地表过程与地貌

金沙江下游梯级水库深泓纵剖面响应泥沙沉积的调整模式

  • 王随继 , 1, 2
展开
  • 1.中国科学院地理科学与资源研究所 中国科学院陆地水循环及地表过程重点实验室,北京 100101
  • 2.中国科学院大学资源与环境学院,北京 100049

王随继(1966-), 男, 甘肃静宁人, 博士, 副研究员/岗位教授, 主要从事河流沉积学及地貌学研究。E-mail:

收稿日期: 2024-10-04

  修回日期: 2025-03-24

  网络出版日期: 2025-05-23

基金资助

国家重点研发计划(2022YFC3203903)

国家自然科学基金项目(42371010)

国家自然科学基金项目(41971004)

Adjustment of thalweg longitudinal profile in response to sediment silting in cascade reservoirs: A case study of the lower Jinsha River

  • WANG Suiji , 1, 2
Expand
  • 1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2024-10-04

  Revised date: 2025-03-24

  Online published: 2025-05-23

Supported by

National Key R&D Program of China(2022YFC3203903)

National Natural Science Foundation of China(42371010)

National Natural Science Foundation of China(41971004)

摘要

梯级水库大坝的强分割性和拦沙量的时空变化如何影响库区的河貌调整,是值得探究的科学问题。本文以揭示梯级水库深泓纵剖面的调整机制为目标,以金沙江下游向家坝和溪洛渡水库为研究对象,基于建坝前后库区河段深泓高程的多期次观测资料,利用统计学、地貌学和沉积学的相关方法,分析了深泓纵剖面的实测曲线、趋势性曲线和理论拟合曲线的变化特征。揭示了梯级水库纵剖面的两类调整模式:下凹曲线型和上凸曲线型。前者以河床微弱冲淤→建坝后库区上游段的快速加积→全库区的缓慢加积为特征,这是较早建成且相对位于下游的水库(如向家坝水库)的共性;后者的纵剖面调整以河床微弱冲淤的直线或下凹曲线型→建坝后强烈淤积的上凸曲线型为特征,是较晚建成且相对位于上游的水库(如溪洛渡水库)的特性。梯级水库纵剖面的调整受到库区泥沙淤积量和沉积速率时空变化的控制,水动力梯度和调控模式交替变化影响着沉积速率的空间分异性。研究结果有助于理解类似地区梯级水库纵剖面的调整机制,在预估无观测资料的梯级水库纵剖面调整趋势方面具有指导作用。

本文引用格式

王随继 . 金沙江下游梯级水库深泓纵剖面响应泥沙沉积的调整模式[J]. 地理学报, 2025 , 80(5) : 1282 -1295 . DOI: 10.11821/dlxb202505008

Abstract

How the strong segmentation of cascade reservoir dams and the spatiotemporal changes of sediment interception volume affect the river morphology adjustment in the reservoir area is a scientific issue worthy of exploration. This study aims to reveal the adjustment mechanism of the longitudinal profile of the thalweg in cascade reservoirs. Taking the Xiangjiaba and Xiluodu reservoirs in the lower Jinsha River as research objects, based on the multi-period observation data of the thalweg elevation in the reservoir sections before and after dam construction, relevant methods of statistics, geomorphology, and sedimentology are used to analyze the change characteristics of the measured curve, trend curve, and theoretical fitting curve of the longitudinal profile of the thalweg. Two types of adjustment modes of the longitudinal profile of cascade reservoirs are revealed: concave curve type and convex curve type. The former is characterized by slight scouring and silting of the riverbed→rapid aggradation in the upstream section of the reservoir area after the dam has closed→slow aggradation in the entire reservoir area. This is the commonality of reservoirs built earlier and relatively located downstream (such as the Xiangjiaba Reservoir). The latter is characterized by the adjustment of the longitudinal profile from a straight line (or concave curve) with slight scouring and silting of the riverbed → a convex curve type with strong siltation after the dam has completed. This is the characteristic of reservoirs built later and relatively located upstream (such as the Xiluodu Reservoir). The adjustment of the longitudinal profile of cascade reservoirs is controlled by the spatiotemporal changes of sediment deposition volume and sedimentation rate in the reservoir area. The hydrodynamic gradient and alternating changes of regulation mode affect the spatial heterogeneity of sedimentation rate. The research results are helpful for understanding the adjustment mechanism of the longitudinal profile of cascade reservoirs in similar areas and play a guiding role in predicting the adjustment trend of the longitudinal profile of cascade reservoirs without observation data.

