038/s43247-022-00404-x.

[5]
Ma F, Yuan X, Jiao Y, et al. Unprecedented Europe heat in June-July 2019: Risk in the historical and future context. Geophysical Research Letters, 2020, 47(11): e2020GL087809. DOI: 10.1029/2020GL087809.

[6]
de Freitas C R, Grigorieva E A. A comparison and appraisal of a comprehensive range of human thermal climate indices. International Journal of Biometeorology, 2017, 61(3): 487-512.

DOI PMID

[7]
Blazejczyk K, Epstein Y, Jendritzky G, et al. Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, 2012, 56(3): 515-535.

DOI PMID

[8]
Fiala D, Havenith G, Bröde P, et al. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. International Journal of Biometeorology, 2012, 56(3): 429-441.

DOI PMID

[9]
Di Napoli C, Pappenberger F, Cloke H L. Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, 2018, 62(7): 1155-1165.

DOI PMID

[10]
Blazejczyk K. UTCI: 10 years of applications. International Journal of Biometeorology, 2021, 65(9): 1461-1462.

[11]
Yan T K, Jin Y M, Jin H. Combined effects of the visual-thermal environment on the subjective evaluation of urban pedestrian streets in severely cold regions of China. Building and Environment, 2023, 228: 109895. DOI: 10.1016/j.buildenv.2022.109895.

[12]
Chinazzo G, Wienold J, Andersen M. Daylight affects human thermal perception. Scientific Reports, 2019, 9: 13690.DOI: 10.1038/s41598-019-48963-y.

PMID

[13]
Li J Y, Sun R H, Chen L D. Identifying sensitive population associated with summer extreme heat in Beijing. Sustainable Cities and Society, 2022, 83: 103925. DOI: 10.1016/j.scs.2022.103925.

[14]
An L, Hong B, Cui X, et al. Outdoor thermal comfort during winter in China's cold regions: A comparative study. Science of the Total Environment, 2021, 768: 144464. DOI:10.1016/j.scitotenv.2020.144464.

[15]
Alkhoudiri A, Navarro I, Fort J M, et al. Parametric comparative analysis of outdoor thermal comfort in a desert climate: A case study of single-family houses in Riyadh. Urban Climate, 2022, 46: 101300. DOI: 10.1016/j.uclim.2022.101300.

[16]
Blazejczyk A, Blazejczyk K, Baranowski J, et al. Heat stress mortality and desired adaptation responses of healthcare system in Poland. International Journal of Biometeorology, 2018, 62(3): 307-318.

DOI PMID

[17]
Burkart K, Meier F, Schneider A, et al. Modification of heat-related mortality in an elderly urban population by vegetation (urban green) and proximity to water (urban blue): Evidence from Lisbon, Portugal. Environmental Health Perspectives, 2016, 124(7): 927-934.

DOI PMID

[18]
Fang Z S, Feng X W, Liu J L, et al. Investigation into the differences among several outdoor thermal comfort indices against field survey in subtropics. Sustainable Cities and Society, 2019, 44: 676-690.

[19]
Lam C K C, Weng J, Liu K F, et al. The effects of shading devices on outdoor thermal and visual comfort in southern China during summer. Building and Environment, 2023, 228: 109743. DOI: 10.1016/j.buildenv.2022.109743.

[20]
Haghshenas M, Hadianpour M, Matzarakis A, et al. Improving the suitability of selected thermal indices for predicting outdoor thermal sensation in Tehran. Sustainable Cities and Society, 2021, 74: 103205. DOI: 10.1016/j.scs.2021.103205.

[21]
Zhang Y C, He H Y, Dai K Q, et al. Thermal responses of face-masked pedestrians during summer: An outdoor investigation under tree-shaded areas. Building and Environment, 2023, 233: 110058. DOI: 10.1016/j.buildenv.2023.110058.

[22]
Lei Yangna, Zhang Xia, Zhao Xiaomeng. Spatial-temporal distribution characteristics of comfort index of human body in Shaanxi province from 1971 to 2018. Arid Land Geography, 2020, 43(6): 1417-1425.

DOI

[雷杨娜, 张侠, 赵晓萌. 1971—2018年陕西省人体舒适度时空分布特征研究. 干旱区地理, 2020, 43(6): 1417-1425.]

[23]
Zhu Weihao, Zhang Shuyu, Luo Bin. Variation characteristics of comfort index of human body in China in recent 30 years. Journal of Arid Meteorology, 2012, 30(2): 220-226.

[朱卫浩, 张书余, 罗斌. 近30a全国人体舒适度指数变化特征. 干旱气象, 2012, 30(2): 220-226.]

