研究进展与理论探索

资源环境承载能力百年研究的系统综述

  • 王亚飞 , 1, 2, 3 ,
  • 樊杰 1, 2
展开
  • 1.中国科学院地理科学与资源研究所 中国科学院区域可持续发展分析与模拟重点实验室,北京 100101
  • 2.中国科学院大学资源与环境学院,北京 100094
  • 3.隆德大学可持续性研究中心,瑞典 隆德 22362

王亚飞(1988-), 男, 江苏连云港人, 副研究员, 中国地理学会会员(S110011224M), 主要从事地域功能优化模拟与人地系统可持续调控研究。E-mail:

收稿日期: 2022-08-22

  修回日期: 2023-10-17

  网络出版日期: 2023-11-29

基金资助

国家自然科学基金项目(42001131)

国家自然科学基金项目(41630644)

第二次青藏高原综合科学考察研究(2019QZKK0406)

A systematic review of centenary studies on natural resources and environmental carrying capacity

  • WANG Yafei , 1, 2, 3 ,
  • FAN Jie 1, 2
Expand
  • 1. Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. Centre for Sustainability Studies,Lund University (LUCSUS), Lund 22362, Sweden

Received date: 2022-08-22

  Revised date: 2023-10-17

  Online published: 2023-11-29

Supported by

National Natural Science Foundation of China(42001131)

National Natural Science Foundation of China(41630644)

The Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0406)

摘要

承载能力是资源环境领域持续近两个世纪的经典命题,其概念与研究框架不断被更新,但始终聚焦在人地矛盾与可持续性。本文构建了人地关系分析框架,系统解析国外资源环境承载能力研究演化过程,通过国外趋势与国内外对比分析,提出中国资源环境承载能力研究重点方向。研究发现:① 国外承载能力概念根植于(新)马尔萨斯主义理论,由资源供给、环境污染、生物圈退化等矛盾扩展为人地关系系统性矛盾,经历了资源承载能力(始于19世纪)、环境承载能力(始于20世纪70年代)、生态系统承载能力(始于20世纪90年代)、自然系统承载能力(始于21世纪10年代)4个研究阶段;② 承载能力在国外不同学科领域具有不同的概念内涵,即使在同一学科领域也可能存在不同应用场景与适用范围,且由于挂钩政治经济学理论,因技术进步、市场机制与时空有限性等产生争议,因此其概念讨论与使用需加以约束和明确;③ 当前中国承载能力研究与国外几乎同步,其优势在于人地关系整体性与系统性的区域尺度研究,但在全球尺度、自然与社会科学理论方法融合等方面仍有对接和追赶空间。本文建议围绕学科融合与理论、尺度效应与机理、模型—数据融合与集成、不同空间单元与典型类型区应用、政策体系与机制等方面进行重点研究,继续深化创新中国特色承载能力研究与应用。

本文引用格式

王亚飞 , 樊杰 . 资源环境承载能力百年研究的系统综述[J]. 地理学报, 2023 , 78(11) : 2676 -2693 . DOI: 10.11821/dlxb202311003

Abstract

Carrying capacity, a concept entrenched in the natural resources and environmental field for nearly two centuries, has continually evolved to address the conflicts and sustainability of the human-nature relationship. This paper introduces an analytical framework for understanding carrying capacity within the context of the human-nature relationship. It systematically reviews the progression of international carrying capacity studies, analyzes global research trends, and compares these with Chinese studies, highlighting key research directions in China. Historically, carrying capacity traces its roots to (neo)Malthusian theories. Its evolution spans four distinct stages: resource carrying capacity (since the 1800s), environmental carrying capacity (since the 1970s), ecosystem carrying capacity (since the 1990s), and natural system carrying capacity (since the 2010s). The concept of carrying capacity varies widely across global disciplines and even within the same discipline, showcasing diverse applications. Carrying capacity has sparked controversy due to its connection to political economy theories and factors such as technological progress, market mechanisms, and spatial and temporal constraints. Therefore, it is imperative to engage in a restrained and explicit discussion and application of carrying capacity. Presently, China's carrying capacity studies align closely with the international community, capitalizing on regional-scale studies employing a holistic and systematic human-nature relationship approach. However, there is an opportunity for enhancement in terms of global-scale perspectives and the integration of natural and social sciences theories and methodologies. This paper proposes fostering innovation and application in carrying capacity research within the Chinese context. This entails integrating various disciplines and theories, exploring scale effects and mechanisms, utilizing model-data fusion and integration, applying case studies in various spatial units and typical zone types, and improving policy systems and institutions.

1 引言

人类社会由原始社会进入农耕文明再到工业文明,始终在改造自然,且强度与波及范围在不断扩大[1]。人类社会在收获粮食、工业品和财富的同时,也受到了自然系统的负面反馈。随着全球人口激增以及人类多样化需求的增长,人类社会与自然资源、生态环境之间的矛盾在局地乃至全球更大的尺度日益尖锐,与资源环境承载能力有关的研究命题逐渐进入了人类科学与决策视野[2-3]。从18世纪末马尔萨斯的《人口论》、20世纪70年代罗马俱乐部的《增长的极限》(The Limits to Growth)、90年代到21世纪初生态韧性(Ecological Resilience)、气候护栏(Climate Guardrails)、临界点(Tipping Points)等理论,再到现阶段伴随着地球系统科学与可持续科学发展兴起的地球边界(Planetary Boundaries)、安全公正空间(Safe and Just Operating Spaces)等概念与研究框架,无不继承或蕴含着承载能力的科学逻辑[4-6]。尽管英文语境下“Carrying Capacity”这一词汇饱受争议,很多学者对知识技术进步与市场机制等作用下承载能力是否存在或可精确度量产生争议,但承载能力作为一个经典且不断推陈出新的研究方向,始终是国内外学者长期广泛关注的前沿命题[7]
国内外已有不少学者对资源环境承载能力的研究进展进行了较为系统的回顾,主要围绕以下方面展开。一是针对土地资源、水资源、环境、生态等单项要素基本概念与研究方法等研究进展的梳理,如土地承载能力[8]、水资源承载能力[9-10]、环境承载能力[11]、生态承载能力[12-13]等。二是以承载人类不同生产生活的不同区域类型为主线,分析城镇、农业地区、生态功能区、民族地区、海岛、旅游景区等不同类型区域承载能力的研究进展,衍生出城市承载能力[14-15]、农牧承载能力[16-17]、旅游承载能力[18-19]、社会承载能力[20]、海域(岛)承载能力[21]等概念。三是侧重于承载能力概念辨析、基本分类以及发展过程的梳理与总结。如Sayre按照用途将承载能力分成了4类,包括机械工程学上的承载能力、用于畜牧与狩猎管理的载畜量、生物学中种群的增长极限,以及环境所能承载的人口总量[22]。封志明等回顾了资源环境承载能力概念的源起与发展,从要素层面梳理了从土地资源承载能力、水资源承载能力、环境承载能力(容量)到资源环境承载能力的发展过程[23]。当然,同样存在一些研究,以批评性的观点回顾承载能力的概念与演化过程,如生态学家Dhondt在其早期评论文章中指出生态学中承载能力概念让人困惑,包含至少3个不同的概念表达[24]。此外,承载能力研究涉及地理学、生物学、社会学、资源科学、生态学、经济学等诸多学科,已有的研究均突出了不同学科的视角。如Seidl等通过解析承载能力在生物学、人口学和人类生态学中的形式、解释和应用,指出承载能力是一个复杂的规范概念,受生态动力学、人类价值观和目标、制度设置和管理实践的共同影响[25]
当前国内“资源环境承载能力”作为一个出现在国家政策文件与领导人讲话中的科学概念,并不完全对应或局限于英文“Carrying Capacity”的概念与研究框架,也包括继承或借鉴“Carrying Capacity”的研究进展。近期政府层面具有影响力的承载能力研究,无论是服务于灾后重建工作的资源环境承载能力评价[26],还是作为生态文明体制改革的重点任务——资源环境承载能力监测预警[27-28],或是当前作为支持新时期国土空间规划改革的基础性工作——“双评价”(资源环境承载能力和国土空间开发适宜性评价),地理学者均在其中发挥了不可替代的作用。地理学作为一门研究人地关系的科学,具有综合性、交叉性和区域性的特点[29]。如何从地理学长期坚守的人地关系视角,对国外承载能力概念的历史背景、学科基础、发展过程与当前主要趋势进行系统梳理,通过国内外对比研究并结合当前国内生态文明建设与空间治理需求,探索当前资源环境承载能力研究的重点方向,将有助于中国特色资源环境承载能力研究的深化与系统应用。由于这类研究工作涉及学科庞杂,工作量巨大,虽迫切需要,但当前是极为少见。
本文将从地理学人地关系视角出发,探索资源环境承载能力的基本概念与科学内涵,进而建立相应的理论分析框架。以人地主要矛盾为主线,从历史背景、科学内涵、学科基础、关键事件、代表性成果等方面,系统解析国外19世纪以来承载能力概念与研究框架演化过程,归纳国外主要研究趋势。通过国内外对比分析,总结国内承载能力研究的优势与不足。最后面向生态文明建设和空间治理的新需求,围绕资源环境承载能力研究的关键难点,提出中国资源环境承载能力重点研究方向。

