价格支持政策改革背景下中国玉米市场空间关联
丁存振(1988-), 男, 博士, 副教授, 研究方向为农产品市场与政策。E-mail: dingcunzhen2010@163.com |
收稿日期: 2020-08-18
要求修回日期: 2021-07-27
网络出版日期: 2021-12-22
基金资助
国家自然科学基金项目(72073084)
版权
Spatial correlation of corn markets under the background of price support policy reform in China
Received date: 2020-08-18
Request revised date: 2021-07-27
Online published: 2021-12-22
Supported by
National Natural Science Foundation of China(72073084)
Copyright
玉米市场空间关联是反映玉米市场运行效率的关键指标,价格支持政策的实施及改革对玉米市场空间关联产生重要影响。本文基于中国省际玉米市场价格数据,分析了价格支持政策改革背景下玉米市场空间关联及其时变情况,并运用社会网络分析法刻画了玉米市场空间关联网络特征,最后,通过QAP分析考察了影响玉米市场空间关联的主要因素。研究发现:① 中国玉米市场总体空间关联程度较高,且近年来整体呈上升趋势,玉米临时收储政策的实施并未改变其上升趋势,但导致政策实施省份玉米市场与其他地区玉米市场间关联程度下降。② 玉米市场空间关联呈现多线程、复杂的网络结构形态,网络结构较为紧密、整体关联性强且较为稳定;中东部地区玉米消费量较大的省份在玉米市场空间关联网络中处于中心位置,在网络中扮演着中心行动者角色,而实施玉米支持政策的区域以及西部地区在玉米市场空间关联网络中影响力较小,处于边缘和弱势地位,扮演着边缘行动者角色。③ 地理位置邻接、市场距离、销区市场势力、信息传递效应以及实施临时收储政策是决定和影响玉米市场空间关联的主要因素,其中,销区市场势力及信息传递效应对玉米市场空间关联的影响不断上升。
丁存振 . 价格支持政策改革背景下中国玉米市场空间关联[J]. 地理学报, 2021 , 76(10) : 2585 -2604 . DOI: 10.11821/dlxb202110017
Market spatial correlation is one of the key indicators that reflect the operation efficiency of corn markets. The implementation and reform of corn price support policy in China plays an important role in changing the spatial correlation of corn markets. Employing market price data at province level, this study first analyzed the change of corn market spatial correlations under the price support policy reform. Then, social network analysis was applied to describe the network characteristics of corn market spatial correlations, and quadratic assignment procedure (QAP) analysis was used to investigate key factors that affected the spatial correlation. The results indicated that, (1) overall, the spatial correlation of China's corn markets was relatively high, and there was an upward trend in recent years. The implementation of temporary corn storage policy exerted insignificant effect on this upward trend, but it led to a decrease in the spatial correlation between markets in policy-affected provinces and those in non-policy affected provinces. (2) The spatial correlation of corn markets presented a multi-threaded and complex network structure, which was closely related and stable as a whole. Provinces with large corn consumption in the central and eastern regions were at the center of the spatial correlation network and played as the central actor in the network. However, provinces in the western region and provinces implementing corn support policy had little effect on the spatial correlation network of corn markets, indicating their marginal and disadvantaged role in the network. (3) Geographical proximity, market distance, market power, information transmission effect and the implementation of temporary storage policy were the key factors that affected the spatial correlation of corn markets. Furthermore, the role of market power and information transmission effect in determining the spatial correlation has become increasingly important.