[24]
Ghalhari G F, Dehghan S F, Shakeri F, et al. Assessing the monthly changes of heat stress indices in outdoor environment during a 15-year period: Case of study in a dry and warm climate. Urban Climate, 2020, 31: 100538. DOI: 10.1016/j.uclim.2019.100538.

[25]
Di Napoli C, Barnard C, Prudhomme C, et al. ERA5-HEAT: A global gridded historical dataset of human thermal comfort indices from climate reanalysis. Geoscience Data Journal, 2021, 8(1): 2-10.

[26]
Mistry M N. A high spatiotemporal resolution global gridded dataset of historical human discomfort indices. Atmosphere, 2020, 11(8): 835. DOI: 10.3390/atmos11080835.

[27]
Yan Y C, Xu Y Y, Yue S P. A high-spatial-resolution dataset of human thermal stress indices over South and East Asia. Scientific Data, 2021, 8(1): 229. DOI: 10.1038/s41597-021-01010-w.

[28]
Zhang H, Luo M, Zhao Y Q, et al. HiTIC-Monthly: A monthly high spatial resolution (1 km) human thermal index collection over China during 2003-2020. Earth System Science Data, 2023, 15(1): 359-381.

[29]
Roffe S J, van der Walt A J, Fitchett J M. Spatiotemporal characteristics of human thermal comfort across southern Africa: An analysis of the Universal Thermal Climate Index for 1971-2021. International Journal of Climatology, 2023, 43(6): 2930-2952.

[30]
Di Napoli C, Allen T, Méndez‐Lázaro P A, et al. Heat stress in the Caribbean: Climatology, drivers, and trends of human biometeorology indices. International Journal of Climatology, 2023, 43(1): 405-425.

DOI PMID

[31]
Ullah S, You Q L, Wang G J, et al. Characteristics of human thermal stress in South Asia during 1981-2019. Environmental Research Letters, 2022, 17(10): 104018. DOI: 10.1088/1748-9326/ac8fa6.

[32]
Zeng D, Wu J K, Mu Y Q, et al. Spatial-temporal pattern changes of UTCI in the China-Pakistan economic corridor in recent 40 years. Atmosphere, 2020, 11(8): 858. DOI: 10.3390/atmos11080858.

[33]
Antonescu B, Marmureanu L, Vasilescu J, et al. A 41-year bioclimatology of thermal stress in Europe. International Journal of Climatology, 2021, 41(7): 3934-3952.

[34]
Ren Z B, Fu Y, Dong Y L, et al. Rapid urbanization and climate change significantly contribute to worsening urban human thermal comfort: A national 183-city, 26-year study in China. Urban Climate, 2022, 43: 101154. DOI: 10.1016/j.uclim.2022.101154.

[35]
Huang J, Shen S, Zhao M, et al. Assessment of summer regional outdoor heat stress and regional comfort in the Beijing-Tianjin-Hebei agglomeration over the last 40 years. GeoHealth, 2022, 7(1): e2022GH000725. DOI: 10.1029/2022GH000725.

[36]
Zhou Tong, Wang Jialin. Classifying and regulation pathway of rural "production-living-ecology" regional area in the Center Plains Urban Agglomeration. Scientia Geographica Sinica, 2023, 43(7): 1227-1238.

DOI

[周侗, 王佳琳. 中原城市群乡村“三生”功能分区识别及调控路径. 地理科学, 2023, 43(7): 1227-1238.]

DOI

[37]
Liu Chonggang, Sun Wei, Zhang Luocheng. Spatio-temporal pattern of coupling coordination degree between carbon emissions and vegetation cover and its influencing factors of the Yangtze River Delta. Scientia Geographica Sinica, 2023, 43(1): 142-151.

DOI

[刘崇刚, 孙伟, 张落成. 长江三角洲碳排放与植被覆盖耦合协调时空格局及影响因素分析. 地理科学, 2023, 43(1): 142-151.]

DOI

[38]
Yuan Xuesong, Zhou Jun, Hu Beibei, et al. Multi-scenario simulation and prediction of ecological-productive-living spaces in Guangdong-Hong Kong-Macao Greater Bay Area based on FLUS model. Scientia Geographica Sinica, 2023, 43(3): 564-574.

DOI

[袁雪松, 周俊, 胡蓓蓓, 等. 基于FLUS模型粤港澳大湾区“三生空间”多情景模拟预测. 地理科学, 2023, 43(3): 564-574.]

DOI

[39]
de Freitas C R, Grigorieva E A. A comprehensive catalogue and classification of human thermal climate indices. International Journal of Biometeorology, 2015, 59(1): 109-120.