2 资源环境承载能力的人地关系分析框架

尽管目前资源环境承载能力的基本概念仍未统一,但几乎所有概念均产生于人地系统本体,用于描述承载体与承载对象的关系,指向了人地关系的分析框架[30-32]。从本体论与认识论出发,解析人地系统的构成——自然系统与人类社会系统,才能较为全面地解读资源环境承载能力的基本概念(图1)。本文以Fan等[28]同时从自然基础条件与人类生产生活活动两侧对承载能力的定义与科学内涵为基础,借鉴国内外人地关系地域系统[30]、社会—生态系统[31]、脆弱性[32]、人与自然耦合系统[33]等理论与研究框架,构建承载能力的人地关系分析框架。
图1 资源环境承载能力的人地关系分析框架

Fig. 1 Analytical framework for natural resources and environmental carrying capacity in the context of human-nature relationship

首先,从承载体来看,自然系统由大气、水、岩石、土壤、生物等基本要素构成,为人类生存发展提供了必要的资源与生存环境。在探讨与人类生存发展的关系时,自然系统具有资源、环境、生态、灾害等基本属性,为人类社会提供不同形式的服务、保障或胁迫[34]。因此,资源环境承载能力可定义为:作为承载体的自然系统或其构成基本要素,能够维持自然系统可持续且安全运行的稳定区间[35]。而稳定区间取决于自然系统构成要素中的最大短板,以及局部系统或要素联级需要修复的最大成本[29]。因此,承载能力研究范畴包含人地系统中单项要素、多要素以及系统要素的研究。
其次,从承载对象来看,人类社会系统由政府、社会组织、企业、公民等行为主体构成,通过感知的基础设施与公共服务,以及科技、知识与价值等基本制度规范联结的整体系统[36-38]。当不同主体行为与制度规范等投影到区域或空间时,在不同空间位置会产生功能分异,分化出城镇化、农业发展、牧业生产、生态服务、游憩等不同功能。不同功能的可持续且安全供给,需要匹配相应的自然系统条件[39]。当自然系统条件给定后,能够承载的人类社会不同生产生活功能的最大容量,包括牲畜、人口、经济或是基础设施及文化容忍度等标量,也是资源环境承载能力的概念[40]。因此,承载能力研究范畴同样包括人口承载能力、经济承载能力、旅游承载能力、文化承载能力等不同概念。
实际上,无论是自然系统还是人类社会系统,系统构成要素与局部状态都在发生变异,有的是有规律可循的,有的是混沌运行,比如无法预测的极端天气、不可预期的市场机制与技术进步。此外,不同要素、不同局部以及跨尺度系统之间均存在广泛的物质、能量、信息等交换,如水—能源—食物关联关系、商品贸易产生的虚拟水,都会导致承载能力评价与归因产生争议。因此,如何界定人地系统的边界、自然与人类社会系统要素构成和运行机制、系统整体或局部多重稳态及阈值、系统代理与跨层级反馈能力等,从而构建人地关系分析框架,是定义、认知和理解资源环境承载能力的重要前提[41]

3 国外承载能力概念与研究框架的演化过程

在人地关系分析框架构建的基础上,本文借助于“Web of Science”核心数据库文献计量、国际主要研究机构、科学计划与会议检索梳理、重要研究团队的交流与访谈等方式,对国外资源环境承载能力研究进行阶段划分,从历史背景、主要矛盾、可持续维度、核心内涵、主要承载体、代表性成果、主导国际组织机构(人物)、主要进展、新兴学科、空间尺度、国际科学计划、标志性国际会议、政策呼吁等方面,归纳总结各阶段典型特征(表1)。其中,文献计量对1975—2022年进行文献检索,利用Citespace软件对文献时间、空间分布、发文机构、重要作者、关键词与主题词、高引文献等进行分析。此外,本文结合Google检索、维基百科(Wikipedia)、重点文献的参考文献分析、国外图书馆百科全书等查阅与相关学者的讨论,对1975年以前资源环境承载能力研究的相关文献进行补充。通过上述研究梳理,本文将国外资源环境承载能力研究划分为4个阶段:人口增长与资源供给关系—资源承载能力研究、经济增长与环境污染关系—环境承载能力研究、人类干扰与生态韧性关系—生态系统承载能力研究、人类福祉与自然系统关系—自然系统承载能力研究(图2)。
表1 国外资源环境承载能力研究的不同阶段特征

Tab. 1 Characteristics of the different stages of international studies on natural resources and environmental carrying capacity

特征 资源承载能力研究 环境承载能力研究 生态系统承载能力研究 自然系统承载能力研究
开始时间 19世纪 20世纪70年代 20世纪90年代 21世纪10年代
历史背景 英国工业革命:资源短缺 《寂静的春天》:环境污染等 全球气候变化:极端天气、干旱等 全球危机:粮食危机、金融危机等
主要矛盾 人口增长与资源供给矛盾 经济增长与环境污染矛盾 人类活动与生态退化矛盾 人类发展与自然系统
不稳定运行矛盾
可持续性指向 资源可持续 资源与环境可持续 生态系统可持续 人地耦合系统可持续
核心内涵 人口(物种)增长的资源供给能力 经济增长的环境极限与系统崩溃 生态系统韧性、多重稳态与临界点 自然系统与人类福祉安全运行边界、杠杆点
主要承载体 单要素:资源类 多要素:资源类、环境类 多要素:资源类、环境类、生态类 自然系统综合要素
承载对象 人口 人口与经济 人类干扰 人类福祉
代表性成果 《人口论》 《增长的极限》 盖亚理论、韧性框架 地球边界框架
主导国际组织机构(人物) 马尔萨斯 罗马俱乐部等 Holling等 斯德哥尔摩韧性中心等
主要进展 逻辑斯蒂方程 世界模型 生态足迹、韧性等 地球边界、安全公正
空间
新兴学科 古典经济学、资源科学等 环境科学、生态经济学等 应用生态学、人类生态学等 地球系统科学、可持续性科学
空间尺度 区域 全球与国家 全球、全球公域 全球—国家—区域
国际科学计划 - 人与生物圈计划(MAB) 国际地圈—生物圈计划(IGBP) “未来地球”计划(Earth Future)
标志性国际会议 - 1972年瑞典斯德哥尔摩联合国人类环境会议(UNCED) 1987年布伦特兰委员会UNCED、1992年地球高峰会议 2012年“里约+20”联合国可持续发展大会
政策呼吁 减少人口和消费 降低经济和人口增长 可持续发展与韧性管理等 多层次的新机构和政策机制等
图2 国外资源环境承载能力研究的阶段划分与代表性成果

Fig. 2 The stage divisions and representative achievements of international research on natural resources and environmental carrying capacity