表1 玉米市场空间关联网络特征指标Tab. 1 Characteristics of spatial correlation network for corn markets |
指标 | 公式 | 含义 | |
---|---|---|---|
整体网络 | 网络密度 | (8) | 反映玉米市场空间关联网络的紧密程度,网络密度越大,省际玉米市场之间的联系就越紧密。 |
网络关联度 | (9) | 反映玉米市场空间关联网络的稳健性和脆弱性,关联度越高,网络越稳定。 | |
网络等级度 | (10) | 反映玉米市场空间关联网络的等级结构,等级越高,越多省份在玉米市场关联网络中处于从属和边缘地位。 | |
网络效率 | (11) | 反映玉米市场空间关联网络的效率,效率越低,玉米市场空间关联网络越稳定。 | |
个体网络 | 度数中心度 | (12) | 反映一个地区在玉米市场空间关联网络中的影响力,中心度越大,市场影响力越大。 |
中间中心度 | (13) | 反映一个地区在玉米空间关联网络中的“中介”或“桥梁”作用。 | |
接近中心度 | (14) |
注:L表示关联关系数量;N为节点数量;V为网络中不可达点的对数;K为网络中对称可达的点的对数;max(K)为网络最大可承载的对称可达点的对数;M为网络中多余的线条数;max(M)为网络最大可承载的多余线条数;n为与特定节点关联的节点数量; 为节点i控制节点j和节点k关联关系的能力; 表示节点i与节点j之间的捷径距离。 |
表2 2001—2018年中国玉米市场关联矩阵表Tab. 2 Correlation matrix of China's corn market from 2001 to 2018 |
北京 | 天津 | 河北 | 山西 | 内蒙古 | 辽宁 | 吉林 | 黑龙江 | 上海 | 江苏 | 浙江 | 安徽 | 福建 | 江西 | 山东 | 河南 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
北京 | 9.537 | 3.744 | 4.331 | 3.260 | 1.564 | 1.960 | 2.086 | 1.782 | 4.316 | 4.273 | 3.945 | 3.672 | 3.616 | 3.229 | 5.314 | 4.209 | ||||||||||||||
天津 | 3.041 | 9.254 | 4.986 | 3.510 | 2.045 | 2.329 | 1.755 | 2.031 | 4.735 | 4.126 | 4.418 | 3.392 | 4.032 | 3.357 | 5.294 | 4.545 | ||||||||||||||
河北 | 2.934 | 3.996 | 6.969 | 3.704 | 1.887 | 2.452 | 1.776 | 2.061 | 4.810 | 4.307 | 4.974 | 3.855 | 4.840 | 4.121 | 6.339 | 4.878 | ||||||||||||||
山西 | 2.431 | 3.777 | 4.245 | 7.780 | 1.810 | 1.688 | 1.257 | 1.488 | 4.892 | 4.455 | 4.488 | 4.324 | 4.190 | 3.862 | 5.650 | 5.370 | ||||||||||||||
内蒙古 | 2.324 | 3.356 | 3.837 | 4.061 | 9.209 | 3.659 | 2.731 | 3.473 | 3.866 | 3.223 | 3.436 | 3.043 | 3.741 | 3.065 | 3.348 | 3.230 | ||||||||||||||
辽宁 | 2.045 | 3.508 | 4.302 | 2.863 | 3.518 | 10.292 | 4.605 | 4.799 | 3.528 | 2.717 | 4.113 | 2.901 | 4.794 | 2.937 | 3.299 | 3.296 | ||||||||||||||
吉林 | 2.289 | 3.117 | 3.374 | 2.695 | 3.612 | 6.499 | 12.527 | 7.450 | 3.307 | 2.996 | 3.516 | 3.096 | 3.076 | 2.508 | 2.888 | 2.656 | ||||||||||||||
黑龙江 | 2.637 | 3.406 | 4.125 | 2.344 | 3.179 | 6.042 | 5.416 | 11.551 | 3.604 | 3.264 | 4.402 | 3.080 | 4.471 | 2.706 | 3.118 | 2.504 | ||||||||||||||
上海 | 2.508 | 3.140 | 4.514 | 3.814 | 2.063 | 1.683 | 1.287 | 1.947 | 7.719 | 5.453 | 4.861 | 3.527 | 5.838 | 4.367 | 5.936 | 4.422 | ||||||||||||||
江苏 | 3.229 | 3.043 | 3.865 | 3.958 | 1.630 | 1.440 | 1.187 | 1.503 | 5.746 | 8.638 | 5.751 | 4.721 | 4.493 | 3.942 | 7.253 | 5.549 | ||||||||||||||
