前沿探索

“双碳”目标下国土空间减排增汇路径研究

  • 郑欢 , 1 ,
  • 何斌 , 1, 2 ,
  • 张文新 3 ,
  • 郭兰兰 1 ,
  • 黄大全 2, 3 ,
  • 郑龙飞 3 ,
  • 李铁威 1 ,
  • 褚阳 1
展开
  • 1.北京师范大学地理科学学部 地表过程与水土风沙灾害风险防控全国重点实验室,北京 100875
  • 2.自然资源部土地利用重点实验室,北京 100035
  • 3.北京师范大学地理科学学部地理学院,北京 100875
何斌(1981-), 男, 安徽六安人, 博士, 教授, 研究方向为陆地生态系统碳循环、生态系统对气候变化的响应及反馈等。E-mail:

郑欢(1998-), 女, 辽宁沈阳人, 博士生, 研究方向为陆地生态系统碳循环。E-mail:

收稿日期: 2024-07-23

  修回日期: 2025-04-23

  网络出版日期: 2025-05-23

基金资助

北京师范大学地理科学学部“全球环境变化”学科发展专项(2023-GC-ZYTS-01)

Carbon emission reduction and carbon sink enhancement pathway for national spatial planning under the "dual carbon" goals

  • ZHENG Huan , 1 ,
  • HE Bin , 1, 2 ,
  • ZHANG Wenxin 3 ,
  • GUO Lanlan 1 ,
  • HUANG Daquan 2, 3 ,
  • ZHENG Longfei 3 ,
  • LI Tiewei 1 ,
  • CHU Yang 1
Expand
  • 1. State Key Laboratory of Earth Surface Processes and Disaster Risk Reduction, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
  • 2. Key Laboratory of Land Use, Ministry of Natural Resources, Beijing 100035, China
  • 3. School of Geography, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Received date: 2024-07-23

  Revised date: 2025-04-23

  Online published: 2025-05-23

Supported by

BNU-FGS Global Environmental Change Program(2023-GC-ZYTS-01)

摘要

为实现“双碳”目标,需要在中国现有国情和制度框架下,积极探索国土空间的“双碳”响应战略,创新发展国土空间减排增汇路径研究。目前关于助力碳中和的讨论重点聚焦单一空间、单个部门的减碳维度,缺少面向“双碳”目标的多空间、多部门的整体统筹以及具体路径的论证研究,导致不同国土空间减排增汇的目标定位和权责关系不清,总体任务无法针对性分解并具体落实。对此,本文在统筹考虑生态、农业和城镇“三类空间”功能属性和交互作用的基础上,首先建立了“三类空间”碳收支效应的认知框架,提出“三类空间”减排增汇路径的设计原则。其次,结合“三类空间”承担的减碳份额,根据各路径的应用现状、历史贡献、适用范围及未来潜力,进一步总结提炼生态空间固碳增汇、农业空间减排增汇和城镇空间减排降碳的多空间协调行动路径,来助力实现可持续的生态修复、农田管理和城镇管控,促进形成未来国土空间一体化下的减排增汇优化策略和绿色转型应对方法。

本文引用格式

郑欢 , 何斌 , 张文新 , 郭兰兰 , 黄大全 , 郑龙飞 , 李铁威 , 褚阳 . “双碳”目标下国土空间减排增汇路径研究[J]. 地理学报, 2025 , 80(5) : 1183 -1211 . DOI: 10.11821/dlxb202505003

Abstract

To realize the "dual carbon" goals, it is necessary to actively explore the "dual carbon" response strategy in the national spaces and innovate the research on carbon emission reduction and carbon sink enhancement pathways within the existing Chinese national conditions and institutional framework. Currently, discussions centered around supporting carbon neutrality predominantly emphasize the carbon reduction dimensions of a single space or department, lacking comprehensive coordination and specific pathways demonstration research across multiple spaces and departments. This has led to unclear goal positioning and accountability relationships for carbon emission reduction and carbon sequestration in different national spaces, making it challenging to decompose the overall tasks and implement them concretely. On the basis of considering the spatial functional attributes and interactions of ecological space, agricultural space, and urban space, this study first establishes a cognitive framework for carbon balance effects of three types of space (ecological, agricultural, and urban spaces) and proposes design principles for carbon emission reduction and carbon sink enhancement pathways. Then, based on the share of carbon reduction undertaken by the three types of space, as well as the current application status, historical contributions, scope of application, and future potential of each pathway, this study further summarizes and proposes a multi-spatial coordinated pathway for enhancing carbon sinks within ecological spaces, reducing carbon emissions and increasing sinks in agricultural spaces, and decreasing emissions in urban spaces. This initiative not only contributes to achieving sustainable ecological restoration, efficient cropland management, and effective urban control, but also fosters the formation of climate mitigation optimization strategies and green transformation response methods under the integration of future national space.

[1]
IPCC. Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021.

[2]
Zhao Zhongci, Luo Yong, Huang Jianbin. Review of IPCC 30 years (1988-2018). Advances in Climate Change Research, 2018, 14(5): 540.

[赵宗慈, 罗勇, 黄建斌. 回顾IPCC 30年(1988—2018年). 气候变化研究进展, 2018, 14(5): 540-546.]

[3]
IPCC. Global Warming of 1.5 ℃: IPCC Special Report on Impacts of Global Warming of 1.5 ℃ above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge: Cambridge University Press, 2022.

[4]
Wang Tianyu, Yue Wenze. Optimizing territorial spatial pattern for carbon sink growth: Theoretical framework and action logic. Journal of Natural Resources, 2024, 39(5): 1008-1021.

DOI

[王田雨, 岳文泽. 面向碳增汇的国土空间格局优化:理论框架与行动逻辑. 自然资源学报, 2024, 39(5): 1008-1021.]

DOI

[5]
The General Office of the Central Committee of the Communist Party of China, The General Office of the State Council of the People's Republic of China. Opinions of the Central Committee of the Communist Party of China and the State Council on Comprehensively Promoting the Construction of a Beautiful China. 2024. https://www.gov.cn/zhengce/202401/content_6925405.htm

[中国共产党中央委员会办公厅, 中华人民共和国国务院办公厅. 中共中央/国务院关于全面推进美丽中国建设的意见. 2024. https://www.gov.cn/zhengce/202401/content_6925405.htm

[6]
Wang Yan. Scenario prediction of China's carbon emissions under the targets of carbon peaking and carbon neutrality[D]. Jinan: Shandong University of Finance and Economics, 2022.

[王艳. “双碳”目标下中国碳排放规模情景预测[D]. 济南: 山东财经大学, 2022.]

[7]
Xu G Y, Schwarz P, Yang H L. Adjusting energy consumption structure to achieve China's CO2 emissions peak. Renewable and Sustainable Energy Reviews, 2020, 122: 109737. DOI: 10.1016/j.rser.2020.109737.

[8]
Xiong Jian, Lu Ke, Jiang Ziying, et al. Study and thoughts on territorial spatial planning under the goal of "carbon emissions peak and carbon neutrality". Urban Planning Forum, 2021(4): 74-80.

[熊健, 卢柯, 姜紫莹, 等. “碳达峰、碳中和”目标下国土空间规划编制研究与思考. 城市规划学刊, 2021(4): 74-80.]