3.1 人口增长与资源供给关系——资源承载能力研究

承载能力研究萌芽于第一次工业革命初期人口增长与资源供给为主要矛盾的大背景下,研究主线是人口与粮食系统、动物种群与生物量的关系,侧重于自然系统的资源属性指向的承载能力,主要以人口学与生物学领域的土地资源、生物量等单要素承载能力研究为代表。绝大多数学者将承载能力研究追溯到1798年马尔萨斯发表的《人口论》[42]。文中指出,人口的指数增长与食物的线性增长产生的矛盾必将造成食物短缺,这一思想为承载能力概念提供了理论基础,并深刻影响了达尔文及19世纪整体进化论思想。1838年比利时数学生物学家Verhulst首次用数学表达马尔萨斯关于人口增长和极限假设,提出著名的人口增长模型——逻辑斯蒂方程[43]。可以说,马尔萨斯关于人口指数增长与上限假设及逻辑斯蒂方程的数学化表达,奠定了承载能力研究的基础[44]。尽管逻辑斯蒂方程及其假设具有划时代意义,但当时并没有引起广泛关注。直到1922年,美国人口学家Hawden等将逻辑斯蒂方程及其假设应用于种群生物学研究,并首次将承载能力定义为一定时期内一个牧场在不被破坏的情况下所能支持的牧畜数量[45]。1943年Leopold提出了类似的概念,将承载能力定义为生物量所能维系的种群“最大密度”[46],并提出“人口承载能力”的概念,即单位面积所能容纳的人口[47]
由于工业化与城镇化导致了人口快速增长,古典经济学讨论下的土地资源与粮食短缺引起了很多学者的关注,研究人口承载能力逐渐成为主流。尤其是第二次世界大战后,各国相继迎来婴儿潮,人口、土地与粮食之间的矛盾日益凸显。1948年现代马尔萨斯主义的代表人物美国生态学家Vogt发表了著名的《生存之路》,将土地生产食物能力与环境影响联系起来,呼吁减少消费与限制人口以减少对生态环境的破坏。1949年英国Allan通过对非洲农牧业的研究指出,每一个粮食系统都有一个临界的人口密度,并且将土地资源承载能力定义为:在不引起土地退化的情况下,一定面积土地所能支持的最大人口数量[48]。1954年Schaefer定义了一个孤立的逻辑种群在按比例捕捞下的最大持续产量(MSY),其广泛应用于渔业捕捞与林业管理[49]。几乎在同一时期,马寅初于1957年在《人民日报》发表了关于人口急剧增长问题的代表性论著《新人口论》,指出人口增长与资金积累、工业原料、粮食等之间的矛盾,呼吁控制人口数量、提高人口质量。这一阶段承载能力研究在事实上推进了人口学、生物学与古典经济学等学科的发展,其研究范畴与关键命题一直延伸并争论至今,批评者称之为马尔萨斯陷阱[50]

3.2 经济增长与环境污染关系——环境承载能力研究

自20世纪60年代末以来,随着工业革命的开展与经济规模与强度的增加,承载能力开始被用来衡量和表达经济增长与人类发展的环境限制。一方面,应用生态学领域将承载能力应用于牧场、野生动物或自然保护地管理,后将其概念拓展为最大化的种群(植物/动物)存量、种群的稳定产量、受保护植物的数量、收入与成本决定下的种群数量等[51-52]。另一方面,随着经济学家Kuznets提出库兹涅茨曲线,不断增长的人口及其经济消费对环境的影响和限制引发了越来越多的关注[53]。最为标志性的事件是1962年Carson出版了《寂静的春天》,描述了农药等化学药品对生态的污染,让人们开始正视环境污染问题,引发了一场不同意识形态均关注的绿色变革,催生了环境科学、生态经济学等新兴学科。传统工业革命之所以具有反环境的结果,是因为其理论依据是强调经济增长的新古典经济学。如果说Carson是第一个用事实揭示了工业革命环境恶果的学者,那么第一个在理论上反对唯经济增长的主流经济思想的则是经济学家Boulding。他在1966年发表了《即将到来的太空船地球经济学》一文,将地球比作一只孤独的宇宙飞船,其供给的资源和污染净化能力都是有限的,且随着人口和经济增长,所有的资源都将被消耗殆尽[54]。1971年Ehrlich等发表了环境影响方程(I = PAT),揭示了人类消费模式、技术、基础设施等因素对环境与食物供应的重要影响,并将人类社会所能承受的最大影响称为承载能力[55]。在IPAT基础上,Waggoner等[56]、York等[57]分别提出了ImPACT、STIRPAT等变形公式,对揭示环境问题的驱动力具有广泛的影响力。
该阶段最为标志性的成果当属1972年罗马俱乐部发表的《增长的极限》,利用World3计算机模型模拟资源供应有限与环境可承受情况下经济和人口指数增长的可能性[58]。该报告认为如果资源消耗没有实质性的改变,最可能的结果将是人口和工业能力的相当突然和不可控制的下降,此观点迅速引发全球对人口经济增长与资源环境问题的广泛关注[59]。《增长的极限》试图说服人们认识到地球资源的有限性和人类对环境的影响,并在1972年瑞典斯德哥尔摩召开的第一次联合国人类环境会议中宣传。该会议通过了《人类环境宣言》,成立了联合国环境规划署(UNEP),开启了经济增长、环境污染与人类福祉的全球对话,推动了环境承载能力研究的拓展[60]。1992年《超越极限》、2004年《增长的极限:30年更新》、2012年《2052年:未来40年的全球预测》、2022年《极限与超越》均可视为对《增长的极限》的跟踪式研究。相较于资源承载能力研究,环境承载能力更侧重于人类发展对环境的总损害,而不是仅由人口数量本身来确定,强调了制度设计、人类价值观、经济和消费模式、以及基础设施的重要性[5,61]。值得一提的是,后续诸如韧性、盖亚假说、生态经济等具有影响力的概念与理论,均源于该阶段。同时该阶段衍生出了生物物理承载能力、社会(或文化、人类)承载能力、旅游承载能力等不同概念,但均侧重于环境问题的揭示[62-63]

3.3 人类干扰与生态韧性关系——生态系统承载能力研究

在人类对地球生态系统的影响或破坏引起广泛关注后,生态学家逐渐将系统理论与生态学模拟模型、政策分析等融合,提出或发展了多重稳态[64]、生态系统韧性(Resilience)[65]、适应性能力(Adaptive Capacity)[66]、扰沌(Panarchy)[67]、脆弱性(Vulnerability)[32]等一系列生态系统概念与理论。这些理论在20世纪末至21世纪初得到广泛应用,并逐渐形成了生态系统承载能力的研究范式。至此,承载能力研究不再停留在机械式的数理计算或阈值判断,而是拓展到系统论、非线性、动态、多层级等多维视角,产生了多重均衡、复杂适应系统、自组织等概念,逐步发展了应用生态学、人类生态学等现代生态学理论。更为标志性的事件是1987年世界环境与发展委员会(WCED)发表的《我们共同的未来》,提出了“可持续发展”概念。此后,承载能力研究逐渐聚焦到可持续性研究领域,但Brown等指出承载能力与可持续性存在明显的不同[59]。1992年加拿大生态经济学家Rees提出“占用承载能力(Appropriated Carrying Capacity)”分析方法,后重新命名为“生态足迹(Ecological Footprint)”,通过“生物生产性土地”量化人类对自然资源的占用[68]。此后,虚拟水(Virtual Water)[69]、水足迹(Water Footprint)[70]等概念被提出并引入到国际贸易与水资源评估中,能值(Emergy)[71]、转换率(Transformity)[72]等概念与方法不断应用于生态系统健康评估。
该时期另一条主线是Lovelock提出的盖亚假说以及联合国政府间气候变化专门委员会(IPCC)的成立及其广泛影响[51]。1990年IPCC发布了第一次评估报告,指出人类活动导致的排放正在大幅增加大气中二氧化碳、甲烷、氟氯化碳和氧化亚氮等温室气体的浓度。1992年召开的联合国环境与发展会议(UNCED,也称地球高峰会议),水资源供需、不可再生能源开发、环境污染排放、气候变化与海平面上升等议题被广泛关注。同时在政策应对上,经济增长不再被视为环境保护的阻碍,而是解决环境问题的方法[5]。承载能力也因此逐渐成为环境治理市场的监管工具,而不是对经济发展的限制。由此产生了生态经济学这一新兴交叉学科,探讨社会经济和生态系统的时空依赖与共同演化。与此同时,承载能力被进一步推广应用到不同区域尺度的城市规划、农业与旅游管理等多个领域,发展并丰富了城市承载能力[14]、农牧最大持续产量[73]、旅游承载能力等外延概念[74]。如Oh等将承载能力概念应用到城市规划与管理中,开发了城市承载能力评估的综合框架,根据基础设施与土地利用确定开发强度上限[14]。Davis等将旅游承载能力定义为生态环境在不发生不可逆转或不可接受的恶化且不显著降低用户满意度的情况下,能够承载的最大游客数量[74]

