城市地理

城市景观格局尺度效应的空间统计规律——以上海中心城区为例

展开
  • 1. 教育部地理信息科学重点实验室,华东师范大学地理系,上海200062;
    2. 中国科学院地理科学与资源研究所,北京 100101
徐建华 (1965-), 男, 教授, 博士生导师, 主要从事地理数量方法与GIS方面的科研和教学工作, 出版教材、专著10部, 发表学术论文100余篇。E-mail: jhxu@geo.ecnu.edu.cn

收稿日期: 2003-12-30

  修回日期: 2004-06-01

  网络出版日期: 2004-11-25

基金资助

国家自然科学基金项目(40371092)

A Statistical Study on Spatial Scaling Effects of Urban Landscape Pattern: A Case Study of the Central Area of the External Circle Highway in Shanghai

Expand
  • 1. The Key Lab of GIScience of the Ministry of Education, PRC, Dept. of Geography, East China Normal University, Shanghai 200062, China;
    2. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

Received date: 2003-12-30

  Revised date: 2004-06-01

  Online published: 2004-11-25

Supported by

National Natural Science Foundation of China, No.40371092

摘要

以上海市外环以内的中心城区为区域背景,基于SPOT全色波段遥感影像数据和GIS技术,运用空间统计分析方法,研究城市景观格局的空间尺度效应。研究结果表明:(1) 城市景观格局的空间自相关性具有显著的尺度依赖性。Moran指数I与Geary系数c对粒度变化的敏感点相同,均为50 m。(2) 城市景观形态具有分形特征,各类景观斑块的分维数对粒度变化的响应不同,它们随着粒度的变化呈非线性变化趋势;在粒度较小时,各类景观斑块之间的分维数差异较大,而随着粒度的增大,其分维数之间的差异逐渐缩小。(3) 城市景观多样性格局,与空间区位及人类活动的空间格局息息相关。在城市中心,主导型景观是经济效益较高的商业文化景观,并且景观斑块聚集度、破碎度大;经济效益较低的农业景观分布在城市边缘区,而且景观类型单一,斑块面积较大,破碎度较小;在由城市中心向边缘过渡的中间地带,景观类型多样,空间格局复杂。(4) 景观多样性具有尺度依赖性。随着幅度的增加,景观多样性指数逐渐增大,多样性的空间格局也显著变化。在0.5 km幅度下,多样性指数的最大值出现在市中心,从市中心向外呈现高低起伏的环状模式扩展,随着幅度增加,多样性指数的高值区向景观类型变化最剧烈的城乡过渡地带转移。(5) 景观多样性的空间变异也具有明显的尺度依赖性。在较小幅度下,总体空间变异主要来自空间自相关的贡献,随机因素贡献较小;而较大幅度掩盖了更小尺度上的变异,导致块金效应增强,总体空间变异中自相关部分的贡献明显下降。

本文引用格式

徐建华,岳文泽,谈文琦 . 城市景观格局尺度效应的空间统计规律——以上海中心城区为例[J]. 地理学报, 2004 , 59(6) : 1058 -1067 . DOI: 10.11821/xb200406030