[9]
The General Office of the Central Committee of the Communist Party of China, The General Office of the State Council of the People's Republic of China. Opinions of the Central Committee of the Communist Party of China and the State Council on Fully, Accurately, and Comprehensively Implementing the New Development Philosophy and Doing a Good Job in Peak Carbon Dioxide Emissions and Carbon Neutrality. 2021. https://www.gov.cn/ zhengce/2021-10/24/content_5644613.htm

[中国共产党中央委员会办公厅, 中华人民共和国国务院办公厅. 中共中央/国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见. 2021. https://www.gov.cn/ zhengce/2021-10/24/content_5644613.htm

[10]
The General Office of the State Council of the People's Republic of China. Notice of the State Council on Issuing the Action Plan for Carbon Peak before 2030. 2021. https://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm

[中华人民共和国国务院办公厅. 国务院关于印发2030年前碳达峰行动方案的通知. 2021. https://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm

[11]
Ministry of Natural Resources of the People's Republic of China. Notice of the Ministry of Natural Resources on Further Strengthening the Compilation and Implementation Management of National Land Spatial Planning. 2022. http://gi.mnr.gov.cn/202210/t20221026_2763118.html

[中华人民共和国自然资源部. 自然资源部关于进一步加强国土空间规划编制和实施管理的通知. 2022. http://gi.mnr.gov.cn/202210/t20221026_2763118.html

[12]
Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China. Nature, 2009, 7241(458): 1009-1013.

[13]
Fang J Y, Yu G R, Liu L L, et al. Climate change, human impacts, and carbon sequestration in China. PNAS, 2018, 115(16): 4015-4020.

DOI PMID

[14]
Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature, 2020, 7831(586): 720-723.

[15]
Drever C R, Cook-Patton S C, Akhter F, et al. Natural climate solutions for Canada. Science Advances, 2021, 7(23): eabd6034. DOI: 10.1126/sciadv.abd6034.

[16]
Fargione J E, Bassett S, Boucher T, et al. Natural climate solutions for the United States. Science Advances, 2018, 4(11): eaat1869. DOI: 10.1126/sciadv.aat1869.

[17]
Griscom B W, Adams J, Ellis P W, et al. Natural climate solutions. PNAS, 2017, 114(44): 11645-11650.

DOI PMID

[18]
Zheng H, Guo L L, He B, et al. The great climate mitigation potential of cropland ecosystem management in China. Earth's Future, 2023, 11(9): e2023EF003586. DOI: 10.1029/2023EF003586.

[19]
Searchinger T D, Wirsenius S, Beringer T, et al. Assessing the efficiency of changes in land use for mitigating climate change. Nature, 2018, 564(7735): 249-253.

[20]
Zhao Y C, Wang M Y, Hu S J, et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. PNAS, 2018, 115(16): 4045-4050.

DOI PMID

[21]
Yan X Y, Cai Z C, Wang S W, et al. Direct measurement of soil organic carbon content change in the croplands of China. Global Change Biology, 2011, 17(3): 1487-1496.

[22]
Pan G X, Xu X W, Smith P, et al. An increase in topsoil SOC stock of China's croplands between 1985 and 2006 revealed by soil monitoring. Agriculture, Ecosystems & Environment, 2010, 136(1/2): 133-138.

[23]
Liu Z H, Huang F Y, Wang B F, et al. Impacts of mulching measures on crop production and soil organic carbon storage in a rainfed farmland area under future climate. Field Crops Research, 2021, 273: 108303. DOI: 10.1016/j.fcr.2021.108303.

[24]
Ni H W, Liu C Y, Sun B, et al. Response of global farmland soil organic carbon to nitrogen application over time depends on soil type. Geoderma, 2022, 406: 115542. DOI: 10.1016/j.geoderma.2021.115542.

[25]
Zhang Y, Li P, Liu X J, et al. Effects of farmland conversion on the stoichiometry of carbon, nitrogen, and phosphorus in soil aggregates on the Loess Plateau of China. Geoderma, 2019, 351: 188-196.

DOI

[26]
Hao Q J, Jiang C S, Chai X S, et al. Drainage, no-tillage and crop rotation decreases annual cumulative emissions of methane and nitrous oxide from a rice field in Southwest China. Agriculture, Ecosystems & Environment, 2016, 233: 270-281.

[27]
Hoornweg D, Sugar L, Trejos Gómez C L. Cities and greenhouse gas emissions: Moving forward. Environment and Urbanization, 2011, 23(1): 207-227.

[28]
Yu Guirui, Hao Tianxiang, Zhu Jianxing. Discussion on action strategies of China's carbon peak and carbon neutrality. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 423-434.

[于贵瑞, 郝天象, 朱剑兴. 中国碳达峰、碳中和行动方略之探讨. 中国科学院院刊, 2022, 37(4): 423-434.]

[29]
Liu Qiang, Chen Yi, Teng Fei, et al. Analysis of China's deep decarbonization pathway and policies. China Population, Resources and Environment, 2017, 27(9): 162-170.

[刘强, 陈怡, 滕飞, 等. 中国深度脱碳路径及政策分析. 中国人口·资源与环境, 2017, 27(9): 162-170.]

[30]
Zeng S B, Jin G, Tan K Y, et al. Can low-carbon city construction reduce carbon intensity? Empirical evidence from low-carbon city pilot policy in China. Journal of Environmental Management, 2023, 332: 117363. DOI: 10.1016/j.jenvman.2023.117363.

[31]
Liu Junling, Xiang Qixin, Wang Ke, et al. Mid-to-long term low-carbon development pathway for the chinese construction sector. Resources Science, 2019, 41(3): 509-520.

DOI

[刘俊伶, 项启昕, 王克, 等. 中国建筑部门中长期低碳发展路径. 资源科学, 2019, 41(3): 509-520.]

DOI

[32]
Yang Lu, Yang Xiu, Liu Hui, et al. Research on carbon dioxide emission reduction technologies and costs in the chinese construction sector. Environmental Engineering, 2021, 39(10): 41-49.

[杨璐, 杨秀, 刘惠, 等. 中国建筑部门二氧化碳减排技术及成本研究. 环境工程, 2021, 39(10): 41-49.]

[33]
Luo Shihua, Hu Weihao, Liu Wen, et al. Research on the transition path of China's 2060 carbon neutrality energy system. Scientia Sinica (Technologica), 2024, 54(1): 43-64.

[罗仕华, 胡维昊, 刘雯, 等. 中国2060碳中和能源系统转型路径研究. 中国科学: 技术科学, 2024, 54(1): 43-64.]

[34]
Lin Jian, Zhao Ye. Land use planning and use control under the "dual-carbon" goals. Science & Technology Review, 2022, 40(6): 12-19.

[林坚, 赵晔. “双碳”目标下的国土空间规划及用途管控. 科技导报, 2022, 40(6): 12-19.]

DOI

[35]
Liu P, Qin Y, Luo Y Y, et al. Structure of low-carbon economy spatial correlation network in urban agglomeration. Journal of Cleaner Production, 2023, 394: 136359. DOI: 10.1016/j.jclepro.2023.136359.

[36]
Tan Xianchun, Guo Wen, Fan Jie, et al. Research on carbon neutrality policy framework and technology innovation policy. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 435-443.

[谭显春, 郭雯, 樊杰, 等. 碳达峰、碳中和政策框架与技术创新政策研究. 中国科学院院刊, 2022, 37(4): 435-443.]

[37]
Song Xiaocong, Du Shuai, Deng Chenning, et al. Carbon emission accounting and emission reduction potential assessment of the steel industry lifecycle. Environmental Science, 2023, 44(12): 6630-6642.