浙江 | 2.626 | 2.971 | 4.144 | 3.096 | 2.121 | 2.360 | 1.255 | 2.123 | 5.393 | 5.111 | 7.884 | 4.097 | 5.749 | 4.650 | 6.279 | 4.114 | ||||||||||||||
安徽 | 2.990 | 3.817 | 4.127 | 4.503 | 1.842 | 2.076 | 1.873 | 1.823 | 3.931 | 4.988 | 4.533 | 8.433 | 3.863 | 3.702 | 5.278 | 5.385 | ||||||||||||||
福建 | 2.814 | 2.997 | 4.628 | 2.981 | 2.036 | 2.481 | 1.326 | 2.341 | 5.944 | 5.118 | 5.500 | 3.456 | 8.259 | 4.286 | 5.886 | 4.149 | ||||||||||||||
江西 | 2.557 | 2.729 | 3.806 | 3.777 | 1.525 | 1.643 | 1.214 | 1.798 | 4.438 | 4.572 | 5.777 | 4.188 | 5.109 | 8.227 | 5.210 | 4.113 | ||||||||||||||
山东 | 3.232 | 3.626 | 5.190 | 3.723 | 1.629 | 1.528 | 1.095 | 1.457 | 5.333 | 6.090 | 5.734 | 4.139 | 4.565 | 4.104 | 9.063 | 5.672 | ||||||||||||||
河南 | 3.021 | 3.399 | 4.821 | 4.465 | 1.555 | 1.516 | 1.524 | 1.379 | 5.072 | 5.430 | 5.179 | 4.847 | 4.083 | 3.743 | 7.190 | 7.909 | ||||||||||||||
湖北 | 2.545 | 2.660 | 3.924 | 4.067 | 1.626 | 1.688 | 1.254 | 1.636 | 4.780 | 4.564 | 5.283 | 4.450 | 4.339 | 4.348 | 6.075 | 4.849 | ||||||||||||||
湖南 | 2.580 | 2.373 | 4.047 | 3.701 | 1.950 | 1.581 | 1.194 | 1.886 | 4.884 | 4.847 | 5.371 | 4.407 | 5.446 | 5.226 | 5.408 | 3.969 | ||||||||||||||
广东 | 2.732 | 2.482 | 4.118 | 3.453 | 1.637 | 2.216 | 1.135 | 1.585 | 4.954 | 4.076 | 5.761 | 3.872 | 6.269 | 5.430 | 4.943 | 3.578 | ||||||||||||||
广西 | 2.590 | 2.222 | 3.894 | 3.141 | 1.762 | 1.980 | 1.251 | 1.368 | 4.421 | 3.748 | 4.612 | 3.567 | 5.027 | 4.642 | 4.888 | 3.759 | ||||||||||||||
海南 | 2.645 | 2.613 | 3.570 | 3.093 | 2.427 | 2.737 | 2.043 | 2.177 | 4.022 | 3.953 | 4.762 | 3.773 | 5.397 | 4.804 | 4.117 | 3.473 | ||||||||||||||
重庆 | 2.855 | 2.785 | 3.378 | 3.711 | 1.859 | 2.127 | 1.428 | 1.515 | 3.513 | 3.298 | 3.468 | 3.876 | 3.497 | 3.668 | 4.079 | 3.322 | ||||||||||||||
四川 | 3.073 | 2.997 | 4.041 | 3.077 | 2.405 | 2.423 | 1.778 | 1.821 | 3.388 | 2.987 | 3.154 | 2.975 | 3.879 | 3.990 | 3.797 | 3.775 | ||||||||||||||
贵州 | 1.827 | 1.910 | 2.680 | 3.630 | 1.928 | 2.153 | 1.806 | 1.936 | 3.759 | 2.845 | 3.012 | 3.776 | 3.303 | 2.798 | 3.833 | 3.093 | ||||||||||||||
云南 | 2.277 | 2.304 | 2.420 | 2.446 | 1.903 | 2.339 | 2.205 | 2.243 | 2.892 | 2.640 | 2.737 | 3.213 | 3.326 | 3.425 | 2.527 | 2.777 | ||||||||||||||
陕西 | 2.416 | 3.139 | 3.960 | 4.197 | 1.687 | 1.666 | 1.378 | 1.485 | 4.016 | 4.069 | 4.168 | 3.077 | 3.548 | 4.027 | 5.363 | 4.890 | ||||||||||||||
甘肃 | 2.235 | 2.762 | 3.739 | 3.580 | 2.237 | 2.043 | 1.563 | 2.060 | 3.572 | 2.918 | 3.897 | 3.070 | 3.417 | 4.135 | 4.402 | 3.947 | ||||||||||||||
