地表过程与地貌

黄土高原地下啮齿类动物挖掘对土壤侵蚀的贡献

  • 白晓亮 , 1, 2 ,
  • 耿豪鹏 , 1, 2 ,
  • 刘茹 1, 2 ,
  • 程维明 3 ,
  • 潘保田 1, 2
展开
  • 1.兰州大学资源环境学院,兰州 730000
  • 2.兰州大学西部环境教育部重点实验室,兰州 730000
  • 3.中国科学院地理科学与资源研究所 地理信息科学与技术全国重点实验室,北京 100101
耿豪鹏(1985-), 男, 河南襄城人, 博士, 教授, 研究方向为地表过程与数值模拟研究。E-mail:

白晓亮(1997-), 女, 甘肃平凉人, 硕士生, 研究方向为生物地貌过程研究。E-mail:

收稿日期: 2024-05-07

  修回日期: 2024-12-28

  网络出版日期: 2025-05-23

基金资助

国家自然科学基金项目(42322101)

国家自然科学基金项目(42130110)

The contribution of subterranean rodent excavation to soil erosion in the Loess Plateau

  • BAI Xiaoliang , 1, 2 ,
  • GENG Haopeng , 1, 2 ,
  • LIU Ru 1, 2 ,
  • CHENG Weiming 3 ,
  • PAN Baotian 1, 2
Expand
  • 1. College of Earth and Environmental Science, Lanzhou University, Lanzhou 730000, China
  • 2. Key Laboratory of Western China's Environmental Systems, Ministry of Education, Lanzhou 730000, China
  • 3. State Key Laboratory of Geographic Information Science and Technology, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

Received date: 2024-05-07

  Revised date: 2024-12-28

  Online published: 2025-05-23

Supported by

National Natural Science Foundation of China(42322101)

National Natural Science Foundation of China(42130110)

摘要

地下啮齿类动物挖掘活动是影响坡面土壤再分配和土壤侵蚀的因素之一,对其进行深入研究有助于理解土壤侵蚀的复杂机制。为探究黄土高原地下啮齿类动物挖掘活动的空间分布特征及对土壤侵蚀的影响,本文对位于黄土高原中部的庆阳市环县平顶山一处典型坡面(665 m2)进行了为期6个月的定点重复监测,采用无人机航测结合野外调查,追踪了地下啮齿类动物挖掘活动的空间分布,分析了挖掘活动对土壤性质的影响,并量化了研究坡面内挖掘活动引起的土壤侵蚀量。结果显示:① 地下啮齿类动物采食活动和掘穴活动均偏好于分布在坡度较缓、流水分散区和凸形坡区域。② 与未扰动土壤相比,挖掘活动产生的土丘容重降低了14%(P < 0.05),孔隙度和饱和导水率均增加了11%(P < 0.05)。③ 观测期内地下啮齿类动物的挖掘活动将0.13 t的土壤翻覆至地表,土壤再分配对应的坡面搬运通量约为2.18 cm3/(cm·a)。如果全部转化为土壤侵蚀,其侵蚀模数约为397 t/(km2·a)。上述结果表明挖掘活动是黄土高原坡面土壤再分配的重要营力之一,大约贡献了土壤侵蚀总量的10.1%,需要在今后的水土流失评估与模型计算中予以关注。

本文引用格式

白晓亮 , 耿豪鹏 , 刘茹 , 程维明 , 潘保田 . 黄土高原地下啮齿类动物挖掘对土壤侵蚀的贡献[J]. 地理学报, 2025 , 80(5) : 1327 -1338 . DOI: 10.11821/dlxb202505011

Abstract

Subterranean rodent excavation activities constitute one of the factors influencing soil redistribution and erosion on hillslopes. Investigating these activities in depth contributes to a better understanding of the complex mechanisms of soil erosion. To explore the spatial distribution characteristics of subterranean rodent excavation activities and their impact on soil erosion in the Loess Plateau, this study conducted six months of fixed-point repeated monitoring on a typical hillslope (665 m2) in Pingdingshan, Huanxian county, located in the central part of the Loess Plateau. Utilizing unmanned aerial vehicle (UAV) surveying combined with field investigations, the study tracked the spatial distribution of subterranean rodent excavation activities, analyzed their effects on soil properties, and quantified the soil erosion generated by excavation activities on the study hillslope. The results indicate that: (1) Subterranean rodents exhibit a preference for feeding and burrowing activities in areas with gentle slopes, dispersed flow, and convex slope regions. (2) Excavation activities decrease the bulk density of fresh soil mounds by 14% (P < 0.05) compared to undisturbed soil, while porosity and saturated hydraulic conductivity increase by 11% (P < 0.05). (3) Over the observation period, subterranean rodent excavation activities overturned 0.13 t of soil onto the surface, with an associated slope transport flux of approximately 2.18 cm3/(cm·a). If all these fluxes were converted into soil erosion, the erosion modulus would be approximately 397 t/(km2·a). These results highlight the significant role of excavation activities in soil redistribution on hillslopes of the Loess Plateau, contributing to approximately 10.1% of the total soil erosion, which warrants attention in future assessments and modeling of soil erosion and loss.