3.4 人类福祉与自然系统关系——自然系统承载能力研究

随着气候变化与复杂系统研究的逐渐深入,科学家发现人类活动对地球系统产生了不可忽视的影响和作用,并提出了“人类世”这一新地质时代的概念,以凸显人类活动在全球变化中的主导地位[75-78]。在生态学领域,人类社会不再被认为是生态系统的局部,而是与生态系统对等且共同构成了社会—生态复杂适应系统[31]。面对前所未有的资源环境压力与气候变化带来的危机,如何确定地球或区域这一复杂适应系统所能承受的人类活动上限以及系统内部组织与恢复能力,成为该时期承载能力研究的重点问题[79]。1997年Meadows首次提出了杠杆点(Leverage Points)概念,将其定义为复杂系统中微小变化可以产生巨大变化的位置,2008年出版《Thinking in Systems: A Primer》,从参数、反馈、规则、目标等方面,探讨了人地系统临界状态与促进可持续转型的方式[80]。受Meadows与Lovelock等学术思想的启发,2009年瑞典斯德哥尔摩韧性中心Rockström等首次提出了“地球边界”的概念[81],认为地球系统中生物物理过程均存在“安全运行空间”。Schellnhuber等在美国科学院院刊专刊撰文,系统地探讨了地球系统临界要素的概念,指出一旦人类活动的干扰超过了临界条件,地球系统会由一个稳态跳跃进入另一个稳态,产生突变[82]。2015年Steffen等对地球边界进行了更新与补充,对关键生物物理过程进行了调整[83]。与2009年的结果相比,除了基因多样性和氮循环仍然处于高风险区之外,磷循环和土地利用变化也进入了高风险区。在众多国际会议中均能看到地球边界产生的影响,例如,2012年里约热内卢召开的地球高峰会(Rio+20)上确定了可持续发展目标(SDGs),并于2015年正式实施;同时发布了未来地球(Earth Future)计划,旨在建立全球环境变化与人类活动影响的跨学科知识体系与可持续解决方案。其中许多目标的制定充分考虑了地球边界框架,如生物多样性保护、海洋资源开发以及陆地生态系统的可持续利用等。
然而,一些批评者指出地球边界框架仅适用于全球范围,无法有效指导不同国家和地区的环境政策,且仅关注环境保护可能会忽视极端贫困以及其他社会不公平的现象[84]。许多学者对国家、流域、城市等不同尺度的安全运行空间或临界点进行了研究,试图推动其向区域尺度、社会经济维度、政策应用等方面拓展。与此同时,得益于Ostrom提出的社会—生态系统框架(SES Framework),复杂性空间治理逐渐成为承载能力政策领域的目标与解决方案[85-86]。Raworth等受安全运行空间的启发,提出了甜甜圈经济学[87],并与地球边界团队共同提出了“安全公正运行空间”概念[88],将社会界限的实现引入到“地球边界”框架中,试图实现自然系统可持续利用前提下的社会公平。Dearing等面向区域尺度的政策应用与空间治理,将人类福祉与安全运行空间结合,提出了人类安全公正运行空间的研究框架,并对中国两个农村地区进行了实证研究[89]。O'Neill等对全球150多个国家和地区的安全公正运行空间进行了量化,指出没有一个国家能够在全球自然系统可持续开发前提下满足其公民的基本需求[90]。尽管地球科学领域的多数学者认为地球边界框架是一个巨大的成功,但同样引起许多质疑和批评,例如边界制定中如何体现区域或局域的差异性、边界之间的相互作用以及跨级联动效应等[91-92]。社会科学领域学者同样批评指出,无论是环境界限还是社会界限的评估都会受到客观和主观因素的影响,但最终的界限设定与否均由政策决定[93-94]。此外,人地系统内部不同要素在不同尺度的级联与耦合机制,被认为是影响承载能力或边界测算的重要因素,2011年的世界经济论坛提出了水—能源—食物关联系统的研究框架[95],采用生命周期评估(LCA)、多区域输入输出模型、综合评估模型等方法测度。该框架被联合国粮食及农业组织(FAO)所倡导,不断演化并拓展为土地—水—能源[96]、水—能源—食物—生态系统[97]等关联系统。但批评者认为该框架缺少对资源获取和分配的讨论,也很难满足跨时空尺度的数据需求[98]

4 国外趋势分析与国内重点方向

4.1 国外趋势分析

通过人地关系视角国外承载能力概念演化的过程梳理,可以从基本概念、学科基础、科学内涵、模型方法、政策支撑等方面,归纳以下研究趋势:
(1)承载能力概念始终不断演化且推陈出新
通过系统综述发现,承载能力不局限于英文“Carrying Capacity”这一词汇,其概念与研究框架并不固定,而是围绕着不同时代人地关系的突出矛盾,不断推陈出新。由最初侧重于自然系统一侧、不加限制外部条件且只能解决短期的最大生物种群(人口、牲畜、野生动植物等)与最大密度等概念,演变并分化为在给定技术能力下生物物理上可以维持的最大人口规模、在各种社会制度下可以维持的社会福利最大值,再扩展为注重复杂系统与动态过程下多重均衡和生态韧性、以及不同制度设置、人类价值观和传统经济消费与分配模式下人类社会可实施扭转生态环境不可逆的最大应对能力。因此,类似“承载能力是不是伪命题”本身就是伪命题,只有在特定语境与规范性概念的前提下,讨论承载能力研究的局限才有意义。
(2)由传统学科交叉融合不断涌出新学科新理论
承载能力概念的演化过程,体现了不同学科发展、融合并不断衍生出新兴学科的发展趋势。从最初生物学、资源科学、社会学、生态学、经济学等相对单一学科视角,通过不同学科不断的交叉融合,衍生了环境科学、人类生态学、生态经济学、可持续性科学、地球系统科学等新兴学科。学科交叉融合既解决了原有学科承载能力研究的局限,同时不断产生了新思想新理论。其中最具有代表性的当属生态经济学、政治经济学与地球系统科学等领域。20世纪60—70年代产生了大量诸如盖亚、增长极限、韧性、生态经济等理论思想,对后续扰沌、突变等理论以及脆弱性、社会—生态系统、地球边界等研究框架均产生了较大影响[2,99]。学科交叉融合产生新学科新理论的趋势仍在进一步加强。但人类学家Bennett同样告诫要慎重借用其他学科的概念[94]
(3)由人地系统某一局部或维度扩展为复杂系统整体
围绕着人地矛盾这一主题,承载能力研究探讨了资源供给、环境污染、生物圈退化等方面的矛盾,并逐渐扩展至人地关系的系统性矛盾。承载能力研究也因此从资源环境单一要素研究,扩展到多要素研究,再到综合要素以及复杂性系统的集成研究,旨在回答不同尺度下人地关系可持续协调的关键科学命题[84,99]。20世纪90年代以来,随着全球气候变化、生态系统生态学与社会学复杂适应系统等研究的广泛兴起,无论是时间尺度还是空间尺度,承载能力基本概念与内涵拓展性研究均有一个明显的量变过程。人地复杂系统的构成要素、多重稳态与阈值、子系统及内部作用过程与反馈机制、复杂系统治理等仍是持续至今的研究热点[30,33,93]
(4)新观测技术与模型—数据融合新方法促使时空尺度不断拓展
承载能力研究方法与技术不断革新,从早期基于数理统计的基本分析方法,逐渐拓展到以增长极限世界模型为代表的系统动力学方法,再到转向传感器观测与复杂系统的模型方法,再继续扩展到模型—数据融合的同化技术等[24,96]。21世纪以来,越来越多的学者采用生命周期评估、基于主体的模型、多区域输入输出模型和综合评估模型等,探讨人地复杂系统内部不同要素的关联关系与耦合机制。随着高性能计算、新的传感器和网络技术、人工智能与深度学习等新技术的推进,承载能力研究领域不断衍生出更多适用于不同尺度的计算模型与模型—数据融合方法[100]。依托新观测技术与模型—数据融合产生的新方法,有望进一步拓展资源环境承载能力研究的时空尺度。
(5)对全球与区域可持续发展和空间治理的影响力和渗透力日益加深
资源环境承载能力的典型框架研究,包括增长极限的世界模型、IPCC全球大气环流模型、地球边界框架等,均受到新马尔萨斯主义思想影响,从人类社会排放或消耗端、地球资源的开发程度与强度两个方面,预测了人类不受约束地开发地球生物圈的病态结果,隐含着安全框架和危机叙事的内容[2,5,84]。21世纪以来,极端天气、粮食、能源和经济危机等不断发生,自然、生态、社会等不同维度的承载能力研究在支撑全球气候变化应对、不同国家和地方实现2030年联合国可持续发展目标(SDGs)等过程中发挥了越来越大的作用,衍生了绿色增长(Green Development)、生态现代化(Ecomodernism)、“去增长(Degrowth)”等政治经济学思想,对国际政治、经济政策、公众行为等均产生了广泛的影响,在全球与区域政治治理和话语体系中产生了更强的影响力和渗透力。