[宋晓聪, 杜帅, 邓陈宁, 等. 钢铁行业生命周期碳排放核算及减排潜力评估. 环境科学, 2023, 44(12): 6630-6642.]

[38]
Zhuang Guiyang, Wei Mingxin. Theoretical framework and pathways for urban leading in achieving carbon peak and carbon neutrality. China Population, Resources and Environment, 2021, 31(9): 114-121.

[庄贵阳, 魏鸣昕. 城市引领碳达峰、碳中和的理论和路径. 中国人口·资源与环境, 2021, 31(9): 114-121.]

[39]
Gu Shuzhong, Xie Meie. Innovative thinking on agricultural resources and regional planning from the perspective of ecological civilization construction. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(1): 5-12.

[谷树忠, 谢美娥. 基于生态文明建设视角的农业资源与区划创新思维. 中国农业资源与区划, 2013, 34(1): 5-12.]

[40]
Yu Guirui, Zhu Jianxing, Xu Li, et al. Technological approaches to enhance ecosystem carbon sink in China: Nature-based solutions. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 490-501.

[于贵瑞, 朱剑兴, 徐丽, 等. 中国生态系统碳汇功能提升的技术途径: 基于自然解决方案. 中国科学院院刊, 2022, 37(4): 490-501.]

[41]
Liu Yang. Pathways and potential of carbon sequestration and emission reduction in Chinese agriculture under the "dual carbon" goals. Agricultural Economy, 2023(11): 120-122.

[刘洋. “双碳”目标下我国农业增汇减排的路径与潜力. 农业经济, 2023(11): 120-122.]

[42]
Li Hanbing, Jin Xiaobin, Han Bo, et al. Theoretical research and practical path of comprehensive land consolidation under the "dual carbon" goals. Geographical Research, 2022, 41(12): 3164-3182.

[李寒冰, 金晓斌, 韩博, 等. “双碳”目标下全域土地综合整治的学理研究与实践路径. 地理研究, 2022, 41(12): 3164-3182.]

DOI

[43]
Chen Kexin, Tao Weihua, Fang Xiaoli, et al. Research on carbon neutrality assessment and planning application paths in national spatial planning. Planner, 2022, 38(5): 134-141.

[陈可欣, 陶韦华, 方晓丽, 等. 国土空间规划中碳中和评估及规划应用路径研究. 规划师, 2022, 38(5): 134-141.]

[44]
The General Office of the Central Committee of the Communist Party of China, The General Office of the State Council of the People's Republic of China. The General Office of the Central Committee of the Communist Party of China/the General Office of the State Council has issued the "Opinions on Delineating and Strictly Observing the Ecological Protection Red Line". 2017. https://www.gov.cn/zhengce/2017-02/07/content_5166291.htm

[中国共产党中央委员会办公厅, 中华人民共和国国务院办公厅. 中共中央办公厅/国务院办公厅印发《关于划定并严守生态保护红线的若干意见》. 2017. https://www.gov.cn/zhengce/2017-02/07/content_5166291.htm

[45]
Lu F, Hu H F, Sun W J, et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. PNAS, 2018, 115(16): 4039-4044.

DOI PMID

[46]
Lu N, Tian H Q, Fu B J, et al. Biophysical and economic constraints on China's natural climate solutions. Nature Climate Change, 2022, 12(9): 847-853.

[47]
Wang D J, Li Y Q, Xia J Z, et al. How large is the mitigation potential of natural climate solutions in China? Environmental Research Letters, 2023, 18(1): 015001. DOI: 10.1088/1748-9326/acaa47.

[48]
Huang Jikun. China's agricultural development in the new era: Opportunities, challenges, and strategic choices. Bulletin of Chinese Academy of Sciences, 2013, 28(3): 295-300.

[黄季焜. 新时期的中国农业发展: 机遇、挑战和战略选择. 中国科学院院刊, 2013, 28(3): 295-300.]

[49]
Liu Jingping, Jin Xiaobin, Han Bo, et al. Connotation, characteristics, and identification of semi-natural habitats within agricultural landscapes. Acta Ecologica Sinica, 2022, 42(22): 9199-9212.

[刘静萍, 金晓斌, 韩博, 等. 农业空间半自然生境内涵、特征与识别. 生态学报, 2022, 42(22): 9199-9212.]

[50]
Waqas M A. Impact of farmland nutrient management on soil organic carbon, crop productivity, and yield stability[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.

[ Waqas M A. 农田养分管理对土壤有机碳、作物生产力和产量稳定性的影响[D]. 北京: 中国农业科学院, 2021.]

[51]
Shang Z Y, Abdalla M, Xia L L, et al. Can cropland management practices lower net greenhouse emissions without compromising yield? Global Change Biology, 2021, 27(19): 4657-4670.

DOI PMID

[52]
Ping Xiaoyan, Wang Tiemei, Lu Xinshi. Research progress on carbon sequestration potential of agroforestry systems. Chinese Journal of Plant Ecology, 2013, 37(1): 80-92.

DOI

[平晓燕, 王铁梅, 卢欣石. 农林复合系统固碳潜力研究进展. 植物生态学报, 2013, 37(1): 80-92.]

DOI

[53]
Xue Caixia, Li Yuanyuan, Hu Chao, et al. Temporal and spatial patterns of carbon sinks in China's conservation tillage. Journal of Natural Resources, 2022, 37(5): 1164-1182.

DOI

[薛彩霞, 李园园, 胡超, 等. 中国保护性耕作净碳汇的时空格局. 自然资源学报, 2022, 37(5): 1164-1182.]

DOI

[54]
Ba Xiaobo, Sui Xin, Liu Mingda, et al. Ecosystem service value of cover crop-maize intercropping conservation tillage in the black soil region of Northeast China. Chinese Journal of Applied Ecology, 2023, 34(7): 1883-1891.

DOI

[巴晓博, 隋鑫, 刘鸣达, 等. 东北黑土区覆盖作物—玉米间作保护性耕作的生态系统服务价值. 应用生态学报, 2023, 34(7): 1883-1891.]

DOI

[55]
Gao Xiuxiu, Zhang Xiaotong. Technological strategies for the sustainable development of low-carbon livable towns under the context of "dual carbon" goals. Sustainable Development of Economic Guidance Journal, 2021(11): 31-33.

[高秀秀, 张晓彤. “双碳”背景下低碳宜居城镇可持续发展的技术策略. 可持续发展经济导刊, 2021(11): 31-33.]

[56]
Yu Tingting, Leng Hong, Yuan Qing. Research on low-carbon spatial planning technology for county-level urban areas under the "dual carbon" goal. Urban Planning, 2023, 47(6): 110-120.

[于婷婷, 冷红, 袁青. “双碳”目标下县域城镇空间低碳规划技术研究. 城市规划, 2023, 47(6): 110-120.]

[57]
Ding Zhongli. Research on the Roadmap for China's Carbon Neutrality Framework. China's Industry and Informatization, 2021(8): 54-61.

[丁仲礼. 中国碳中和框架路线图研究. 中国工业和信息化, 2021(8): 54-61.]

[58]
Dong Yin, Jin Gui, Deng Xiangzheng. Optimization of territorial space layout in China. Acta Geographica Sinica, 2024, 79(3): 672-687.

DOI

[董寅, 金贵, 邓祥征. 中国国土空间布局优化研究. 地理学报, 2024, 79(3): 672-687.]