[1]
Wang Y, Sun X H, Miao L C, et al. State-of-the-art review of soil erosion control by MICP and EICP techniques: Problems, applications, and prospects. Science of the Total Environment, 2024, 912: 169016. DOI: 10.1016/j.scitotenv.2023.169016.

[2]
Borrelli P, Robinson D A, Panagos P, et al. Land use and climate change impacts on global soil erosion by water (2015-2070). PNAS, 2020, 117(36): 21994-22001.

DOI PMID

[3]
Zhao G, Mu X, Wen Z, et al. Soil erosion, conservation, and eco‐environment changes in the Loess Plateau of China. Land Degradation & Development, 2013, 24(5): 499-510.

[4]
Zhou P, Wen A B, Zhang X B, et al. Soil conservation and sustainable eco-environment in the Loess Plateau of China. Environmental Earth Sciences, 2013, 68(3): 633-639.

[5]
Chen H, Zhang X P, Abla M, et al. Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China. Catena, 2018, 170: 141-149.

[6]
Li Xiangru, Jin Zhao, Zhang Xinbao, et al. Analysis of ecosystem management of the Loess Plateau during the past 60 years and suggestions for the future development. Journal of Earth Environment, 2015, 6(4): 248-254.

[李相儒, 金钊, 张信宝, 等. 黄土高原近60年生态治理分析及未来发展建议. 地球环境学报, 2015, 6(4): 248-254.]

[7]
Gao Haidong, Li Zhanbin, Li Peng, et al. Influences of terrace construction and check dam silting-up on soil erosion. Acta Geographica Sinica, 2012, 67(5): 599-608.

DOI

[高海东, 李占斌, 李鹏, 等. 梯田建设和淤地坝淤积对土壤侵蚀影响的定量分析. 地理学报, 2012, 67(5): 599-608.]

DOI

[8]
Liu Wenchao, Liu Jiyuan, Kuang Wenhui. Spatiotemporal patterns of soil protection effect of the Grain for Green Project in northern Shaanxi. Acta Geographica Sinica, 2019, 74(9): 1835-1852.

DOI

[刘文超, 刘纪远, 匡文慧. 陕北地区退耕还林还草工程土壤保护效应的时空特征. 地理学报, 2019, 74(9): 1835-1852.]

DOI

[9]
Yang Xuejun, Han Chongxuan, Li Jiguang, et al. Study on the economic threshold value for zokor control of economic forest in Guyuan replacing agriculture by afforestation. Scientia Silvae Sinicae, 2006, 42(9): 74-78.

[杨学军, 韩崇选, 李继光, 等. 固原退耕还林区经济林木甘肃鼢鼠防治经济阈值研究. 林业科学, 2006, 42(9): 74-78.]

[10]
Wu Xiaomin, Liu Chuguang, Zhang Hongfeng, et al. Rodent pest issues in returning to forest and grassland region of China Loess Plateau. Journal of Shaanxi Normal University (Natural Science Edition), 2007, 35(Suppl.1): 133-137.

[吴晓民, 刘楚光, 张洪峰, 等. 黄土高原退耕还林(草)区的鼠害治理问题. 陕西师范大学学报(自然科学版), 2007, 35(Suppl.1): 133-137.]

[11]
Lindtner P, Gömöryová E, Gömöry D, et al. Development of physico-chemical and biological soil properties on the European ground squirrel mounds. Geoderma, 2019, 339: 85-93.

DOI

[12]
Song Zihan, Li Xilai, Su Xiaoxue, et al. Spatial distribution pattern and succession of disturbance patches formed by plateau pika and plateau zokor in their population outbreak areas in alpine meadow. Acta Ecologica Sinica, 2023, 43(7): 2949-2958.

[宋梓涵, 李希来, 苏晓雪, 等. 高原鼠兔和高原鼢鼠种群暴发区干扰斑块空间分布格局与演替规律. 生态学报, 2023, 43(7): 2949-2958.]