4.2 国内外对比分析

由于中国资源禀赋差异巨大,人口基数大、经济体量大且增速高,在短短40年内经历了以牺牲资源环境为代价的高速工业化、开始注重可持续与科学发展、生态文明建设与高质量发展等不同阶段。基本国情与阶段特点、学科发展与社会需求等,均决定了中国资源环境承载能力研究在研究尺度与聚焦问题、主导学科与基础理论、政治治理与话语体系等方面与欧美发达国家有较大差别。
中国对人口承载能力的研究也可追溯到20世纪30年代,如张印堂通过对未来中国农牧业生产发展的上限进行测算,预估了中国食物生产可承载的人口容量[101];陈长蘅进一步从食物、衣物等人民日常生活必需品的供给角度分析中国土地与自然资源可承载的人口容量,并提出实行人口政策的必要性[102]。到20世纪80—90年代,承载能力研究仍然以人口—粮食为载体,由土地承载能力逐步拓展到水资源、环境、生态等多要素资源环境承载能力的研究[3,8,27]。始于2008年的汶川地震灾后重建工作,中国地理学者开创了中国特色的资源环境承载能力研究,提出了基于资源、环境、生态、灾害等可持续属性集成的综合承载能力研究范式,建立不同尺度对应不同地域功能的承载能力评价方法,在地震灾后重建规划[27]、主体功能区划[103]、监测预警长效机制[40,104]、国土空间规划编制[105]等工作中发挥了重要作用,尤其在政府决策层面产生了重大影响,成为生态文明体制改革与优化国土空间开发保护格局的重要抓手。围绕区域可持续发展与空间治理的承载能力研究上形成了中国特色,在系统集成研究、不同类型区应用、区域政策支撑等方面处于先行或领先地位。未来有望进一步巩固发展并形成理论范式的区域研究,以及更有效发挥中国话语体系下承载能力的作用,丰富和完善中国特色资源环境承载能力理论与实践研究,为更多发展中国家甚至发达国家提供借鉴。
国外代表性研究聚焦于全球尺度政治框架与空间治理,关注全球粮食危机、环境重大问题、气候变化、生物多样性损失等一系列全球议题;国内研究在全球尺度上滞后于国外前沿,尤其在自然科学与社会科学理论和方法模型融合等方面仍有对接和追赶空间。随着中国政府与学者组织牵头、或深度参与更多人地圈、生物圈等地球系统科学国际大科学研究计划,中国将可能逐渐主导全球治理与话语体系,在全球尺度上进一步缩小与国外的差距。此外,国内承载能力的系列研究对社会组织、企业、公众等生态保护与人地和谐共处的宣传教育和价值观塑造还有待于加强。

4.3 国内重点研究方向

资源环境承载能力研究与决策应用,具有基础性、复杂性、尺度性、动态性、开放性等特点。为进一步提高资源环境承载能力研究的科学性与空间治理的精准性,需加强资源环境承载能力的基础理论与模型方法论建设,开展典型类型区域研究与政策创新,提高资源环境承载能力的适用性与政策应用能力。本文建议围绕学科融合与理论研究、尺度效应与机理研究、模型—数据融合与集成研究、不同空间单元与典型类型区应用研究、政策体系与机制研究等方面开展深化研究(图3)。
图3 国内资源环境承载能力的重点研究方向

Fig. 3 Key research directions on natural resources and environmental carrying capacity in China

4.3.1 学科融合与理论研究

无论是从承载体——自然系统、还是承载对象——人类社会系统的视角,资源环境承载能力研究均有较多的理论难题亟需构建和论证,既包含从资源、环境、生态、灾害等不同要素或属性出发,研究维持承载体及其构成要素的稳定功能与结构的物理下限,诸如开放系统资源供给上限、环境容量、生态阈值、灾害突变点等[40,106 -107];也包括从城镇化、农业生产、社会文化等不同功能视角出发,研究维持人类社会可持续、公正运行的功能当量上限,诸如承载的人口规模、农牧产量、社会文化容量等[40,108 -109]。以复杂、非线性、开放、动态系统的人地关系视角,研究综合承载能力及其不确定性,揭示不同要素、不同功能在系统内外的非线性反馈及耦合机制等基础性问题,均有待于深化。如何推动资源环境承载能力研究,从多学科合作转向学科交叉和融合,并形成较为完整的学科架构、理论体系与研究范式,将是未来破解资源环境承载能力基础理论研究的重要方向。

4.3.2 尺度效应与机理研究

人地关系视角下资源环境承载能力研究属于复杂系统科学研究的范畴,如何在时间尺度上探索系统构成要素与作用关系的过程性、周期性、突变性、随机性等变化规律,在空间尺度上探索不同空间单元、系统结构与不同层级空间变异性、相似性、近远程耦合性等尺度效应,均是资源环境承载能力未来亟需开展的方向。无论全球与大区域气候变化促使生态系统功能与结构产生态势转换、继而影响区域尺度人类生产生活系统及内部作用机理的变化,还是全球或地方性的人类社会技术、制度与认知水平的提升导致人类福祉内涵与生产生活空间组织方式等变化,均将极大提升人地关系视角下资源环境承载能力机理性研究的价值[110-112]。如何在跨学科融合与较为完整理论架构的指导下,围绕全球、大区域、国家、区域到地方不同空间尺度和近期、中期、长远期等不同时间维,分析揭示时空耦合下承载体与承载对象交互过程、作用机理与演变规律,将始终是未来资源环境承载能力研究的重要内容。

4.3.3 模型—数据融合与集成研究

资源环境承载能力是有关时间与空间尺度的函数,刻画的是格局与过程的耦合关系,揭示的是人地交互作用的机理。其本质上是通过原始值与余量值的评估测算与跟踪监测,提高对未来潜力值的可预测性。而可预测性同样包含了预测的不确定性,其建模不仅受制于观测数据与计算能力的约束,同时受到人地耦合过程与非线性行为的不确定性影响。如何提高观测数据与预测模型计算模拟精度、适用于不同时空尺度与精度的模型模拟库、以及实现彼此协同的同化技术,均是未来资源环境承载能力模型方法研究的要点。未来如何通过模块化和可互操作方式实现复杂系统的集成,推进社区共建的领域知识专业化与实践分享,实现承载能力模型方法库的更新与构建,仍是需要广大相关研究人员共同努力的方向。

4.3.4 不同空间单元与典型类型区应用研究

由全球治理向区域治理拓展的过程中,资源环境承载能力研究并提供空间治理解决方案的主体——国家、省、市等不同行政管理单元,以及流域、湾区、城市群等跨行政区域功能单元,在全国及大区域可持续系统中发挥的不同功能定位,其承载能力应用研究的前提、重点解决问题、可持续目标等差异显著。流域上下游、海陆统筹等近远程联系与不同资源环境要素耦合机制需要重点考虑。在较短时期受气候变化与人类活动影响较为剧烈的区域,包括高原生态脆弱区、干旱半干旱区、城市群地区、关键流域、海岸带地区等,均是资源环境承载能力研究与空间治理亟待开展的典型区域。加强对不同空间单元与典型类型区的应用研究,是资源环境承载能力研究发挥价值的必经之路。

4.3.5 政策体系与体制机制研究

围绕资源环境承载能力开展的政策体系与体制机制研究,已成为国家生态文明体制改革的重要抓手与重点内容。国家机构改革与决策部门对自然资源管理与国土空间高质量发展的迫切需求,将围绕资源环境承载能力政策体系、长效机制等构建提出新的时代命题。从自然资源管理、环境协同治理、生态保护与价值实现、灾害防治与应急管理等方面,研究资源环境承载能力具有政策价值的杠杆点,提出适应于资源环境承载能力的社会经济发展路径与调控方式,健全面向不同层级和治理单元的政策、规范、法律等,建立多方协同的资源环境承载能力监测预警长效机制,均是未来亟待开展的工作。