DOI

[59]
Tan Minghong, Lv Changhe. Urban land expansion and farmland protection in China. Journal of Natural Resources, 2005, 20(1): 52-58.

[谈明洪, 吕昌河. 城市用地扩展与耕地保护. 自然资源学报, 2005, 20(1): 52-58.]

[60]
Lai Li. Carbon emission effect of land use in China[D]. Nanjing: Nanjing University, 2010.

[赖力. 中国土地利用的碳排放效应研究[D]. 南京: 南京大学, 2010.]

[61]
Ke Xinli, Yang Yinling, Zhu Mengke. The evolution, challenges, and countermeasures of farmland displacement. Trends in Chinese Land Studies, 2022(4): 1-4.

[柯新利, 杨银玲, 朱梦珂. 耕地位移的演进, 挑战与对策建议. 中国土地科学动态, 2022(4): 1-4.]

[62]
Zhang X X, Brandt M, Tong X W, et al. A large but transient carbon sink from urbanization and rural depopulation in China. Nature Sustainability, 2022, 5(4): 321-328.

[63]
Wang S T, Bai X M, Zhang X L, et al. Urbanization can benefit agricultural production with large-scale farming in China. Nature Food, 2021, 2(3): 183-191.

DOI PMID

[64]
Lin Chenhui, Zhu Wenjuan, Zhang Yongbo, et al. Research and practice of land spatial planning methods under the "dual carbon" target: A case study of Tianjin city. Urban Planning Forum, 2022(Suppl.2): 229-234.

[林辰辉, 朱雯娟, 张永波, 等. “双碳”目标下的国土空间规划方法研究与实践: 以天津市为例. 城市规划学刊, 2022(Suppl.2): 229-234.]

[65]
Zhang Binbin, Wang Jie, Yan Zhijun. Sructural decomposition of the paths to achieving the goal of peak carbon emissions and its driving factors in China's prefecture-level cities. China Population, Resources and Environment, 2023, 33(9): 38-44.

[张兵兵, 王捷, 闫志俊. 中国城市碳达峰路径及其驱动因素的结构分解. 中国人口·资源与环境, 2023, 33(9): 38-44.]

[66]
Cohen-Shacham E, Walters G, Janzen C, et al. Nature-based solutions to address global societal challenges. IUCN, 2016. DOI: 10.2305/IUCN.CH.2016.13.en.

[67]
National Development and Reform Commission, Ministry of Natural Resources of the People's Republic of China. The General Plan for the Major Projects of Conservation and Restoration of National Important Ecosystems (2021-2035). 2020. https://www.gov.cn/zhengce/zhengceku/2020-06/12/content_5518982.htm

[中华人民共和国国家发展和改革委员会, 中华人民共和国自然资源部. 全国重要生态系统保护和修复重大工程总体规划(2021—2035年). 2020. https://www.gov.cn/zhengce/zhengceku/2020-06/12/content_5518982.htm

[68]
OECD/FAO. OECD-FAO Agricultural Outlook 2024-2033. Paris: OECD Publishing, 2024.

[69]
Ministry of Agriculture and Rural Affairs of the People's Republic of China. Implementation Plan for Agricultural and Rural Carbon Reduction and Fixation. 2022. https://www.gov.cn/xinwen/2022-07/01/content_5698717.htm

[中华人民共和国农业农村部. 农业农村减排固碳实施方案. 2022. https://www.gov.cn/xinwen/2022-07/01/content_5698717.htm

[70]
WEF. Net Zero Carbon Cities: An Integrated Approach. Geneva: World Economic Forum, 2021.

[71]
Ding Zhongli. The challenges and opportunities of carbon neutrality for China. China News Release (Practical Edition), 2022(1): 16-23.

[丁仲礼. 碳中和对中国的挑战和机遇. 中国新闻发布(实务版), 2022(1): 16-23.]

[72]
Peng Yunfeng, Chang Jinfeng, Zhao Xia, et al. Carbon sequestration capacity of grassland ecosystems in China and strategies for enhancement. Bulletin of National Natural Science Foundation of China, 2023, 37(4): 587-602.

[彭云峰, 常锦峰, 赵霞, 等. 中国草地生态系统固碳能力及其提升途径. 中国科学基金, 2023, 37(4): 587-602.]

[73]
Zhang Yao, Zhao Meixun, Cui Qiu, et al. Carbon sink process, regulation mechanism, and enhanced sequestration models in nearshore ecosystems. Scientia Sinica (Terrae), 2017, 47(4): 438-449.

[张瑶, 赵美训, 崔球, 等. 近海生态系统碳汇过程、调控机制及增汇模式. 中国科学: 地球科学, 2017, 47(4): 438-449.]

[74]
Tang Jianwu, Ye Shufeng, Chen Xuechu, et al. The scientific concept of blue carbon in coastal zones, research methods, and its application in ecological restoration. Scientia Sinica (Terrae), 2018, 48(6): 661-670.

[唐剑武, 叶属峰, 陈雪初, 等. 海岸带蓝碳的科学概念、研究方法以及在生态恢复中的应用. 中国科学: 地球科学, 2018, 48(6): 661-670.]

[75]
The General Office of the State Council of the People's Republic of China. State Council General Office's Opinions on Strengthening Grassland Protection and Restoration. 2021. https://www.gov.cn/zhengce/content/2021-03/30/content_5596791.htm

[中华人民共和国国务院办公厅. 国务院办公厅关于加强草原保护修复的若干意见. 2021. https://www.gov.cn/zhengce/content/2021-03/30/content_5596791.htm

[76]
Zhang Xiaodong, Zhu Jianhua, Zhang Xiaoquan, et al. Ways to enhance carbon sequestration function in chinese wetlands. Nature Reserve, 2022, 2(3): 17-23.

[张骁栋, 朱建华, 张小全, 等. 中国湿地碳汇功能的提升途径. 自然保护地, 2022, 2(3): 17-23.]

[77]
Liu Zigang, Wang Ming, Ma Xuehui. Analysis of organic carbon storage and characteristics of peatlands in China. China Environmental Science, 2012, 32(10): 1814-1819.

[刘子刚, 王铭, 马学慧. 中国泥炭地有机碳储量与储存特征分析. 中国环境科学, 2012, 32(10): 1814-1819.]

[78]
Wang Faming, Tang Jianwu, Ye Siyuan, et al. Blue carbon sequestration function of China's coastal wetlands and carbon neutrality strategies. Bulletin of Chinese Academy of Sciences, 2021, 36(3): 241-251.

[王法明, 唐剑武, 叶思源, 等. 中国滨海湿地的蓝色碳汇功能及碳中和对策. 中国科学院院刊, 2021, 36(3): 241-251.]

[79]
Fang J Y, Guo Z D, Hu H F, et al. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Global Change Biology, 2014, 20(6): 2019-2030.

DOI PMID

[80]
Cai W X, He N P, Li M X, et al. Carbon sequestration of Chinese forests from 2010 to 2060: Spatiotemporal dynamics and its regulatory strategies. Science Bulletin, 2022, 67(8): 836-843.

DOI PMID

[81]
Zhu Hanbin. Coastal blue carbon systems help China achieve carbon neutrality. Journal of Chinese Science, 2023. DOI:10.28514/n.cnki.nkxsb.2023.002084.