DOI PMID

[40]
Błażejczyk K, Jendritzky G, Bröde P, et al. An introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica, 2013, 86(1): 5-10.

[41]
Krzyżewska A, Wereski S, Dobek M. Summer UTCI variability in Poland in the twenty-first century. International Journal of Biometeorology, 2021, 65(9): 1497-1513.

[42]
Tian Hao, Liu Lin, Zhang Zhengyong, et al. Spatiotemporal diversity and attribution analysis of land surface temperature in China from 2001 to 2020. Acta Geographica Sinica. 2022, 77(7): 1713-1729.

DOI

[田浩, 刘琳, 张正勇, 等. 2001—2020年中国地表温度时空分异及归因分析. 地理学报, 2022, 77(7): 1713-1729.]

DOI

[43]
Kang Ziwei, Zhang Zhengyong, Liu Lin, et al. Spatio-temporal variation characteristics of land surface temperature in Xinjiang based on MODIS. Geographical Research, 2022, 41(4): 997-1017.

[康紫薇, 张正勇, 刘琳, 等. 基于MODIS的新疆地表温度时空变化特征分析. 地理研究, 2022, 41(4): 997-1017.]

DOI

[44]
Mann H B. Nonparametric tests against trend. Econometrica, 1945, 13(3): 245. DOI: 10.2307/1907187.

[45]
Kendall M G. Rank Correlation Methods. Oxford: Griffin, 1949.

[46]
Sen P K. Estimates of the regression coefficient based on Kendall's Tau. Journal of the American Statistical Association, 1968, 63(324): 1379-1389.

[47]
Ge Q S, Kong Q Q, Xi J C, et al. Application of UTCI in China from tourism perspective. Theoretical and Applied Climatology, 2017, 128(3/4): 551-561.

[48]
Liu Tao, Peng Rongxi, Zhuo Yunxia, et al. China's changing population distribution and influencing factors: Insights from the 2020 census data. Acta Geographica Sinica, 2022, 77(2): 381-394.

DOI

[刘涛, 彭荣熙, 卓云霞, 等. 2000—2020年中国人口分布格局演变及影响因素. 地理学报, 2022, 77(2): 381-394.]

DOI

[49]
Wang Xu, Fu Xuecheng, Xu Wentian, et al. The signatures and drivers of thermal comfort across the urban-rural gradient in Chinese cities from 2000 to 2020. Acta Geographica Sinica, 2024, 79(5): 1318-1336.

DOI

[王旭, 付学成, 徐文甜, 等. 2000—2020年中国城乡热舒适梯度特征及其驱动因素. 地理学报, 2024, 79(5): 1318-1336.]

DOI

[50]
You Q L, Chen D L, Wu F Y, et al. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth-Science Reviews, 2020, 210: 103349. DOI: 10.1016/j.earscirev.2020.103349.

[51]
Kong D D, Gu X H, Li J F, et al. Contributions of global warming and urbanization to the intensification of human-perceived heatwaves over China. Journal of Geophysical Research: Atmospheres, 2020, 125(18): e2019JD032175. DOI: 10.1029/2019JD032175.

[52]
Lin L J, Gao T, Luo M, et al. Contribution of urbanization to the changes in extreme climate events in urban agglomerations across China. Science of the Total Environment, 2020, 744: 140264. DOI: 10.1016/j.scitotenv.2020.140264.

[53]
Wang P, Luo M, Liao W L, et al. Urbanization contribution to human perceived temperature changes in major urban agglomerations of China. Urban Climate, 2021, 38: 100910. DOI: 10.1016/j.uclim.2021.100910.

[54]
Liu Z H, Zhan W F, Bechtel B, et al. Surface warming in global cities is substantially more rapid than in rural background areas. Communications Earth & Environment, 2022, 3(1): 219. DOI: 10.1038/s43247-022-00539-x.

[55]
Zhang W, Li Y Q, Zheng C G, et al. Surface urban heat island effect and its driving factors for all the cities in China: Based on a new batch processing method. Ecological Indicators, 2023, 146: 109818. DOI: 10.1016/j.ecolind.2022.109818.

[56]
Yuan B, Zhou L, Hu F N, et al. Diurnal dynamics of heat exposure in Xi'an: A perspective from local climate zone. Building and Environment, 2022, 222: 109400. DOI: 10.1016/j.buildenv.2022.109400.

[57]
de Schrijver E, Bundo M, Ragettli M S, et al. Nationwide analysis of the heat- and cold-related mortality trends in Switzerland between 1969 and 2017: The role of population aging. Environmental Health Perspectives, 2022, 130(3): 37001. DOI: 10.1289/EHP9835.

文章导航

/