5 结论

本文从地理学人地关系的视角,对国外两个多世纪的资源环境承载能力研究进行了系统回顾,归纳不同阶段的概念演化与主要特征,通过国外研究趋势分析与国内外对比分析,提出中国资源环境承载能力研究的未来重点方向。
(1)国外承载能力的概念根植于(新)马尔萨斯主义理论,在不同人地矛盾突出的历史背景下不断演化,由资源供给、环境污染、生物圈退化等方面的矛盾,并逐渐扩展至人地关系的系统性矛盾,由此可归纳为资源承载能力研究(始于19世纪)、环境承载能力研究(始于20世纪70年代)、生态系统承载能力研究(始于20世纪90年代)、自然系统承载能力研究(始于21世纪10年代)4个阶段。不同阶段的概念演化,得益于跨学科交叉融合与新学科新理论的产生,也得益于新观测技术与模型—数据融合新方法的不断出现,从而促使承载能力相关系列研究对全球、区域可持续发展与空间治理的影响力和渗透力日益加深。
(2)由于承载能力在国外不同学科领域具有不同的概念内涵,即使在同一学科领域也可能存在不同的应用场景与适用范围,因此资源环境承载能力概念的讨论与使用需要加以约束和明确。由于承载能力研究往往与政治经济学理论挂钩,争论的焦点在于知识技术进步、市场机制等与时空有限性的不同看法。即使是现阶段被认为是最大成功的地球边界研究框架,也同样引起社会科学的广泛批评,且难以降尺度应用到区域尺度。但从人地关系整体性与系统性出发,发展或深化不同尺度的承载能力研究,已经成为普遍共识。
(3)中国当前资源环境承载能力的概念与研究框架,几乎对应于国外自然系统承载能力研究阶段(始于21世纪10年代)。其具有影响力的研究主要由地理学者引领,从人地关系整体性与系统性出发,侧重于区域尺度,解决区域可持续发展与空间治理问题,形成了具有中国特色的承载能力研究体系,对国外区域尺度研究具有借鉴价值。但在全球尺度研究、自然科学与社会科学理论和方法模型融合等方面仍有对接和追赶空间,导致中国在全球治理与话语体系的影响力或主导权有限,中国方案的传播与交流仍有待加强。因此,未来仍需发展中国特色的资源环境承载能力研究,深化在学科融合与理论、尺度效应与机理、模型—数据融合与集成、不同空间单元与典型类型区应用、政策体系与机制等方面的研究。

国家留学基金委资助访问学者项目,瑞典隆德大学可持续性研究中心(LUCSUS)创始主任Lennart Olsson在论文修改过程中给予帮助,廖锦峰、何垚、叶宇轩3位研究生协助文献校对与多次校稿,期刊编辑与3位审稿人均提出诸多有价值的建议,在此一并表示感谢。

[1]
Lewis S L, Maslin M A. Defining the Anthropocene. Nature, 2015, 519: 171-180.

DOI

[2]
Brown K. Global environmental change II: Planetary boundaries: A safe operating space for human geographers? Progress in Human Geography, 2017, 41(1): 118-130.

DOI

[3]
Fu B J. Promoting geography for sustainability. and Sustainability, Geography 2020, 1(1): 1-7.

[4]
Scheffer M, Carpenter S R, Lenton T M, et al. Anticipating critical transitions. Science, 2012, 338(6105): 344-348.

DOI PMID

[5]
Gómez-Baggethun E, Naredo J M. In search of lost time: The rise and fall of limits to growth in international sustainability policy. Sustainability Science, 2015, 10: 385-395.

DOI

[6]
Hughes S M. On resistance in human geography. Progress in Human Geography, 2020, 44(6): 1141-1160.

DOI

[7]
Editorial. On growth and the form of limits. Nature Sustainability, 2022, 5: 553. DOI: 10.1038/s41893-022-00941-5.

[8]
Chen Baiming. The Productivity and Population Carrying Capacity of the Land Resource in China. Beijing: China Renmin University Press, 1992.

[陈百明. 中国土地资源生产能力及人口承载量研究. 北京: 中国人民大学出版社, 1992.]

[9]
Long Tengrui, Jiang Wenchao. Research progress of water resources (environment) carrying capacity. Advances in Water Science, 2003, 14(2): 249-253.

[龙腾锐, 姜文超. 水资源(环境)承载力的研究进展. 水科学进展, 2003, 14(2): 249-253.]

[10]
Jia Xuexiu, Yan Yan, Zhu Chunyan, et al. Approaches for regional water resources stress assessment: A review. Journal of Natural Resources, 2016, 31(10): 1783-1791.

DOI

[贾学秀, 严岩, 朱春雁, 等. 区域水资源压力分析评价方法综述. 自然资源学报, 2016, 31(10): 1783-1791.]

DOI

[11]
Świąder M. The implementation of the concept of environmental carrying capacity into spatial management of cities: A review. Management of Environmental Quality: An International Journal, 2018, 29(6): 1059-1074.

DOI

[12]
Chapman E J, Byron C J. The flexible application of carrying capacity in ecology. Global Ecology and Conservation, 2018, 13: e00365. DOI: 10.1016/j.gecco.2017.e00365.

[13]
Zhao Dongsheng, Guo Caiyun, Zheng Du, et al. Review of ecological carrying capacity. Acta Ecologica Sinica, 2019, 39(2): 399-410.

[赵东升, 郭彩贇, 郑度, 等. 生态承载力研究进展. 生态学报, 2019, 39(2): 399-410.]

[14]
Oh K, Jeong Y, Lee D, et al. Determining development density using the urban carrying capacity assessment system. Landscape and Urban Planning, 2005, 73(1): 1-15.

DOI

[15]
Wei Y G, Huang C, Lam P T I, et al. Sustainable urban development: A review on urban carrying capacity assessment. Habitat International, 2015, 46: 64-71.

DOI

[16]
Peters C J, Wilkins J L, Fick G W. Testing a complete-diet model for estimating the land resource requirements of food consumption and agricultural carrying capacity:The New York State example. Renewable Agriculture and Food Systems, 2007, 22(2): 145-153.

[17]
Liu Dongxia, Zhang Bingbing, Lu Xinshi. Progress and prospect on ecological carrying capacity in grassland. Chinese Journal of Grassland, 2007, 29(1): 91-97.

[刘东霞, 张兵兵, 卢欣石. 草地生态承载力研究进展及展望. 中国草地学报, 2007, 29(1): 91-97.]

[18]
McCool S F, Lime D W. Tourism carrying capacity: Tempting fantasy or useful reality? Journal of Sustainable Tourism, 2001, 9(5): 372-388.

DOI

[19]
Zelenka J, Kacetl J. The concept of carrying capacity in tourism. Amfiteatru Economic Journal, 2014, 16(36): 641-654.

[20]
Hardin G. Cultural carrying capacity: A biological approach to human problems. Carrying Capacity Network Focus, 1992, 2: 16-23.

[21]
Wei C, Guo Z Y, Wu J P, et al. Constructing an assessment indices system to analyze integrated regional carrying capacity in the coastal zones: A case in Nantong. Ocean & Coastal Management, 2014, 93: 51-59.

[22]
Sayre N F. The genesis, history, and limits of carrying capacity. Annals of the Association of American Geographers, 2008, 98(1): 120-134.

DOI

[23]
Feng Zhiming, Li Peng. The genesis and evolution of the concept of carrying capacity: A view of natural resources and environment. Journal of Natural Resources, 2018, 33(9): 1475-1489.

DOI

[封志明, 李鹏. 承载力概念的源起与发展: 基于资源环境视角的讨论. 自然资源学报, 2018, 33(9): 1475-1489.]

DOI

[24]
Dhondt A. Carry capacity: A confusing concept. Acta Oecologica, 1988, 9(4): 337-346.

[25]
Seidl I, Tisdell C A. Carrying capacity reconsidered: From Malthus' population theory to cultural carrying capacity. Ecological Economics, 1999, 31(3): 395-408.

DOI

[26]
Fan Jie. Evaluation of Resources and Environment Carrying Capacity of National Post Wenchuan Earthquake Reconstruction Plan. Beijing: Science Press, 2009.