Abstract

Based on SPOT remote sensing images and GIS, choosing the central area of the external circle highway in Shanghai as a case study area, the paper studied the spatial scaling effect of the urban landscape pattern with different grains and extents. The conclusions are drawn as follows: (1) The spatial autocorrelation of urban landscape pattern depends on different scales within a certain range of scales, and Moran I and Geary c related to the grains, which characterized the spatial autocorrelation of the urban landscape structure, have the same sensitive points to the scaling at the level of 50 m. (2) The patches of all kinds of landscapes have the fractal character. The fractal dimensions of landscapes respond to scaling differently, and the present nonlinear change trends with grains. The fractal dimensions of landscapes are obviously different at a small grain, but the differences become not obvious with the increasing grain. (3) The landscape diversity are closely linked to the location and the pattern of human activities, especially to economic and social activities. Due to the high land cost in the urban center, the dominant landscapes are mainly for business and culture, and their patches have the characters of high congregation and high fragmentation. While agricultural landscapes with low economic benefit can only be located at the fringe or outskirt of the urban area, and they have the characters of simplex, larger patches and less fragmentation. (4) The landscape diversity depends on spatial scale. With the increasing extent, the Shannon diversity index (SHDI) increases and the spatial pattern of landscape varies dramatically. At 0.5 km extent, the maximum of diversity is in the center of the urban area. The landscape diversity is distributed with a ring mode up and down from the center to the outer. With the increasing extent, the maximum of diversity moves to the urban-rural transition zone where landscape types change dramatically. (5) The semivariogram discloses the spatial variance character and internal mechanism of landscape diversity. At a small scale, the spatial variance of diversity is more complicated. The spatial heterogeneity, which is caused by spatial autocorrelation, contributes a lot to the total spatial heterogeneity of terrestrial ecosystem, while the spatial heterogeneity caused by random factors (scale and measure error) contributes less. The increasing scale washes off the detailed variances in a fine scale. The coarse scale may result in more nugget effect and less contribution, which is caused by spatial autocorrelation.

参考文献


[1] Forman R T T. Some general principles of landscape and regional ecology. Landscape Ecology, 1995, 10: 133-142.

[2] Noss R F. Landscape connectivity: different functions and different scales. In: Hudson W E (ed.), Landscape Linkages and Biodiversity. Washington, D.C., USA: Island Press, 1991. 27-29.

[3] Wu J. Landscape ecology: concepts and theories. Chinese Journal of Ecology, 2000, 19(1): 42-52.
[邬建国. 景观生态学—概念与理论. 生态学杂志, 2000, 19(1): 42-52.]

[4] Xiao D. The formation and development of modern landscape science. Scientia Geographica Sinica, 1999, 19(4): 379-384.
[肖笃宁. 论现代景观科学的形成与发展. 地理科学, 1999, 19(4): 379-384.]

[5] Wu J. Landscape Ecology. Beijing: Higher Education Press, 2000. 104-105.
[邬建国. 景观生态学. 北京: 高等教育出版社, 2000. 104-105.]

[6] Jianguo Wu, Jelinski D E, Luck M et al. Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics. Geographic Information Sciences, 2000, 6(1): 6-19.

[7] Wu J, Qi Y. Dealing with scale in landscape analysis: an overview. Geographic Information Sciences, 2000, 6(1): 1-5.

[8] Marceau D J. The scale issue in social and natural sciences. Canadian Journal of Remote Sensing, 1999, 25: 347-356.

[9] Yue T, Liu J. Issues on multi-scales in ecogeograghical modeling. Quaternary Sciences, 2003, 23(3): 256-261.
[岳天祥, 刘纪远. 生态地理建模中的多尺度问题. 第四纪研究, 2003, 23(3): 256-261.]

[10] Yue T, Ye Q. Models for landscape connectivity and their applications. Acta Geographica Sinica, 2002, 57(1): 67-75.
[岳天祥, 叶庆华. 景观连通性模型. 地理学报, 2002, 57(1): 67-75.]

[11] Levin S A. The problem of pattern and scale in ecology. Ecology, 1992, 73: 1943-1967.

[12] Lv Y, Fu B. Ecological scale and scaling. Acta Ecologica Sinica, 2001, 21(12): 2096-2105.
[吕一河, 傅伯杰. 生态学中的尺度及尺度转换方法. 生态学报, 2001, 21(12): 2096-2105.]

[13] Xu J, Fang C, Yue W. An analysis of the mosaic structure of regional landscape using GIS and remote sensing. Acta Ecologica Sinica, 2003, 23(2): 365-375.
[徐建华, 方创琳, 岳文泽. 基于RS与GIS的区域景观镶嵌结构研究. 生态学报, 2003, 23(2): 365-375.]