青海 | 2.961 | 3.119 | 3.244 | 3.240 | 2.570 | 2.559 | 2.375 | 2.270 | 3.444 | 3.470 | 4.011 | 2.962 | 3.546 | 3.509 | 3.615 | 3.007 | ||||||||||||||
宁夏 | 2.670 | 2.761 | 3.573 | 3.489 | 2.431 | 2.737 | 1.768 | 2.440 | 3.606 | 3.538 | 4.065 | 2.661 | 3.810 | 3.143 | 4.292 | 3.813 | ||||||||||||||
新疆 | 2.691 | 3.119 | 4.257 | 2.762 | 2.787 | 2.105 | 2.645 | 2.497 | 3.644 | 3.236 | 2.562 | 2.975 | 3.103 | 2.708 | 3.644 | 3.108 | ||||||||||||||
To | 76.777 | 87.874 | 115.138 | 100.346 | 61.229 | 69.710 | 54.208 | 64.373 | 123.807 | 116.312 | 127.490 | 104.992 | 124.368 | 110.432 | 139.264 | 115.451 | ||||||||||||||
Total | 86.313 | 97.128 | 122.108 | 108.126 | 70.439 | 80.003 | 66.736 | 75.924 | 131.526 | 124.950 | 135.374 | 113.425 | 132.627 | 118.659 | 148.327 | 123.360 | ||||||||||||||
Net | -13.687 | -2.872 | 22.108 | 8.126 | -29.561 | -19.997 | -33.264 | -24.076 | 31.526 | 24.950 | 35.374 | 13.425 | 32.627 | 18.659 | 48.327 | 23.360 | ||||||||||||||
湖北 | 湖南 | 广东 | 广西 | 海南 | 重庆 | 四川 | 贵州 | 云南 | 陕西 | 甘肃 | 青海 | 宁夏 | 新疆 | From | ||||||||||||||||
北京 | 3.770 | 3.322 | 3.937 | 3.100 | 2.543 | 2.791 | 3.073 | 1.667 | 2.347 | 3.247 | 1.974 | 1.830 | 3.129 | 2.431 | 90.463 | |||||||||||||||
天津 | 4.254 | 3.184 | 3.431 | 2.413 | 2.007 | 3.109 | 2.337 | 2.168 | 2.083 | 3.995 | 2.197 | 1.914 | 2.263 | 1.794 | 90.746 | |||||||||||||||
河北 | 4.107 | 3.829 | 4.039 | 2.784 | 2.655 | 2.265 | 2.212 | 1.728 | 1.619 | 3.283 | 1.915 | 1.413 | 2.052 | 2.194 | 93.031 | |||||||||||||||
山西 | 4.639 | 3.284 | 3.518 | 2.612 | 3.047 | 2.340 | 1.839 | 2.062 | 2.270 | 4.106 | 2.360 | 1.637 | 2.513 | 2.066 | 92.220 | |||||||||||||||
内蒙古 | 3.332 | 2.887 | 3.564 | 2.656 | 2.819 | 2.576 | 3.001 | 1.760 | 2.383 | 3.291 | 3.247 | 2.762 | 3.446 | 2.674 | 90.791 | |||||||||||||||
辽宁 | 3.048 | 2.271 | 3.623 | 3.198 | 3.183 | 2.111 | 2.518 | 1.764 | 2.714 | 2.431 | 2.049 | 2.512 | 2.993 | 2.069 | 89.708 | |||||||||||||||
吉林 | 2.216 | 2.338 | 2.414 | 2.310 | 2.322 | 1.828 | 2.319 | 3.347 | 2.972 | 1.859 | 2.208 | 3.188 | 2.441 | 2.630 | 87.473 | |||||||||||||||
黑龙江 | 2.690 | 2.727 | 3.635 | 2.335 | 2.810 | 1.500 | 2.509 | 3.044 | 2.030 | 1.980 | 2.048 | 2.179 | 2.948 | 1.718 | 88.449 | |||||||||||||||
上海 | 4.850 | 4.105 | 4.812 | 2.948 | 2.892 | 1.913 | 2.289 | 1.637 | 1.610 | 2.814 | 1.592 | 1.546 | 2.038 | 1.875 | 92.281 | |||||||||||||||