[1]
Junk W J, Bayley P B, Sparks R E. The flood pulse concept in river-floodplain systems. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 106: 110-127.

[2]
Hooke J. Coarse sediment connectivity in river channel systems: A conceptual framework and methodology. Geomorphology, 2003, 56: 79-94.

[3]
Chua S X, Yang Y H, Kondolf G M, et al. Can restoring water and sediment fluxes across a mega-dam cascade alleviate a sinking river delta? Science Advances, 2024, 10: eadn9731. DOI: 10.1126/sciadv.adn9731.

[4]
Fu Kaidao, Huang Heqing, Zhong Ronghua, et al. Reservoir-induced downstream changes of water, sediment and channel morphology: A literature review. Acta Geographica Sinica, 2011, 66(9): 1239-1250.

DOI

[傅开道, 黄河清, 钟荣华, 等. 水库下游水沙变化与河床演变研究综述. 地理学报, 2011, 66(9): 1239-1250.]

[5]
Graf W L. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology, 2006, 79: 336-360.

[6]
Poff N L, Olden J D, Merritt D M, et al. Homogenization of regional river dynamics by dams and global biodiversity implications. PNAS, 2007, 104: 5732-5737.

DOI PMID

[7]
Syvitski J P M, Kettner A J, Overeem I, et al. Sinking deltas due to human activities. Nature Geoscience, 2009, 2: 681-686.

[8]
Kondolf G M, Schmitt R J P, Carling P A, et al. Save the Mekong Delta from drowning. Science, 2022, 376: 583-585.

DOI PMID

[9]
Gupta H, Kao S J, Dai M H. The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers. Journal of Hydrology, 2012, 464: 447-458.

[10]
Liu W, Wang S J, Sang Y F, et al. Effects of large upstream reservoir operations on cross-sectional changes in the channel of the lower Yellow River reach. Geomorphology, 2021, 387: 107768. DOI: 10.1016/j.geomorph.2021.107768.

[11]
Wang S J, Wang X M. Impact of large reservoirs on runoff and sediment load in the Jinsha River Basin. Water, 2023, 15(18): 3266. DOI: 10.3390/w15183266.

[12]
Wang S J, Wang X M. Changes of water and sediment processes in the Yellow River and their responses to ecological protection during the last six decades. Water, 2023, 15(12): 2285. DOI: 10.3390/w15122285.

[13]
Zarfl C, Lumsdon A E, Berlekamp J, et al. A global boom in hydropower dam construction. Aquatic Sciences, 2014, 77: 161-170.

[14]
Mulligan M, Lehner B, Zarfl C, et al. Global Dam Watch: Curated data and tools for management and decision making. Environmental Research: Infrastructure and Sustainability, 2021, 1: 033003. DOI: 10.1088/2516-1083/abf769.

[15]
Winemiller K O, McIntyre P B, Castello L, et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science, 2016, 351: 128-129.

DOI PMID

[16]
Schmitt R J P, Rosa L. Dams for hydropower and irrigation: Trends, challenges, and alternatives. Renewable and Sustainable Energy Reviews, 2024, 199: 114439. DOI: 10.1016/j.rser.2024.114439.

[17]
Gao Shaobo, Tang Huiyuan, Chen Sheng, et al. Effects of the first phase of Jinsha River Hydropower Project on fish recruitment: Early life history stages of Coreius guichenoti in the Upper Yangtze River. Journal of Hydroecology, 2015, 36(2): 6-10.

[高少波, 唐会元, 陈胜, 等. 金沙江一期工程对保护区圆口铜鱼早期资源补充的影响. 水生态学杂志, 2015, 36(2): 6-10.]

[18]
Ma Y X, Huang H Q, Nanson G C, et al. Channel adjustments in response to the operation of large dams: The upper reach of the Lower Yellow River. Geomorphology, 2012, 147-148: 35-48.

[19]
Li Ming, Hu Chunhong, Fang Chunming. Study on pattern and mechanism of river section topography adjustment in the downstream of the Three Gorges Project. Journal of Hydraulic Engineering, 2018, 49(12): 1439-1450.

[李明, 胡春宏, 方春明. 三峡水库坝下游河道断面形态调整模式与机理研究. 水利学报, 2018, 49(12): 1439-1450.]

[20]
Wang Yuanjian, Wang Qiang, Liu Yanhui, et al. Morphological effects of the operation of Xiaolangdi Reservoir on the Lower Yellow River in recent years. Journal of Hydraulic Engineering, 2024, 55(5): 505-515.