[14] Xu J, Mei A. Quantitative analysis and fractal modeling on the landscape mosaic and its evolutionary process of Shanghai in the period from 1947-1996. Ecologic Science, 2002, 21(2): 131-137.
[徐建华, 梅安新. 20世纪下半叶上海城市景观镶嵌结构演变的数量特征与分形结构模型研究. 生态科学, 2002, 21(2): 131-137.]

[15] Couclelis H. From cellular automata to urban models: new principles for model development and implementation. Environment and Planning B, 1997, 24: 165-174.

[16] Batty M, Xie Y, Sun Z. Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems, 1999, 23(2): 205-233.

[17] Zhou C, Sun Z, Xie Y. Geo-Cellular Automata. Beijing: Science Press, 1999.

[18] Wang J, Li L, Ge Y et al. A theoretic framework for spatial analysis. Acta Geographica Sinica, 2000, 55(1): 92-103.
[王劲峰, 李连发, 葛咏 等. 地理信息空间分析的理论体系探讨. 地理学报, 2000, 55(1): 92-103.]

[19] William F F. The ecology of urban landscapes: modeling housing starts as a density-dependent colonization process. Landscape Ecology, 2001, 16(1): 33-39.

[20] Matthew L, Jianguo W. A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landscape Ecology, 2002, 17(4): 327-339.

[21] Gustafson E J, Parker G R. Relationship between landcover proportion and indices of landscape special pattern. Landscape Ecology, 1992, 7: 101-110.

[22] Hulshoff R M. Landscape indices describing a Dutch landscape. Landscape Ecology, 1995, 10(2): 101-111.

[23] Turner M G, Gardner R H (eds.). Quantitative Methods in Landscape Ecology: The Analysis and Interpretation of Landscape Heterogeneity. New York: Springer-Verlag, 1991.

[24] Zhang J, Qiu Y, Zhen F. Quantitative methods in landscape pattern analysis. Journal of Mountain Science, 2000, 18(4): 346-352.
[张金屯, 邱扬, 郑凤英. 景观格局的数量研究方法. 山地学报, 2000, 18(4): 346-352.]

[25] Sen A K. Large sample-size distributions of statistics used in testing for spatial correlation. Geographical Analysis, 1976, 9: 175-184.

[26] Kyriakidis P, Journel A G. Geostatistics models: a review. Mathematical Geology, 1999, 31(6): 615-684.

[27] Li B. Fractal geometry applications in description and analysis of patch patterns and patch dynamics. Ecological Modelling, 2000, 132: 33-50.

[28] Mandelbrot B B. The Fractal Geometry of Nature. New York: W H Freeman, 1982. 45-66.

[29] Dong L. Fractal Theory and Its Application. Shenyang: Liaoning Science and Technology Press, 1991.

[30] Wang J, Fu B J, Qiu Y et al. Spatiotemporal variability of soil moisture in small catchment on Loess Plateau: semivariograms. Acta Geographica Sinica, 2000, 55(4): 428-438.
[王军, 傅伯杰, 邱扬 等. 黄土丘陵小流域土壤水分的时空变异特征. 地理学报, 2000, 55(4): 428-438.]

[31] Burrough P A. GIS and geostatistics: essential partners for spatial analysis. Environmental and Ecological Statistics, 2001, 8(4): 361-377.

[32] Xu J. Mathematical Methods in Contemporary Geography (2nd edn.). Beijing: Higher Education Press, 2002. 105-120.

[33] Zhao W, Fu B, Chen L. Some fundamental issues in scaling. Advance in Earth Sciences, 2002, 17(6): 906-908.
[赵文武, 傅伯杰, 陈利顶. 尺度推绎研究中的几点基本问题. 地球科学进展, 2002, 17(6): 906-908.]

文章导航

/