[樊杰. 国家汶川地震灾后重建规划资源环境承载能力评价. 北京: 科学出版社, 2009.]

[27]
Fan Jie, Wang Yafei, Tang Qing, et al. Academic thinking and overall technical process of national resource and environment carrying capacity monitoring and early warning (2014 version). Scientia Geographica Sinica, 2015, 35(1): 1-10.

DOI

[樊杰, 王亚飞, 汤青, 等. 全国资源环境承载能力监测预警(2014版)学术思路与总体技术流程. 地理科学, 2015, 35(1):1-10.]

DOI

[28]
Fan J E, Wang Y F, Ouyang Z Y, et al. Risk forewarning of regional development sustainability based on a natural resources and environmental carrying index in China. Earth's Future, 2017, 5(2): 196-213.

DOI

[29]
Fu Bojie. Geography: From knowledge, science to decision making. Acta Geographica Sinica, 2017, 72(11): 1923-1932.

DOI

[傅伯杰. 地理学: 从知识、科学到决策. 地理学报, 2017, 72(11): 1923-1932.]

DOI

[30]
Wu Chuanjun. The core of study of geography: Man-land relationship areal system. Economic Geography, 1991, 11(3): 1-6.

DOI

[吴传钧. 论地理学的研究核心: 人地关系地域系统. 经济地理, 1991, 11(3): 1-6.]

[31]
Berkes F, Folke C, Colding J. Linking Social and Ecological Systems:Management Practices and Social Mechanisms for Building Resilience. Cambridge: Cambridge University Press, 2000.

[32]
Turner B L, Kasperson R E, Matson P A, et al. A framework for vulnerability analysis in sustainability science. PNAS, 2003, 100(14): 8074-8079.

DOI PMID

[33]
Liu J G, Dietz T, Carpenter S R, et al. Complexity of coupled human and natural systems. Science, 2007, 317(5844): 1513-1516.

DOI PMID

[34]
Fan Jie. Frontier approach of the sustainable process and pattern of human-environment system. Acta Geographica Sinica, 2014, 69(8): 1060-1068.

DOI

[樊杰. 人地系统可持续过程、格局的前沿探索. 地理学报, 2014, 69(8): 1060-1068.]

DOI

[35]
Wang Yafei, Fan Jie, Zhou Kan. Territorial function optimization regionalization based on the integration of "Double Evaluation". Geographical Research, 2019, 38(10): 2415-2429.

DOI

[王亚飞, 樊杰, 周侃. 基于“双评价”集成的国土空间地域功能优化分区. 地理研究, 2019, 38(10): 2415-2429.]

DOI

[36]
Biggs R, Westley F R, Carpenter S R. Navigating the back loop: Fostering social innovation and transformation in ecosystem management. Ecology and Society, 2010, 15(2): 9. http://www.ecologyandsociety.org/vol15/iss2/art9/.

[37]
Brown K, Westaway E. Agency, capacity, and resilience to environmental change: Lessons from human development, well-being, and disasters. Annual Review of Environment and Resources, 2011, 36: 321-342.

DOI

[38]
Irwin E G, Gopalakrishnan S, Randall A. Welfare, wealth, and sustainability. Annual Review of Resource Economics, 2016, 8: 77-98.

DOI

[39]
Fan J, Wang Y F, Wang C S, et al. Reshaping the sustainable geographical pattern: A major function zoning model and its applications in China. Earth's Future, 2019, 7(1): 25-42.

DOI

[40]
Fan Jie, Zhou Kan, Wang Yafei. Basic points and progress in technical methods of early-waring of the national resource and environmental carrying capacity (V 2016). Progress in Geography, 2017, 36(3): 266-276.

[樊杰, 周侃, 王亚飞. 全国资源环境承载能力预警(2016版)的基点和技术方法进展. 地理科学进展, 2017, 36(3): 266-276.]

DOI

[41]
Wang Yafei, Guo Rui, Fan Jie. Evolution analysis of China's spatial development structure and pattern optimization of major function zones. Bulletin of Chinese Academy of Sciences, 2020, 35(7): 855-866.

[王亚飞, 郭锐, 樊杰. 国土空间结构演变解析与主体功能区格局优化思路. 中国科学院院刊, 2020, 35(7): 855-866.]

[42]
Malthus T R. An Essay on the Principle of Population. London: St Paul's Church-Yard, 1798.

[43]
Verhulst P F. Notice on the law that the population follows in its growth. Mathematical and Physics, 1838, (10): 113-129.

[Verhulst P F. Notice sur la loi que la population suit dans son accroissement. Correspondence Mathematique et Physique, 1838, (10): 113-129.]

[44]
Hardin G. Carrying capacity as an ethical concept. Soundings, 1976, 59: 120-137.

[45]
Hadwen S, Palmer L J. Reindeer in Alaska. US Department of Agriculture, 1922.

[46]
Leopold A. Game Management. Madison: University of Wisconsin Press, 1987.

[47]
Leopold A. Wildlife in American culture. The Journal of Wildlife Management, 1943, 7(1): 1. DOI: 10.2307/3795771.

[48]
Allan W. Studies in African Land Usage in Northern Rhodesia. Cape Town: Oxford University Press, 1949.

[49]
Schaefer M B. Some aspects of the dynamics of populations important to the management of commercial marine fisheries. Inter-American Tropical Tuna Commission Bulletin, 1954, 1(2): 25-56.

[50]
Brush S B. The Concept of carrying capacity for systems of shifting cultivation. American Anthropologist, 1975, 77(4): 799-811.

DOI

[51]
Wilson E O, Bossert W H. A Primer on Population Biology. Sunderland: Sinauer Associates, 1971.

[52]
Cohen J E. How many people can the earth support? The Sciences, 1995, 35(6): 18-23.

[53]
Kuznets S. Economic growth and income inequality. The American Economic Review, 1955, 45(1): 1-28.

[54]
Boulding K E. Environmental Quality in a Growing Economy. Baltimore: Johns Hopkins University Press, 1966.

[55]
Ehrlich P R, Holdren J P. Impact of population growth. Science, 1971, 171: 1212-1217.

PMID

[56]
York R, Rosa E A, Dietz T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 2003, 46(3): 351-365.

DOI

[57]
Waggoner P E, Ausubel J H. A framework for sustainability science: A renovated IPAT identity. PNAS, 2002, 99(12): 7860-7865.

PMID

[58]
Meadows D H, Meadows D L, Randers J. The Limits to Growth:A Report for the Club of Rome's Project on the Predicament of Mankind. New York: Universe Books, 1972.

[59]
Brown B J, Hanson M E, Liverman D M, et al. Global sustainability: Toward definition. Environmental Management, 1987, 11: 713-719.

DOI

[60]
Linnér B O, Selin H. The United Nations Conference on Sustainable Development:Forty years in the making. Environment and Planning C: Government and Policy, 2013, 31(6): 971-987.

[61]
Arrow K, Bolin B, Costanza R, et al. Economic growth, carrying capacity, and the environment. Science, 1995, 268(5210): 520-521.

DOI PMID

[62]
Hardin G. Cultural carrying capacity: A biological approach to human problems. BioScience, 1986, 36(9): 599-606.

DOI

[63]
Daily G C, Ehrlich P R. Population sustainability, and Earth's carrying capacity. BioScience, 1992, 42(10): 761-771.

[64]
Lewontin R C.The meaning of stability. Brookhaven Symposium in Biology, 1969, 22: 13-24.

[65]
Holling C S. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 1973, 4: 2-23.

[66]
Allen C R, Holling C S. Novelty, adaptive capacity, and resilience. Ecology and Society, 2010, 15(3): 24. DOI:10.5751/ES-03720-150324.

[67]
Gunderson L H, Holling C S. Panarchy:Understanding Transformations in Human and Natural Systems. Washington: Island Press, 2002.

[68]
Rees W E. Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environment and Urbanization. 1992, 4(2): 121-130.

DOI

[69]
Allan J A. Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible//Allan J A. Proceedings of the Conference on Priorities for Water Resources Allocation and Management. London: UK, 1993.

[70]
Hoekstra A Y, Hung P Q. Globalisation of water resources: International virtual water flows in relation to crop trade. Global Environmental Change, 2005, 15(1): 45-56.

DOI

[71]
Patten B C. Network integration of ecological extremal principles: Exergy, emergy, power, ascendency, and indirect effects. Ecological Modelling, 1995, 79(1-3): 75-84.