[王远见, 王强, 刘彦晖, 等. 小浪底水库运行以来对黄河下游河道河床演变特性的影响. 水利学报, 2024, 55(5): 505-515.]

[21]
Wang Yanjun, Wu Baosheng, Shen Guanqing. Adjustment in the main-channel geometry of the lower Yellow River before and after the operation of the Xiaolangdi Reservoir from 1986 to 2015. Acta Geographica Sinica, 2019, 74(11): 2411-2427.

DOI

[王彦君, 吴保生, 申冠卿. 1986—2015年小浪底水库运行前后黄河下游主槽调整规律. 地理学报, 2019, 74(11): 2411-2427.]

DOI

[22]
Yang X K, Lu X X. Estimate of cumulative sediment trapping by multiple reservoirs in large river basins: An example of the Yangtze River Basin. Geomorphology, 2014, 227: 49-59.

[23]
Yang S L, Xu K H, Milliman J D, et al. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Scientific Reports, 2015, 5: 12581. DOI: 10.1038/srep12581.

PMID

[24]
Zhu Lingling, Dong Xianyong, Chen Zefang. Sediment deposition of cascade reservoirs in the lower Jinsha River and its impact on Three Gorges Reservoir. Journal of Yangtze River Scientific Research Institute, 2017, 34(3): 1-7.

DOI

[朱玲玲, 董先勇, 陈泽方. 金沙江下游梯级水库淤积及其对三峡水库影响研究. 长江科学院院报, 2017, 34(3): 1-7.]

DOI

[25]
Qin Leilei, Dong Xianyong, Du Zedong, et al. Processes of water-sediment and deposition in cascade reservoirs in the lower reach of Jinsha River. Journal of Sediment Research, 2019, 44(3): 24-30.

[秦蕾蕾, 董先勇, 杜泽东, 等. 金沙江下游水沙变化特性及梯级水库拦沙分析. 泥沙研究, 2019, 44(3): 24-30.]

[26]
Liu Shangwu, Zhang Xiaofeng, Xu Quanxi, et al. Transport characteristics and contributing factors of suspended sediment in Jinsha River in recent 50 years. Journal of Sediment Research, 2020, 45(3): 30-37.

[刘尚武, 张小峰, 许全喜, 等. 近50年来金沙江流域悬移质输沙特性研究. 泥沙研究, 2020, 45(3): 30-37.]

[27]
Yan H C, Zhang X F, Xu Q X. Unprecedented sedimentation in response to emerging cascade reservoirs in the upper Yangtze River Basin. Catena, 2022, 209: 105833. DOI: 10.1016/j.catena.2021.105833.

[28]
Xie Yiqin, Deng Anjun, Dong Xianyong, et al. Study on the spatial-temporal variations of runoff and sediment in the lower reach of Jinsha River. Journal of Hydraulic Engineering, 2023, 54(11): 1309-1322.

[谢益芹, 邓安军, 董先勇, 等. 金沙江下游流域水沙格局变化研究. 水利学报, 2023, 54(11): 1309-1322.]

[29]
Zhu Lingling, Chen Di, Yang Chenggang, et al. Sediment deposition of cascade reservoirs in the lower Jinsha River and scouring of river channel under dam. Journal of Lake Sciences, 2023, 35(3): 1097-1110.

[朱玲玲, 陈迪, 杨成刚, 等. 金沙江下游梯级水库泥沙淤积和坝下河道冲刷规律. 湖泊科学, 2023, 35(3): 1097-1110.]

[30]
Zhu Lingling, Chen Cuihua, Zhang Jishun. Study on variations of runoff and sediment and effect to the lower Jinsha River. Journal of Sediment Research, 2016, 41(5): 20-27.

[朱玲玲, 陈翠华, 张继顺. 金沙江下游水沙变异及其宏观效应研究. 泥沙研究, 2016, 41(5): 20-27.]

[31]
Yu Sanda, Chen Songsheng, Dong Xianyong, et al. Hydrological and Sediment Monitoring and Research of Cascade Hydropower Stations in the Lower Reaches of the Jinsha River. Beijing: China Water Power Press, 2022.

[於三大, 陈松生, 董先勇, 等. 金沙江下游梯级水电站水文泥沙监测与研究. 北京: 中国水利水电出版社, 2022.]

[32]
Du Zedong, Dong Xianyong, Zhang Feng, et al. Study on runoff and sediment characteristics and reservoir deposition in Xiluodu Reservoir of the Jinsha River. Journal of Sediment Research, 2022, 47(2): 22-25.