[朱汉斌. 海岸带蓝碳系统助力中国实现碳中和. 中国科学报, 2023. DOI:10.28514/n.cnki.nkxsb.2023.002084.]

[82]
Ma Xuehui. China's Peatland Carbon Storage and Carbon Emissions. Beijing: China Forestry Publishing House, 2013.

[马学慧. 中国泥炭地碳储量与碳排放. 北京: 中国林业出版社, 2013.]

[83]
Joosten H. The Global Peatland CO2 Picture: Peatland status and drainage related emissions in all countries of the world. Greifswald: Greifswald University, 2009.

[84]
Meng Jixian, Liang Chen, Chen Wenhui. Research on the impact mechanism of heterogeneous environmental regulations on the growth of forest carbon sink in China. Journal of Beijing Forestry University (Social Sciences), 2024, 23(2): 42-51.

[孟佶贤, 梁晨, 陈文汇. 异质性环境规制对我国森林碳汇增长的影响机制研究. 北京林业大学学报(社会科学版), 2024, 23(2): 42-51.]

[85]
Jiang Xia, Huang Zuhui. Analysis of the carbon sequestration potential of China's forestry industry under the new normal of economy. Chinese Rural Economy, 2016(11): 57-67.

[姜霞, 黄祖辉. 经济新常态下中国林业碳汇潜力分析. 中国农村经济, 2016(11): 57-67.]

[86]
Zhang Yiru, Liu Xiaotong, Gao Wenqiang, et al. Dynamic changes in forest vegetation carbon stock and carbon sink (source) characteristics in natural forest conservation project areas over the past 20 years. Acta Ecologica Sinica, 2021, 41(13): 5093-5105.

[张逸如, 刘晓彤, 高文强, 等. 天然林保护工程区近20年森林植被碳储量动态及碳汇(源)特征. 生态学报, 2021, 41(13): 5093-5105.]

[87]
Liu Xiaoman, Wang Chao, Gao Jixi, et al. Approaches to achieving the dual carbon goals in China's artificial forest ecosystems through carbon sequestration. Acta Ecologica Sinica, 2023, 43(14): 5662-5673.

[刘晓曼, 王超, 高吉喜, 等. 服务双碳目标的中国人工林生态系统碳增汇途径. 生态学报, 2023, 43(14): 5662-5673.]

[88]
Zhang Ying, Zhang Zixuan. Calculation and analysis of China's forest carbon sequestration gross value added. Natural Resource Economics of China, 2023, 36(8): 28-34.

[张颖, 张子璇. 中国森林碳汇生产总值核算及分析. 中国国土资源经济, 2023, 36(8): 28-34.]

[89]
Narayan C. Review of CO2 emissions mitigation through prescribed burning. Joensuu: European Forest Institute Joensuu, 2007.

[90]
Wiedinmyer C, Hurteau M D. Prescribed fire as a means of reducing forest carbon emissions in the western United States. Environmental Science & Technology, 2010, 44(6): 1926-1932.

[91]
Zhao Caijun, Liu Xiaoming. The role of urban green spaces in low-carbon cities. Chinese Landscape Architecture, 2010, 26(6): 23-26.

[赵彩君, 刘晓明. 城市绿地系统对于低碳城市的作用. 中国园林, 2010, 26(6): 23-26.]

[92]
Deng L, Shangguan Z P, Wu G L, et al. Effects of grazing exclusion on carbon sequestration in China's grassland. Earth-Science Reviews, 2017, 173: 84-95.

[93]
Tang Fanglin, Yang Zhi, Wang Zhuoran, et al. Research on the construction of grassland governance System from the perspective of ecological civilization. Acta Agrestia Sinica, 2021, 29(11): 2381-2390.

DOI

[唐芳林, 杨智, 王卓然, 等. 生态文明视域下草原治理体系构建研究. 草地学报, 2021, 29(11): 2381-2390.]

DOI

[94]
Deng L, Liu G B, Shangguan Z P. Land-use conversion and changing soil carbon stocks in China's "Grain-for-Green" Program: A synthesis. Global Change Biology, 2014, 20(11): 3544-3556.

DOI PMID

[95]
Hu Z M, Li S G, Guo Q, et al. A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China. Global Change Biology, 2016, 22(4): 1385-1393.

DOI PMID

[96]
Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones. Nature, 1982, 298(5870): 156-159.

[97]
Wang Shaoqiang, Zhou Chenghu, Li Kerang, et al. Analysis of soil organic carbon pool and spatial distribution characteristics in China. Acta Geographica Sinica, 2000, 55(5): 533-544.

DOI

[王绍强, 周成虎, 李克让, 等. 中国土壤有机碳库及空间分布特征分析. 地理学报, 2000, 55(5): 533-544.]

DOI

[98]
Tang X L, Zhao X, Bai Y F, et al. Carbon pools in China's terrestrial ecosystems: New estimates based on an intensive field survey. PNAS, 2018, 115(16): 4021-4026.

DOI PMID

[99]
Qian Zhuangzhuang, Zhu Kongxin, Wang Huili, et al. Effects of fungal inoculants on soil respiration, organic matter content, and bacterial community in plantation forests. South China Forestry Science, 2021, 49(2): 37-41, 78.

[钱壮壮, 朱孔鑫, 王会利, 等. 菌剂添加对人工林土壤呼吸和有机质含量及细菌群落影响. 南方林业科学, 2021, 49(2): 37-41, 78.]

[100]
Zeng S B, Liu Z H, Groves C. Large-scale CO2 removal by enhanced carbonate weathering from changes in land-use practices. Earth-Science Reviews, 2022, 225: 103915. DOI: 10.1016/j.earscirev.2021.103915.

[101]
Consoli C. Bioenergy and carbon capture and storage. Global CCS Institute, 2019. https://www.globalccsinstitute.com/resources/publications-reports-research/bioenergy-and-carbon-capture-and-storage/

[102]
IPCC. Special Report on the Impacts of Global Warming of 1.5 ℃ above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Geneva: World Meteorological Organization, 2018.

[103]
Fan Jingli, Li Jia, Yan Shuiping, et al. Analysis of the application potential of biomass energy-carbon capture and storage technology in China. Thermal Power Generation, 2021, 50(1): 7-17.

[樊静丽, 李佳, 晏水平, 等. 我国生物质能—碳捕集与封存技术应用潜力分析. 热力发电, 2021, 50(1): 7-17.]

[104]
Li Hongshen, Chu Jiepu, Xu Weitao, et al. Carbon negative benefit evaluation on dry fermentation biomethane BECCS project. Acta Energiae Solaris Sinica, 2024, 45(5): 158-164.

[李洪深, 楚洁璞, 徐伟涛, 等. 干法生物天然气BECCS工程碳负排效益分析. 太阳能学报, 2024, 45(5): 158-164.]

[105]
IPCC. Climate Change 1995: The Science of Climate Change, Report of Working Group Ⅰ. Cambridge: Cambridge University Press, 1995.

[106]
Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304 (5677): 1623-1627.

DOI PMID

[107]
Palm C, Blanco-Canqui H, DeClerck F, et al. Conservation agriculture and ecosystem services: An overview. Agriculture, Ecosystems & Environment, 2014, 187: 87-105.

[108]
Six J, Ogle S M, Jay Breidt F, et al. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biology, 2004, 10(2): 155-160.

[109]
Berhane M, Xu M, Liang Z Y, et al. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Global Change Biology, 2020, 26(4): 2686-2701.