[13]
Li Guorong, Li Xilai, Li Jinfang, et al. Soil wind erosion law in Ochotona Curzoniae mound of alpine meadow in the Yellow River. Journal of Soil and Water Conservation, 2019, 33(2): 110-114, 168.

[李国荣, 李希来, 李进芳, 等. 黄河源高寒草甸高原鼠兔土丘的土壤风力侵蚀规律. 水土保持学报, 2019, 33(2): 110-114, 168.]

[14]
Wang Honglan, Jiang Shunyuan, Cui Junfang, et al. Hydraulic properties of zokor mounds with different forming time in Zoige grassland. Journal of Soil and Water Conservation, 2018, 32(3): 180-184, 190.

[王红兰, 蒋舜媛, 崔俊芳, 等. 不同形成时间鼢鼠鼠丘土壤水力学性质的对比. 水土保持学报, 2018, 32(3): 180-184, 190.]

[15]
Geng H P, Liu R, Zheng W S, et al. Interaction between animal burrowing and loess cave formation in the Chinese Loess Plateau. Frontiers in Earth Science, 2021, 9: 806921. DOI: 10.3389/feart.2021.806921.

[16]
Gabet E J. Gopher bioturbation: Field evidence for non-linear hillslope diffusion. Earth Surface Processes and Landforms, 2000, 25(13): 1419-1428.

[17]
Bai Ruru, Zhang Jiaqiong, Deng Xinxin, et al. Influence of wind erosion on water erosion characteristics of sandy loam on windward loess slopes in the wind-water erosion crisscross region of Loess Plateau. Journal of Soil and Water Conservation, 2022, 36(3): 30-36, 43.

[白茹茹, 张加琼, 邓鑫欣, 等. 黄土高原水蚀风蚀交错带风蚀对砂质壤土迎风坡水蚀特征的影响. 水土保持学报, 2022, 36(3): 30-36, 43.]

[18]
Wang T M, Wu J G, Kou X J, et al. Ecologically asynchronous agricultural practice erodes sustainability of the Loess Plateau of China. Ecological Applications, 2010, 20(4): 1126-1135.

PMID

[19]
Geng Wenguang, Zhu Yunqiang, Chen Pengfei. 1-km raster dataset of annual soil erosion modulus on the Loess Plateau (2001-2015). Journal of Global Change Data & Discovery, 2022, 6(1): 85-92.

[耿文广, 诸云强, 陈鹏飞. 黄土高原逐年土壤侵蚀模数1-km栅格数据集(2001—2015). 全球变化数据学报, 2022, 6(1): 85-92.]

[20]
Richardson P W, Perron J T, Schurr N D. Influences of climate and life on hillslope sediment transport. Geology, 2019, 47(5): 423-426.

DOI

[21]
Bao Gensheng, Wang Hongsheng, Wang Yuqin, et al. Effects of plateau zokor burrowing activity on soil nutrient spatial heterogeneity in alpine grasslands. Acta Prataculturae Sinica, 2016, 25(7): 95-103.

DOI

[鲍根生, 王宏生, 王玉琴, 等. 高原鼢鼠造丘活动对高寒草地土壤养分空间异质性的影响. 草业学报, 2016, 25(7): 95-103.]

DOI

[22]
Geng H P, Xu W Y, Zheng W S, et al. A hybrid mechanism for the initiation and expansion of loess caves across the Chinese Loess Plateau. Land Degradation & Development, 2023, 34(11): 3329-3339.

[23]
Hu W, Shao M A, Si B C. Seasonal changes in surface bulk density and saturated hydraulic conductivity of natural landscapes. European Journal of Soil Science, 2012, 63(6): 820-830.

[24]
Blanco-Canqui H, Lal R, Post W M, et al. Organic carbon influences on soil particle density and rheological properties. Soil Science Society of America Journal, 2006, 70(4): 1407-1414.

[25]
Wu Kening, Zhao Rui. Soil texture classification and its application in China. Acta Pedologica Sinica, 2019, 56(1): 227-241.

[吴克宁, 赵瑞. 土壤质地分类及其在我国应用探讨. 土壤学报, 2019, 56(1): 227-241.]

[26]
Mukherjee A, Pilakandy R, Kumara H N, et al. Burrow characteristics and its importance in occupancy of burrow dwelling vertebrates in Semiarid area of Keoladeo National Park, Rajasthan, India. Journal of Arid Environments, 2017, 141: 7-15.

[27]
Nemati F, Kolb B, Metz G A. Stress and risk avoidance by exploring rats: Implications for stress management in fear-related behaviours. Behavioural Processes, 2013, 94: 89-98.