DOI

[72]
Brown M T, Ulgiati S. Energy quality, emergy, and transformity: H T Odum's contributions to quantifying and understanding systems. Ecological Modelling, 2004, 178(1-2): 201-213.

DOI

[73]
Legović T, Geček S. Impact of maximum sustainable yield on independent populations. Ecological Modelling, 2010, 221(17): 2108-2111.

DOI

[74]
Davis D, Tisdell C. Economic management of recreational scuba diving and the environment. Journal of Environmental Management, 1996, 48(3): 229-248.

DOI

[75]
Crutzen P J. Geology of mankind. Nature, 2002, 415: 23. DOI: 10.1038/415023a.

[76]
Feola G. Societal transformation in response to global environmental change: A review of emerging concepts. Ambio, 2015, 44(5): 376-390.

DOI PMID

[77]
Donges J F, Winkelmann R, Lucht W, et al. Closing the loop: Reconnecting human dynamics to Earth System science. The Anthropocene Review, 2017, 4(2): 151-157.

DOI

[78]
Biermann C, Kelley L C, Lave R. Putting the Anthropocene into practice: Methodological implications. Annals of the American Association of Geographers, 2021, 111(3): 808-818.

DOI

[79]
Anderies J M, Folke C, Walker B, et al. Aligning key concepts for global change policy: Robustness, resilience, and sustainability. Ecology and Society, 2013, 18(2). DOI: 10.5751/ES-05178-180208.

[80]
Meadows D H. Thinking in Systems:A Primer. London: Chelsea Green Publishing, 2008.

[81]
Rockström J, Steffen W, Noone K, et al. A safe operating space for humanity. Nature, 2009, 461(7263): 472-475.

DOI

[82]
Schellnhuber H J. Tipping elements in the Earth System. PNAS, 2009, 106(49): 20561-20563.

DOI PMID

[83]
Steffen W, Richardson K, Rockström J, et al. Planetary boundaries: Guiding human development on a changing planet. Science, 2015, 347(6223): 1259855. DOI: 10.1126/science.1259855.

[84]
Biermann F, Kim R E. The boundaries of the planetary boundary framework: A critical appraisal of approaches to define a "safe operating space" for humanity. Annual Review of Environment and Resources, 2020, 45(1): 497-521.

DOI

[85]
Ostrom E. A general framework for analyzing sustainability of social-ecological systems. Science, 2009, 325(5939): 419-422.

DOI PMID

[86]
Barfuss W, Donges J F, Lade S J, et al. When optimization for governing human-environment tipping elements is neither sustainable nor safe. Nature Communications, 2018, 9(1): 2354. DOI: 10.1038/s41467-018-04738-z.

PMID

[87]
Raworth K.Doughnut Economics: Seven Ways to Think Like a 21st Century Economist. London: Chelsea Green Publishing, 2017.

[88]
Leach M, Raworth K, Rockström J. Between Social and Planetary Boundaries: Navigating Pathways in the Safe and Just Space for Humanity. World Social Science Report, 2013.

[89]
Dearing J A, Wang R, Zhang K, et al. Safe and just operating spaces for regional social-ecological systems. Global Environmental Change, 2014, 28: 227-238.

DOI

[90]
O'Neill D W, Fanning A L, Lamb W F, et al. A good life for all within planetary boundaries. Nature Sustainability, 2018, 1(2): 88-95.

DOI

[91]
Hughes T P, Carpenter S, Rockström J, et al. Multiscale regime shifts and planetary boundaries. Trends in Ecology & Evolution, 2013, 28(7): 389-395.

DOI

[92]
Rome A. Sustainability: The launch of spaceship earth. Nature, 2015, 527(7579): 443-445.

DOI

[93]
Downing A S, Bhowmik A, Collste D, et al. Matching scope, purpose and uses of planetary boundaries science. Environmental Research Letters, 2019, 14(7): 073005. DOI: 10.1088/1748-9326/ab22c9.

[94]
Olsson L, Jerneck A, Thoren H, et al. Why resilience is unappealing to social science: Theoretical and empirical investigations of the scientific use of resilience. Science Advances. 2015, 1(4): e1400217. DOI: 10.1126/sciadv.1400217.

[95]
The World Economic Forum Water Initiative. Water Security: The Water-Food- Energy-Climate Nexus:The World Economic Forum Water Initiative. Washington DC: Island Press, 2011.

[96]
Ringler C, Bhaduri A, Lawford R. The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency? Current Opinion in Environmental Sustainability, 2013, 5(6): 617-624.

DOI

[97]
United Nations Economic Commission for Europe UNECE. Reconciling resource uses in transboundary basins: Assessment of the Water-Food-Energy-Ecosystems Nexus. United Nations Economic Commission for Europe (UNECE),Geneva, Switzerland, 2015.

[98]
Albrecht T R, Crootof A, Scott C A. The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment. Environmental Research Letters, 2018, 13(4): 043002. DOI: 10.1088/1748-9326/aaa9c6.

[99]
Wang Y F, Fan J, Li J Y, et al. Methodological framework for identifying sustainability intervention priority areas on coastal landscapes and its application in China. Science of the Total Environment, 2021, 766(8): 142603. DOI: 10.1016/j.scitotenv.2020.142603.

[100]
Steffen W, Richardson K, Rockström J, et al. The emergence and evolution of Earth System Science. Nature Reviews Earth & Environment, 2020, 1(1): 54-63.

[101]
Zhang Yintang. The seriousness of the population problem in China. Acta Geographica Sinica, 1934, 1(1): 75-91.

DOI

[张印堂. 中国人口问题之严重. 地理学报, 1934, 1(1): 75-91.]

DOI

[102]
Chen Changheng. A comparative study of China's land and population problems with some proposals for her economic reconstruction. Acta Geographica Sinica, 1935, 2(4): 23-66.

DOI

[陈长蘅. 商榷我国土地与人口问题之初步比较研究及国民经济建设之政策. 地理学报, 1935, 2(4): 23-66.]

[103]
Fan Jie. Draft of major function oriented zoning of China. Acta Geographica Sinica, 2015, 70(2): 186-201.

DOI

[樊杰. 中国主体功能区划方案. 地理学报, 2015, 70(2): 186-201.]

DOI

[104]
General Office of the CPC Central Committee, General Office of the State Council. Several opinions on the establishment of a long-term mechanism for monitoring and early warning of resource and environmental carrying capacity. https://www.gov.cn/zhengce/2017-09/20/content_5226466.htm, 2017-9-20.

中共中央办公厅, 国务院办公厅. 关于建立资源环境承载能力监测预警长效机制的若干意见. https://www.gov.cn/zhengce/2017-09/20/content_5226466.htm, 2017-9-20.

[105]
Ministry of Natural Resources of PRC. Guidelines for the evaluation of the carrying capacity of resources and environment and the suitability of territorial space development (trial). http://gi.mnr.gov.cn/202001/t20200121_2498502.html, 2020-01-19.

[自然资源部. 资源环境承载能力和国土空间开发适宜性评价指南(试行). http://gi.mnr.gov.cn/202001/t20200121_2498502.html, 2020-01-19.

[106]
Biggs R, Carpenter S R, Brock W A. Turning back from the brink: Detecting an impending regime shift in time to avert it. PNAS, 2009, 106(3): 826-831.

DOI PMID

[107]
Carpenter S R, Cole J J, Pace M L, et al. Early warnings of regime shifts: A whole-ecosystem experiment. Science, 2011, 332(6033): 1079-1082.

DOI PMID

[108]
Gilpin M E, Ayala F J. Global models of growth and competition. PNAS, 1973, 70(12): 3590-3593.

PMID

[109]
Murphy T W. Limits to economic growth. Nature Physics, 2022, 18: 844-847.

DOI

[110]
Polasky S, Carpenter S R, Folke C, et al. Decision-making under great uncertainty: Environmental management in an era of global change. Trends in Ecology & Evolution, 2011, 26(8): 398-404.

DOI

[111]
Biggs R, Schlüter M, Biggs D, et al. Toward principles for enhancing the resilience of ecosystem services. Annual Review of Environment and Resources, 2012, 37: 421-448.

DOI

[112]
van den Bergh J. A third option for climate policy within potential limits to growth. Nature Climate Change, 2017, 7: 107-112.

DOI

文章导航

/