[110]
Zhang Wenyan, Zhang Wubin, Chen Yumei. Current situation and measures of green and low-carbon agricultural development under the "dual carbon" goals. Agricultural Engineering, 2022, 12(Suppl.1): 48-51.

[张文艳, 张武斌, 陈玉梅. “双碳”目标下农业绿色低碳发展现状与措施. 农业工程, 2022, 12(Suppl.1): 48-51.]

[111]
Zhang Xiongzhi, Li Shuaishuai, Liu Bingyang, et al. The impact of no-tillage and straw return on carbon sequestration in Chinese farmland and crop yield. Journal of China Agricultural University, 2020, 25(5): 1-12.

[张雄智, 李帅帅, 刘冰洋, 等. 免耕与秸秆还田对中国农田固碳和作物产量的影响. 中国农业大学学报, 2020, 25(5): 1-12.]

[112]
Poeplau C, Don A. Carbon sequestration in agricultural soils via cultivation of cover crops: A meta-analysis. Agriculture, Ecosystems & Environment, 2015, 200: 33-41.

[113]
Cao Weidong, Huang Hongxiang. Ideas on restoration and development of green manures in China. Soil and Fertilizer Sciences in China, 2009(4): 1-3.

[曹卫东, 黄鸿翔. 关于我国恢复和发展绿肥若干问题的思考. 中国土壤与肥料, 2009(4): 1-3.]

[114]
Zou X M, Sanford R L. Agroforestry systems in China: A survey and classification. Agroforestry Systems, 1990, 11: 85-94.

[115]
Wang Lihong, Hu Yuegao, Yang Guangli, et al. The impact of winter cover crops in farmland on soil organic carbon content and main crop yield. Agricultural Research in the Arid Areas, 2006, 24(6): 64-67.

[王丽宏, 胡跃高, 杨光立, 等. 农田冬季覆盖作物对土壤有机碳含量和主作物产量的影响. 干旱地区农业研究, 2006, 24(6): 64-67.]

[116]
Davidson E A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience, 2009, 2(9): 659-662.

[117]
Ju Xiaotang, Gu Baojing. Status-quo, problem and trend of nitrogen fertilization in China. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795.

[巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014, 20(4): 783-795.]

[118]
Liang K M, Zhong X H, Huang N R, et al. Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China. Agricultural Water Management, 2016, 163: 319-331.

[119]
Nayak D, Saetnan E, Cheng K, et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agriculture, Ecosystems and Environment, 2015, 209: 108-124.

[120]
Liu Xiangzhao, Wang Hua, Wu Xuetao, et al. Exploration of the "Photovoltaic+" model in the rural energy transformation. Light Source and Illumination, 2023(12): 86-88.

[刘祥照, 王桦, 吴学涛, 等. 农村新能源转型下的“光伏+”模式探讨. 光源与照明, 2023(12): 86-88.]

[121]
Liu Xiaolei. Current status and prospects of the development of agricultural photovoltaic complementary industry in China. Research on Industrial Innovation, 2023(22): 65-67.

[刘小磊. 我国农光互补产业发展现状与展望. 产业创新研究, 2023(22): 65-67.]

[122]
Zhou Zixiao. A comprehensive energy-environment-economy analysis and generation potential assessment of different agrivoltaic systems in China[D]. Wuhan: Huazhong University of Science and Technology, 2023.

[周子莜. 中国不同农光互补系统“能源—环境—经济”综合影响分析及发电潜力评估[D]. 武汉: 华中科技大学, 2023.]

[123]
Lehmann J. A handful of carbon. Nature, 2007, 447(7141): 143-144.

[124]
Woolf D, Amonette J E, Street-Perrott F A, et al. Sustainable biochar to mitigate global climate change. Nature Communications, 2010, 1(1): 56. DOI: 10.1038/ncomms1053.

[125]
Chen Wenfu, Zhang Weiming, Meng Jun. Research progress and prospects of biochar application in agriculture. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333.

DOI

[陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景. 中国农业科学, 2013, 46(16): 3324-3333.]

DOI

[126]
Peng Hua, Ji Xionghui, Wu Jiamei, et al. Integrated effect of decreasing CH4 and N2O emission by Biochar incorported to paddy field on late rice. Ecology and Environmental Sciences, 2011, 20(11): 1620-1625.

[彭华, 纪雄辉, 吴家梅, 等. 生物黑炭还田对晚稻CH4和N2O综合减排影响研究. 生态环境学报, 2011, 20(11): 1620-1625.]

DOI

[127]
He Ke, Li Fanlue, Liu Ying. Green development of livestock and poultry farming under the "dual carbon" goals. Environmental Protection, 2022, 50(16): 28-33.

[何可, 李凡略, 刘颖. “双碳”目标下的畜禽养殖业绿色发展. 环境保护, 2022, 50(16): 28-33.]

[128]
Xu Zirong, Wang Yizhen, Zou Xiaoting, et al. Research and industrialization of high-efficiency conversion, meat quality improvement, and resource-based full price feed. Journal of Zhejiang University (Agriculture and Life Sciences Edition), 2018, 44(2): 198.

[许梓荣, 汪以真, 邹晓庭, 等. 高效转化、肉质改良、资源开发型全价饲料的研发与产业化. 浙江大学学报(农业与生命科学版), 2018, 44(2): 198.]

[129]
Huo Lili, Zhao Lixin, Meng Haibo, et al. Research on the comprehensive utilization potential of crop straw in China. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 218-224.

[霍丽丽, 赵立欣, 孟海波, 等. 中国农作物秸秆综合利用潜力研究. 农业工程学报, 2019, 35(13): 218-224.]

[130]
Li Jie, Xu Jintao. Analysis of emission reduction potential of low-carbon agricultural technologies in China. Issues in Agricultural Economy, 2022, 43(3): 117-135.

[李劼, 徐晋涛. 我国农业低碳技术的减排潜力分析. 农业经济问题, 2022, 43(3): 117-135.]

[131]
Zhu Min, Stern Nicholas, Stiglitz Joseph E, et al. Embracing a new paradigm of green development: A study on China's carbon neutrality policy framework. World Economy, 2023, 46(3): 3-30.

[朱民, Nicholas Stern, Joseph E Stiglitz, 等. 拥抱绿色发展新范式: 中国中和政策框架研究. 世界经济, 2023, 46(3): 3-30.]

[132]
Liu Chunsen, Qu Jiansheng, Ge Yujie, et al. Prediction of carbon emissions in the transportation industry in China based on LSTM model. China Environmental Science, 2023, 43(5): 2574-2582.

[刘淳森, 曲建升, 葛钰洁, 等. 基于LSTM模型的中国交通运输业碳排放预测. 中国环境科学, 2023, 43(5): 2574-2582.]

[133]
Ritchie H. Sector by sector: Where do greenhouse gases come from? Our World in Data, 2020. https://ourworldindata.org/ghg-emissions-by-sector

[134]
Zhang Hongjun. Multiple energy utilization synergy mechanism and pathways for promoting the development of renewable energy[D]. Beijing: China University of Petroleum, 2023.

[张红军. 促进可再生能源发展的多种能源利用协同机制与路径[D]. 北京: 中国石油大学, 2023.]

[135]
Guan Y R, Shan Y L, Huang Q, et al. Assessment to China's recent emission pattern shifts. Earth's Future, 2021, 9(11): e2021E-e2241E. DOI: 10.1029/2021EF002241.