DOI PMID

[28]
Tian Yongliang, Jiang Yongmei, Wang Guizhen, et al. A review of habitat environment and survival strategy of subterranean rodents. Sichuan Journal of Zoology, 2018, 37(3): 343-350.

[田永亮, 蒋永梅, 王贵珍, 等. 地下啮齿动物栖息环境及其生存策略研究. 四川动物, 2018, 37(3): 343-350.]

[29]
Kinlaw A. A review of burrowing by semi-fossorial vertebrates in arid environments. Journal of Arid Environments, 1999, 41(2): 127-145.

[30]
Chen M Y, Ma L, Shao M A, et al. Chinese zokor (Myospalax fontanierii) excavating activities lessen runoff but facilitate soil erosion: A simulation experiment. Catena, 2021, 202: 105248. DOI: 10.1016/j.catena.2021.105248.

[31]
Vleck D. The energy cost of burrowing by the pocket gopher Thomomys bottae. Physiological Zoology, 1979, 52(2): 122-136.

[32]
Chen J J, Yi S H, Qin Y. The contribution of plateau pika disturbance and erosion on patchy alpine grassland soil on the Qinghai-Tibetan Plateau: Implications for grassland restoration. Geoderma, 2017, 297: 1-9.

[33]
Fécan F, Marticorena B, Bergametti G. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Annales Geophysicae, 1998, 17: 149-157.

[34]
Li J R, Okin G S, Alvarez L, et al. Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities. Biogeochemistry, 2008, 88: 73-88.

[35]
Zhang Z C, Dong Z B. Characteristics of aeolian sediment transport over different land surfaces in northern China. Soil and Tillage Research, 2014, 143: 106-115.

[36]
Yang Yingbo, Xin Xiaojuan, Aidexiecuo, et al. Plant diversity variations in zokor-mound communities along a successional stage in sub-alpine meadow. Acta Prataculturae Sinica, 2010, 19(1): 14-20.

[杨莹博, 辛小娟, 艾得协措, 等. 鼢鼠土丘植被恢复演替过程中的物种多样性变化. 草业学报, 2010, 19(1): 14-20.]

[37]
Li G R, Li X L, Li J F, et al. Influences of plateau Zokor burrowing on soil erosion and nutrient loss in alpine meadows in the Yellow River source zone of west China. Water, 2019, 11(11): 2258. DOI: 10.3390/w11112258.

[38]
He Junling, Zhang Jinsha, Yang Yingbo, et al. The study of patterns and characteristics of plateau zokor mound. Acta Prataculturae Sinica, 2006, 15(1): 107-112.

[何俊龄, 张金沙, 杨莹博, 等. 高原鼢鼠土丘空间格局及主要特征研究. 草业学报, 2006, 15(1): 107-112.]

[39]
Jin F M, Yang W C, Fu J X, et al. Effects of vegetation and climate on the changes of soil erosion in the Loess Plateau of China. Science of the Total Environment, 2021, 773: 145514. DOI: 10.1016/j.scitotenv.2021.145514.

[40]
Reichman O J, Seabloom E W. The role of pocket gophers as subterranean ecosystem engineers. Trends in Ecology & Evolution, 2002, 17(1): 44-49.

[41]
Haussmann N S. Soil movement by burrowing mammals: A review comparing excavation size and rate to body mass of excavators. Progress in Physical Geography, 2017, 41(1): 29-45.

[42]
Black T A, Montgomery D R. Sediment transport by burrowing mammals, Marin county, California. Earth Surface Processes and Landforms, 1991, 16(2): 163-172.

[43]
Hua Limin, Chai Shouquan. Rodent pest control on grasslands in China: Current state, problems and prospects. Journal of Plant Protection, 2022, 49(1): 415-423.

[花立民, 柴守权. 中国草原鼠害防治现状、问题及对策. 植物保护学报, 2022, 49(1): 415-423.]

[44]
Wen X, Zhen L. Soil erosion control practices in the Chinese Loess Plateau: A systematic review. Environmental Development, 2020, 34: 100493. DOI: 10.1016/j.envdev.2019.100493.

[45]
Meng X, Kooijman A M, Temme A J A M, et al. The current and future role of biota in soil-landscape evolution models. Earth-Science Reviews, 2022, 226: 103945. DOI: 10.1016/j.earscirev.2022.103945.

[46]
Larsen A, Nardin W, van de Lageweg W I, et al. Biogeomorphology, quo vadis? On processes, time, and space in biogeomorphology. Earth Surface Processes and Landforms, 2021, 46: 12-23.

DOI

文章导航

/