江苏 | 4.587 | 3.727 | 3.873 | 2.763 | 2.185 | 1.934 | 1.996 | 1.387 | 1.854 | 3.164 | 1.410 | 1.459 | 1.834 | 1.877 | 91.362 | |||||||||||||||
浙江 | 4.046 | 4.620 | 4.980 | 3.366 | 2.905 | 1.993 | 2.079 | 1.225 | 1.717 | 2.580 | 1.462 | 1.528 | 2.006 | 1.521 | 92.116 | |||||||||||||||
安徽 | 4.176 | 3.114 | 4.118 | 3.083 | 2.306 | 2.199 | 1.950 | 1.989 | 2.568 | 3.314 | 1.678 | 1.802 | 2.056 | 2.483 | 91.567 | |||||||||||||||
福建 | 3.800 | 4.330 | 5.487 | 3.398 | 3.294 | 1.550 | 2.058 | 1.205 | 1.563 | 2.562 | 1.411 | 1.408 | 2.375 | 1.356 | 91.741 | |||||||||||||||
江西 | 4.211 | 4.907 | 5.067 | 3.743 | 4.057 | 2.245 | 2.473 | 1.451 | 1.802 | 2.657 | 1.926 | 1.328 | 1.788 | 1.661 | 91.773 | |||||||||||||||
山东 | 4.722 | 3.964 | 3.704 | 2.919 | 2.189 | 2.108 | 1.931 | 1.398 | 1.589 | 2.983 | 1.474 | 1.245 | 1.914 | 1.679 | 90.937 | |||||||||||||||
河南 | 4.493 | 3.622 | 3.342 | 2.627 | 2.540 | 1.912 | 2.516 | 1.422 | 1.562 | 3.675 | 1.569 | 1.502 | 2.103 | 1.983 | 92.091 | |||||||||||||||
湖北 | 6.858 | 3.846 | 4.036 | 3.646 | 2.903 | 2.314 | 2.740 | 1.827 | 2.160 | 3.516 | 1.961 | 1.886 | 2.451 | 1.769 | 93.142 | |||||||||||||||
湖南 | 4.074 | 7.049 | 5.148 | 4.174 | 3.291 | 2.305 | 2.534 | 1.492 | 1.591 | 2.477 | 1.904 | 1.543 | 1.998 | 1.552 | 92.951 | |||||||||||||||
广东 | 4.122 | 4.598 | 8.398 | 3.531 | 3.674 | 2.103 | 2.521 | 1.359 | 1.777 | 3.198 | 1.673 | 1.291 | 2.081 | 1.435 | 91.602 | |||||||||||||||
广西 | 4.255 | 5.328 | 4.751 | 9.489 | 3.543 | 2.295 | 2.619 | 2.163 | 2.035 | 2.441 | 2.325 | 1.456 | 2.223 | 2.204 | 90.511 | |||||||||||||||
海南 | 3.474 | 3.857 | 5.159 | 3.712 | 8.815 | 1.919 | 2.426 | 1.777 | 2.735 | 2.933 | 1.661 | 1.859 | 2.126 | 1.942 | 91.185 | |||||||||||||||
重庆 | 4.179 | 3.676 | 4.175 | 4.458 | 2.741 | 8.849 | 3.874 | 3.067 | 3.982 | 3.576 | 2.416 | 2.121 | 2.509 | 1.995 | 91.151 | |||||||||||||||
四川 | 4.283 | 3.203 | 4.569 | 3.803 | 3.257 | 4.164 | 9.389 | 2.069 | 2.736 | 3.181 | 2.547 | 2.488 | 2.119 | 2.633 | 90.611 | |||||||||||||||
贵州 | 4.704 | 4.179 | 3.310 | 4.556 | 2.039 | 3.020 | 2.758 | 12.227 | 5.266 | 3.128 | 3.732 | 2.098 | 2.612 | 2.085 | 87.773 | |||||||||||||||
云南 | 3.137 | 2.862 | 4.109 | 4.197 | 2.947 | 3.374 | 2.741 | 5.623 | 15.304 | 3.063 | 3.494 | 1.984 | 3.103 | 2.387 | 84.696 | |||||||||||||||
陕西 | 4.877 | 2.881 | 3.930 | 2.464 | 3.159 | 2.782 | 2.295 | 2.270 | 3.091 | 10.189 | 2.492 | 1.509 | 2.852 | 2.123 | 89.811 | |||||||||||||||