[136]
Xiao Huabin, Sheng Shuo, Liu Jia. A comprehensive review and outlook on approaches to low-carbon eco-city spatial planning. Urban Development Studies, 2015, 22(12): 8-12.

[肖华斌, 盛硕, 刘嘉. 低碳生态城市空间规划途径研究综述与展望. 城市发展研究, 2015, 22(12): 8-12.]

[137]
Pan Haixiao. Towards a low-carbon urban spatial structure: A new model for urban transportation and land use. Urban Development Studies, 2010, 17(1): 40-45.

[潘海啸. 面向低碳的城市空间结构:城市交通与土地使用的新模式. 城市发展研究, 2010, 17(1): 40-45.]

[138]
Chen Fei, Zhu Dajian. Theoretical methods and empirical analysis of low-carbon urban research with a case study in Shanghai. Urban Development Studies, 2009, 16(10): 71-79.

[陈飞, 诸大建. 低碳城市研究的理论方法与上海实证分析. 城市发展研究, 2009, 16(10): 71-79.]

[139]
Fu X M, Cheng J, Peng L Q, et al. Co-benefits of transport demand reductions from compact urban development in Chinese cities. Nature Sustainability, 2024, 7(3): 294-304.

[140]
Ministry of Ecology and Environment of the People's Republic of China. The Chinese government submitted the "New Measures,Goals and Achievements of China's Implementation of National Independent Contributions". 2022. https://wzq1.mee.gov.cn/ywdt/hjywnews/202110/t20211029_958240.shtml

[中华人民共和国生态环境部. 中国政府提交《中国落实国家自主贡献成效和新目标新举措》. 2021. https://wzq1.mee.gov.cn/ywdt/hjywnews/202110/t20211029_958240.shtml

[141]
The General Office of the State Council of the People's Republic of China. Notice of the State Council on Issuing the Action Plan for Energy Conservation and Carbon Reduction from 2024 to 2025. 2024. https://www.gov.cn/zhengce/zhengceku/202405/content_6954323.htm

[中华人民共和国国务院办公厅. 国务院关于印发《2024—2025年节能降碳行动方案》的通知. 2024. https://www.gov.cn/zhengce/zhengceku/202405/content_6954323.htm

[142]
Wang Hang, Wang Xiankai, Chen Xiang, et al. Carbon emission analysis of collaborative treatment of municipal organic solid waste. Environmental Engineering, 2024, 42(2): 66-72.

[王航, 王先恺, 陈祥, 等. 城市有机固体废弃物协同处置碳排放分析. 环境工程, 2024, 42(2): 66-72.]

[143]
Zhang Chenyi, Dong Huijuan, Geng Yong. Spatio-temporal distribution characteristics and reduction potentials of China's MSW-related GHG emissions. China Population, Resources and Environment, 2024, 34(4): 23-35.

[张晨怡, 董会娟, 耿涌. 中国城市生活垃圾处理碳排放时空分布特征及减排潜力. 中国人口·资源与环境, 2024, 34(4): 23-35.]

[144]
Jin Z H, Lu T, Feng W J, et al. Changes and composition of microbial community during aerobic composting of household food waste. BioRxiv, 2021(3): 2021-2023.

[145]
Li Qiuhong, Sun Xiaojie, Hu Xinyue, et al. Study on the trend of carbon emission of municipal solid waste treatment in China. Environmental Pollution and Control, 2023, 45(7): 952-958.

[李秋虹, 孙晓杰, 胡心悦, 等. 中国城市生活垃圾处理的碳排放变化趋势研究. 环境污染与防治, 2023, 45(7): 952-958.]

[146]
Xu Jianzhong. Science-based energy use and distributed energy systems. China Energy, 2005, 27(8): 10-13.

[徐建中. 科学用能与分布式能源系统. 中国能源, 2005, 27(8): 10-13.]

[147]
China Industry Research Network. Annual Research and Consultation Report of Panorama Survey and Investment Strategy on China Industry. 2022. https://www.chinairn.com/yjbg/

[中国行业研究网. 2024—2029年分布式能源产业现状及未来发展趋势分析报告. 2022. https://www.chinairn.com/yjbg/

[148]
Xiao Baixia. Consideration of response pathways for national spatial planning in the context of carbon peak and carbon neutrality. Intelligent City, 2022, 8(8): 84-86.

[肖百霞. 碳达峰、碳中和背景下国土空间规划响应路径思考. 智能城市, 2022, 8(8): 84-86.]

[149]
Qiu Ci. China's ultra high voltage lighting up thousands of households. Friend of Science, 2023(11): 42-43.

[秋慈. 中国特高压点亮千家万户. 科学之友, 2023(11): 42-43.]

[150]
Wang H, Zhang Y Y, Lin W F, et al. Transregional electricity transmission and carbon emissions: Evidence from ultra-high voltage transmission projects in China. Energy Economics, 2023, 123: 106751. DOI: 10.1016/j.eneco.2023.106751.

[151]
Jiang Yi. Photovoltaic energy storage, direct current and flexible: A new building power distribution system to achieve zero carbon electricity. Journal of HV&AC, 2021, 51(10): 1-12.

[江亿. 光储直柔: 助力实现零碳电力的新型建筑配电系统. 暖通空调, 2021, 51(10): 1-12.]

[152]
Liu Yajing, Wang Ning. Clean energy supports "green Olympics", Zhangjiakou's green energy illuminates the light of Winter Olympics. Environment and Life, 2022(1): 30-31.

[刘雅静, 王宁. 清洁能源助力“绿色办奥”张家口绿色能源点亮冬奥之光. 环境与生活, 2022(1): 30-31.]

[153]
Gu Qingkang, Lin Lefen. The effectiveness, influencing factors, and peak pathing of carbon reduction in the manufacturing industry under the "Dual Carbon" target: Based on panel data analysis of manufacturing province. On Economic Problems, 2024(2): 57-63.

[顾庆康, 林乐芬. “双碳”目标下制造业碳减排成效、影响因素与达峰路径: 基于制造业大省的面板数据分析. 经济问题, 2024(2): 57-63.]

[154]
Wang Wei, Zhou Wei, Zhang Guobiao, et al. Land use spatial planning pathways and governance mechanisms for urban regions under the "dual carbon" goals. Environmental Protection, 2022, 50(Suppl.1): 64-69.

[王伟, 邹伟, 张国彪, 等. “双碳”目标下的城市群国土空间规划路径与治理机制. 环境保护, 2022, 50(Suppl.1): 64-69.]

[155]
Zhang Wenhui, Fu Bo, Zhou Ge, et al. Calculation of carbon emissions throughout the entire lifecycle of urban buses. Journal of Jilin University (Engineering and Technology Edition), 2023. DOI: 10.13229/j.cnki.jdxbgxb.20230673.

[张文会, 付博, 周舸, 等. 城市公共汽车全生命周期碳排放测算. 吉林大学学报(工学版), 2023. DOI: 10.13229/j.cnki.jdxbgxb.20230673.]

[156]
Li Wenzhu, Liang Jianing. A review of carbon emission reduction benefits in future urban spaces under the influence of emerging technologies. Journal of Urban and Regional Planning, 2023, 15(1): 111-128.

[李文竹, 梁佳宁. 新兴技术作用下未来城市空间的碳减排效益研究综述. 城市与区域规划研究, 2023, 15(1): 111-128.]