[杜泽东, 董先勇, 张锋, 等. 金沙江溪洛渡水库水沙特征及泥沙冲淤规律. 泥沙研究, 2022, 47(2): 22-25.]

[33]
Chen Songsheng, Zhang Ouyang, Chen Zefang, et al. Variations of runoff and sediment load of the Jinsha River. Advances in Water Science, 2008(4): 475-482.

[陈松生, 张欧阳, 陈泽方, 等. 金沙江流域不同区域水沙变化特征及原因分析. 水科学进展, 2008(4): 475-482.]

[34]
Xu Quanxi, Shi Guoyu, Chen Zefang. Analysis of recent changing characteristics and tendency runoff and sediment transport in the upper reach of Yangtze River. Advances in Water Science, 2004, 15(4): 420-426.

[许全喜, 石国钰, 陈泽方. 长江上游近期水沙变化特点及其趋势分析. 水科学进展, 2004, 15(4): 420-426.]

[35]
Ren J Q, Zhao M D, Zhang W, et al. Impact of the construction of cascade reservoirs on suspended sediment peak transport variation during flood events in the Three Gorges Reservoir. Catena, 2020, 188: 104409. DOI: 10.1016/j.catena.2019.104409.

[36]
Feng Shenghang, Deng Anjun, Wang Dangwei, et al. Characteristics analysis of sediment deposition in the Xiluodu Reservoir. Journal of Sediment Research, 2021, 46(6): 16-22.

[冯胜航, 邓安军, 王党伟, 等. 溪洛渡水库泥沙淤积特性分析. 泥沙研究, 2021, 46(6): 16-22.]

[37]
Heinemarm H G. A new sediment trap efficiency curve for small reservoirs. Journal of the American Water Resources Association, 1981, 17: 825-830.

[38]
Chuenchum P, Xu M Z, Tang W Z. Assessment of reservoir trapping efficiency and hydropower production under future projections of sedimentation in Lancang-Mekong River Basin. Renewable and Sustainable Energy Reviews, 2023, 184: 113510. DOI: 10.1016/j.rser.2023.113510.

[39]
Walling D E. Human impact on land-ocean sediment transfer by the world's rivers. Geomorphology, 2006, 79: 196-216.

[40]
Richter B D, Postel S, Revenga C, et al. Lost in development's shadow: The downstream human consequences of dams. Water Alternatives, 2010, 3(2): 14-42.

[41]
Syvitski J P M, Kettner A J. Sediment flux and the anthropocene. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2011, 369: 957-975.

[42]
UNESCO, IRTCES. Sediment Issues & Sediment Management in Large River Basins:Interim Case Study Synthesis Report. Beijing: UNESCO Office, 2011.

[43]
Jain S K, Singh V P. Chapter 12: Reservoir sedimentation//Jain S K, Singh V P. Water Resources Systems Planning and Management. 2nd ed. Amsterdam: Elsevier, 2024: 689-747.

[44]
Gilvear D J. Patterns of channel adjustment to impoundment of the upper River Spey, Scotland (1942-2000). River Research and Applications, 2004, 20(2): 151-165.

[45]
Lu Jinyou, Zhu Yonghui. Research progress of river bed scouring and remaking process in the reaches downstream of water conservancy projects. Journal of Yangtze River Scientific Research Institute, 2019, 36(12): 1-9.

DOI

[卢金友, 朱勇辉. 水利枢纽下游河床冲刷与再造过程研究进展. 长江科学院院报, 2019, 36(12): 1-9.]

DOI

[46]
Shotbolt L A, Thomas A D, Hutchinson S M. The use of reservoir sediments as environmental archives of catchment inputs and atmospheric pollution. Progress in Physical Geography, 2005, 29(3): 337-361.

[47]
Sedlacek J, Babek O, Grygar T M, et al. A closer look at sedimentation processes in two dam reservoirs. Journal of Hydrology, 2022, 605: 127397. DOI: 10.1016/j.jhydrol.2022.127397.

[48]
Liu Fenliang, Gao Hongshan, Li Zongmeng, et al. Terraces development and their implications for valley evolution of the Jinsha River from Qiaojia to Menggu. Acta Geographica Sinica, 2020, 75(5): 1095-1105.

DOI

[刘芬良, 高红山, 李宗盟, 等. 金沙江巧家—蒙姑段的阶地发育与河谷地貌演化. 地理学报, 2020, 75(5): 1095-1105.]

DOI

文章导航

/