甘肃 | 4.565 | 2.964 | 3.547 | 3.656 | 2.977 | 3.106 | 3.013 | 2.906 | 3.218 | 3.640 | 8.762 | 1.779 | 4.189 | 2.102 | 91.238 | |||||||||||||||
青海 | 3.322 | 3.247 | 3.377 | 2.867 | 2.723 | 2.723 | 3.407 | 2.730 | 2.299 | 2.390 | 3.301 | 13.111 | 2.506 | 2.092 | 86.889 | |||||||||||||||
宁夏 | 3.886 | 3.160 | 3.407 | 3.156 | 2.970 | 2.576 | 2.634 | 2.651 | 3.329 | 3.813 | 3.570 | 2.038 | 9.639 | 2.374 | 90.361 | |||||||||||||||
新疆 | 3.849 | 2.874 | 2.958 | 2.476 | 2.694 | 2.399 | 2.763 | 3.183 | 3.201 | 3.980 | 3.007 | 2.291 | 2.333 | 14.150 | 85.850 | |||||||||||||||
To | 115.666 | 102.903 | 116.020 | 92.948 | 82.672 | 69.452 | 73.424 | 62.374 | 70.104 | 89.277 | 64.601 | 53.596 | 71.004 | 58.705 | 2714.519 | |||||||||||||||
Total | 122.524 | 109.953 | 124.419 | 102.437 | 91.487 | 78.301 | 82.814 | 74.600 | 85.407 | 99.466 | 73.363 | 66.708 | 80.643 | 72.855 | TCI | |||||||||||||||
Net | 22.524 | 9.953 | 24.419 | 2.437 | -8.513 | -21.699 | --17.186 | -25.400 | -14.593 | -0.534 | -26.637 | -33.292 | -19.357 | -27.145 | 90.484% |
图3 2005—2018年实施玉米支持政策的4个省份市场关联图注:图中虚线表示临时收储政策实施时期。 Fig. 3 Spatial correlation of corn markets in provinces with price support policy from 2005 to 2018 |
表3 不同时期实施玉米支持政策省份玉米市场关联系数Tab. 3 Spatial correlation of corn markets in provinces with price support policy in different periods |
序列 | 临储前 | 临储期 | 补贴期 | |
---|---|---|---|---|
To | 内蒙古 | 3.6499 | 1.5745 | 1.2454 |
辽宁 | 2.9899 | 1.9732 | 2.4172 | |
吉林 | 2.0623 | 1.8667 | 1.2086 | |
黑龙江 | 2.4139 | 2.1409 | 1.7972 | |
From | 内蒙古 | 2.8356 | 3.0609 | 3.1822 |
辽宁 | 2.9434 | 2.9787 | 3.0879 | |
吉林 | 3.0207 | 2.8483 | 2.9736 | |
黑龙江 | 2.9293 | 2.9761 | 2.8914 | |
Net | 内蒙古 | 0.8143 | -1.4864 | -1.9368 |
辽宁 | 0.0465 | -1.0056 | -0.6707 | |
吉林 | -0.9584 | -0.9816 | -1.7650 | |
黑龙江 | -0.5154 | -0.8353 | -1.0943 |
表4 中国玉米市场空间关联的个体网络特征Tab. 4 Individual network characteristics of corn market spatial correlations |
地区 | 关联省份 | 点出度 | 点入度 | 度数中心度 | 接近中心度 | 中间中心度 |
---|---|---|---|---|---|---|
北京 | 16 | 2 | 16 | 55.172 | 69.048 | 0.045 |
天津 | 18 | 11 | 14 | 62.069 | 72.500 | 0.575 |
河北 | 27 | 27 | 14 | 93.103 | 93.548 | 3.698 |
山西 | 22 | 20 | 14 | 75.862 | 80.556 | 0.824 |
内蒙古 | 17 | 3 | 16 | 58.621 | 70.732 | 0.886 |
辽宁 | 13 | 3 | 13 | 44.828 | 64.444 | 0.500 |
吉林 | 8 | 2 | 8 | 27.586 | 58.000 | 0.290 |
黑龙江 | 10 | 3 | 10 | 34.483 | 60.417 | 0.164 |
上海 | 28 | 28 | 13 | 96.552 | 96.667 | 4.118 |
江苏 | 23 | 23 | 14 | 79.310 | 82.857 | 1.744 |