[157]
Meneguette R I, Filho G P, Guidoni D L, et al. Increasing intelligence in inter-vehicle communications to reduce traffic congestions: Experiments in urban and highway environments. Plos One, 2016, 11(8): e159110. DOI: 10.1371/journal.pone.0159110.

[158]
Wang Xuying, Li Bing, Lv Chen, et al. Research on the path to peak carbon dioxide emissions in the Chinese steel industry. Research of Environmental Sciences, 2022, 35(2): 339-346.

[汪旭颖, 李冰, 吕晨, 等. 中国钢铁行业二氧化碳排放达峰路径研究. 环境科学研究, 2022, 35(2): 339-346.]

[159]
Zhang X Y, Jiao K X, Zhang J L, et al. A review on low carbon emissions projects of steel industry in the World. Journal of Cleaner Production, 2021, 306: 127259. DOI: 10.1016/j.jclepro.2021.127259.

[160]
Basson E. 2024 World Steel in Figures. Brussels: World Steel Association, 2024.

[161]
Ren L, Zhou S, Peng T D, et al. A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China. Renewable and Sustainable Energy Reviews, 2021, 143:110846. DOI: 10.1016/j.rser.2021.110846.

[162]
Li Huimin, Tong Jingjing. Regional disparities in carbon emissions from the Chinese construction sector and the selection of carbon neutrality pathways. Environmental Protection, 2021, 49(Suppl.2): 23-29.

[李惠民, 童晶晶. 中国建筑部门碳排放的区域差异及其碳中和路径选择. 环境保护, 2021, 49(Suppl.2): 23-29.]

[163]
Wang Mingtao, Liu Huanwei, Zhang Baihao. Theoretical and experimental study on the heating performance rules of gas engine heat pumps. CIESC Journal, 2015, 66(10): 3834-3840.

[王明涛, 刘焕卫, 张百浩. 燃气机热泵供热性能规律的理论和实验研究. 化工学报, 2015, 66(10): 3834-3840.]

DOI

[164]
Yao Chunni, Ma Xinbo, Luo Duo. Research on the prediction of the development scale of solar photovoltaic building applications under the carbon peak target. Construction Science and Technology, 2021(11): 33-35.

[姚春妮, 马欣伯, 罗多. 碳达峰目标下太阳能光电建筑应用发展规模预测研究. 建设科技, 2021(11): 33-35.]

[165]
Xu Wei, Zhang Shicong, Wang Ke, et al. Comparative study on the implementation paths of carbon peaking and carbon neutrality in the construction sector. Jiangsu Construction, 2022(2): 1-6.

[徐伟, 张时聪, 王珂, 等. 建筑部门“碳达峰”“碳中和”实施路径比对研究. 江苏建筑, 2022(2): 1-6.]

[166]
Zhang Z X, Chen M, Zhong T, et al. Carbon mitigation potential afforded by rooftop photovoltaic in China. Nature Communications, 2023, 14(1): 2347. DOI:10.1038/s41467-023-38079-3.

PMID

[167]
Luo Xiaoyu, Cao Xingyu, Song Zhiqian. Comparison of carbon emissions throughout the entire lifecycle of buildings between China and Japan. Climate Change Research, 2024, 20(2): 220-230.

[罗晓予, 曹星煜, 宋志茜. 中日建筑全生命周期碳排放比较. 气候变化研究进展, 2024, 20(2): 220-230.]

[168]
Wu Zezhou, Huang Haoquan, Chen Xiangsheng, et al. Countermeasures for low-carbon transformation of construction industry in China toward the carbon peaking and carbon neutrality goals. Strategic Study of CAE, 2023, 25(5): 202-209.

DOI

[吴泽洲, 黄浩全, 陈湘生, 等. “双碳”目标下建筑业低碳转型对策研究. 中国工程科学, 2023, 25(5): 202-209.]

DOI

[169]
Chang Shasha, Feng Guohui, Cui Hang, et al. Research on carbon emission characteristics and emission reduction potential prediction of construction industry. Journal of Shenyang Jianzhu University (Natural Science), 2023, 39(1): 139-146.

[常莎莎, 冯国会, 崔航, 等. 建筑行业碳排放特征及减排潜力预测分析. 沈阳建筑大学学报(自然科学版), 2023, 39(1): 139-146.]

[170]
Zhang Xian, Li Kai, Ma Qiao, et al. Positioning and prospects of CCUS technology development under carbon neutrality goals. China Population, Resources and Environment, 2021, 31(9): 29-33.

[张贤, 李凯, 马乔, 等. 碳中和目标下CCUS技术发展定位与展望. 中国人口·资源与环境, 2021, 31(9): 29-33.]

[171]
Luo Haizhong, Zeng Shaoyan, Wu Dawei. Current situation and outlook of CCUS technology development in the context of carbon neutrality. Shandong Chemical Industry, 2023, 52(23): 101-106.

[罗海中, 曾少雁, 吴大卫. 双碳背景下CCUS技术发展现状及展望. 山东化工, 2023, 52(23): 101-106.]

[172]
Ministry of Science and Technology of the People's Republic of China. Annual Report on Carbon Capture, Utilization and Storage in China (2023). 2023. https://www.most.gov.cn/kjbgz/202307/t20230714_187011.html

[中华人民共和国科学技术部. 中国碳捕集利用与封存年度报告(2023). 2023. https://www.most.gov.cn/kjbgz/202307/t20230714_187011.html

[173]
Chen Wan. CCUS is a necessary technological means to achieve the temperature control goals of the Paris Agreement. Environmental Economics, 2023(18): 36-39.

[陈婉. CCUS是实现《巴黎协定》温控目标的必要技术手段. 环境经济, 2023(18): 36-39.]

[174]
Zhang Xian, Li Yang, Ma Qiao, et al. Development of carbon capture, utilization and storage technology in China. Strategic Study of CAE, 2021, 23(6): 70-80.

DOI

[张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究. 中国工程科学, 2021, 23(6): 70-80.]

DOI

[175]
Xu Yijian, Li Tanfeng, Xu Lili. Greenhouse gas accounting model for national spatial overall planning. Advances in Climate Change Research, 2022, 18(3): 355-365.

[徐一剑, 李潭峰, 徐丽丽. 国土空间总体规划温室气体核算模型. 气候变化研究进展, 2022, 18(3): 355-365.]

[176]
Zhao Rongqin, Huang Xianjin, Yun Wenju, et al. Key issues in natural resource management under carbon emission peak and carbon neutrality targets. Journal of Natural Resources, 2022, 37(5): 1123-1136.

DOI

[赵荣钦, 黄贤金, 郧文聚, 等. 碳达峰碳中和目标下自然资源管理领域的关键问题. 自然资源学报, 2022, 37(5): 1123-1136.]

DOI

[177]
Wang S H, Zhang Y G, Ju W M, et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 2020, 370(6522): 1295-1300.

[178]
Xi Y, Peng S S, Liu G, et al. Trade-off between tree planting and wetland conservation in China. Nature Communications, 2022, 13(1): 1967. DOI: 10.1038/s41467-022-29616-7.

PMID

[179]
Wang Zhenpo, Zhan Weipeng, Sun Fengchun, et al. Review of carbon emission reduction potential analysis on new energy vehicles. Transactions of Beijing Institute of Technology, 2024, 44(2): 111-122.

[王震坡, 詹炜鹏, 孙逢春, 等. 新能源汽车碳减排潜力分析. 北京理工大学学报, 2024, 44(2): 111-122.]

文章导航

/