浙江 | 26 | 26 | 12 | 89.655 | 90.625 | 2.762 |
安徽 | 20 | 19 | 13 | 68.966 | 76.316 | 0.736 |
福建 | 27 | 27 | 13 | 93.103 | 93.548 | 2.915 |
江西 | 23 | 23 | 14 | 79.310 | 82.857 | 1.145 |
山东 | 26 | 26 | 14 | 89.655 | 90.625 | 2.361 |
河南 | 23 | 23 | 14 | 79.310 | 82.857 | 0.985 |
湖北 | 26 | 26 | 14 | 89.655 | 90.625 | 2.392 |
湖南 | 21 | 20 | 14 | 72.414 | 78.378 | 0.783 |
广东 | 27 | 27 | 15 | 93.103 | 93.548 | 2.915 |
广西 | 21 | 14 | 14 | 72.414 | 78.378 | 1.141 |
海南 | 16 | 8 | 13 | 55.172 | 69.048 | 0.229 |
重庆 | 17 | 2 | 17 | 58.621 | 70.732 | 0.347 |
四川 | 14 | 2 | 14 | 48.276 | 67.442 | 0.144 |
贵州 | 14 | 3 | 12 | 48.276 | 65.909 | 1.180 |
云南 | 12 | 5 | 9 | 41.379 | 61.702 | 0.402 |
陕西 | 21 | 16 | 13 | 72.414 | 80.556 | 1.410 |
甘肃 | 17 | 5 | 14 | 58.621 | 70.732 | 0.583 |
青海 | 14 | 1 | 13 | 48.276 | 65.909 | 0.522 |
宁夏 | 18 | 3 | 16 | 62.069 | 72.500 | 0.493 |
新疆 | 8 | 0 | 8 | 27.586 | 58.000 | 0.163 |
平均值 | 19.100 | 13.267 | 13.267 | 65.862 | 76.302 | 1.215 |
表5 玉米市场各板块间关联关系Tab. 5 Correlation of corn markets among different blocks |
经济板块 | 接受关系 | 板块成员数 | 期望内部比例 | 实际内部比例 | 接受外板块数 | 板块属性 | |||
---|---|---|---|---|---|---|---|---|---|
板块一 | 板块二 | 板块三 | 板块四 | ||||||
板块一 | 17 | 4 | 2 | 0 | 9 | 0.276 | 0.739 | 102 | 净受益板块 |
板块二 | 0 | 11 | 0 | 0 | 4 | 0.103 | 1 | 36 | 主受益板块 |
板块三 | 66 | 24 | 102 | 53 | 11 | 0.345 | 0.416 | 47 | 净溢出板块 |
板块四 | 36 | 8 | 45 | 30 | 6 | 0.172 | 0.252 | 53 | 经纪人板块 |
表6 玉米市场空间关联板块的网络密度矩阵和像矩阵Tab. 6 Density matrix and image matrix of all blocks |
板块一 | 板块二 | 板块三 | 板块四 | 板块一 | 板块二 | 板块三 | 板块四 | |
---|---|---|---|---|---|---|---|---|
板块一 | 0.236 | 0.111 | 0.020 | 0.000 | 0 | 0 | 0 | 0 |
板块二 | 0.000 | 0.917 | 0.000 | 0.000 | 0 | 1 | 0 | 0 |
板块三 | 0.667 | 0.545 | 0.927 | 0.803 | 1 | 1 | 1 | 1 |
板块四 | 0.667 | 0.333 | 0.682 | 1.000 | 1 | 0 | 1 | 1 |
表7 QAP相关分析结果Tab. 7 Correlation results of QAP |
变量 | 相关系数 | ||
---|---|---|---|
临储前 | 临储期 | 补贴期 | |
临储政策 | -0.178* | ||
补贴政策 | -0.194* | ||
市场邻接 | 0.258*** | 0.348*** | 0.341*** |
市场距离 | 0.272*** | -0.440*** | -0.443*** |
产区势力 | -0.022 | 0.023 | 0.001 |
销区势力 | 0.116** | 0.149** | 0.174** |
信息效应 | 0.148** | 0.119* | 0.135*** |
市场化程度 | -0.098* | -0.103* | -0.137** |
注:***、**、*分别表示1%、5%、10%的显著性水平。 |
表8 QAP回归结果Tab. 8 Regression results of QAP |
阶段 | 变量 | 非标准化系数 | 标准化系数 | 显著性水平 | 概率1 | 概率2 |
---|---|---|---|---|---|---|
临储前 | 截距 | 3.293 | 0.000 | - | - | - |
市场邻接 | 0.548 | 0.166 | 0.000 | 0.000 | 1.000 | |
市场距离 | 0.000 | -0.184 | 0.010 | 0.990 | 0.010 | |
产区势力 | 0.000 | -0.015 | 0.390 | 0.610 | 0.390 | |
销区势力 | 0.000 | 0.130 | 0.045 | 0.045 | 0.955 | |
信息效应 | 0.805 | 0.147 | 0.030 | 0.030 | 0.970 | |
市场化程度 | -0.015 | -0.018 | 0.365 | 0.635 | 0.365 | |
临储期 | 截距 | 3.702 | 0.000 | - | - | - |
临储政策 | -0.354 | -0.079 | 0.082 | 0.919 | 0.082 | |
市场邻接 | 1.067 | 0.189 | 0.000 | 0.000 | 1.000 | |
市场距离 | -0.001 | -0.330 | 0.000 | 1.000 | 0.000 | |
产区势力 | -0.001 | -0.081 | 0.220 | 0.781 | 0.220 | |
销区势力 | 0.001 | 0.161 | 0.030 | 0.030 | 0.971 | |
信息效应 | 1.543 | 0.170 | 0.066 | 0.066 | 0.935 | |
市场化程度 | 0.013 | 0.009 | 0.445 | 0.445 | 0.555 | |
补贴期 | 截距 | 3.781 | 0.000 | - | - | - |
补贴政策 | -0.487 | -0.102 | 0.165 | 0.835 | 0.165 | |
市场邻接 | 1.030 | 0.172 | 0.000 | 0.000 | 1.000 | |
市场距离 | -0.001 | -0.326 | 0.000 | 1.000 | 0.000 | |
产区势力 | 0.000 | 0.068 | 0.293 | 0.293 | 0.708 | |
销区势力 | 0.001 | 0.186 | 0.015 | 0.015 | 0.985 | |
信息效应 | 0.787 | 0.190 | 0.070 | 0.070 | 0.931 | |
市场化程度 | -0.051 | -0.034 | 0.319 | 0.681 | 0.319 |
[1] |
[ 普蓂喆, 钟钰. 市场化导向下的中国粮食收储制度改革: 新风险及应对举措. 农业经济问题, 2019, 40(7):10-18.]
|
[2] |
[ 徐志刚, 习银生, 张世煌. 2008/2009年度国家玉米临时收储政策实施状况分析. 农业经济问题, 2010, 31(3):16-23, 110.]
|
[3] |
[ 顾莉丽, 郭庆海. 玉米收储政策改革及其效应分析. 农业经济问题, 2017, 38(7):72-79.]
|
[4] |
[ 阮荣平, 刘爽, 郑风田. 新一轮收储制度改革导致玉米减产了吗: 基于DID模型的分析. 中国农村经济, 2020(1):86-107.]
|
[5] |
[ 钱加荣, 赵芝俊. 价格支持政策对粮食价格的影响机制及效应分析. 农业技术经济, 2019(8):89-98.]
|
[6] |
[ 丁存振, 郑燕 价格支持政策对粮食价格的影响机制及效应分析. 农业技术经济, 2020(3):100-109, 173-174.]
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
[ 丁守海. 国际粮价波动对我国粮价的影响分析. 经济科学, 2009(2):60-71.]
|
[17] |
[ 罗锋, 牛宝俊. 国际农产品价格波动对国内农产品价格的传递效应: 基于VAR模型的实证研究. 国际贸易问题, 2009(6):16-22.]
|
[18] |
[ 武拉平. 我国小麦、玉米和生猪收购市场整合程度研究. 中国农村观察, 1999(4):25-31, 40.]
|
[19] |
[ 喻闻, 黄季焜. 从大米市场整合程度看我国粮食市场改革. 经济研究, 1998, 33(3):50-57.]
|
[20] |
|
[21] |
|
[22] |
[ 全世文, 曾寅初, 毛学峰. 运输成本可以解释空间市场整合中的交易成本吗? 来自中国小麦和玉米市场的证据. 中国农村观察, 2015(1):15-29, 93.]
|
[23] |
[ 马述忠, 屈艺. 市场整合与贸易成本: 基于中国粮食市场空间价格传导的新证据. 农业经济问题, 2017, 38(5):72-82, 112.]
|
[24] |
[ 郑燕, 丁存振. 国际农产品价格对国内农产品价格动态传递效应研究. 国际贸易问题, 2019(8):47-64.]
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
[ 任梦瑶, 肖作鹏, 王缉宪. 中国城际专线物流网络空间格局. 地理学报, 2020, 75(4):820-832.]
|
[41] |
[ 李敬, 陈澍, 万广华, 等. 中国区域经济增长的空间关联及其解释: 基于网络分析方法. 经济研究, 2014, 49(11):4-16.]
|
[42] |
|
[43] |
[ 刘华军, 彭莹, 贾文星, 等. 价格信息溢出、空间市场一体化与地区经济差距. 经济科学, 2018(3):49-60.]
|
[44] |
[ 樊纲, 王小鲁, 马光荣. 中国市场化进程对经济增长的贡献. 经济研究, 2011, 46(9):4-16.]
|
/
〈 |
|
〉 |