地理学报 ›› 2015, Vol. 70 ›› Issue (11): 1720-1734.doi: 10.11821/dlxb201511003
收稿日期:
2015-04-16
修回日期:
2015-05-16
出版日期:
2015-11-20
发布日期:
2015-11-20
作者简介:
作者简介:王振波(1980-), 男, 山东禹城人, 博士, 助理研究员, 中国地理学会会员(S110007159A), 主要研究方向为城市化与生态环境效应。E-mail:
基金资助:
Zhenbo WANG1,2(), Chuanglin FANG1,2(
), Guang XU1, Yuepeng PAN3
Received:
2015-04-16
Revised:
2015-05-16
Published:
2015-11-20
Online:
2015-11-20
Supported by:
摘要:
大气霾污染因其对人体健康、生态环境和气候变化的影响而成为全球关注的严重环境问题,PM2.5是中国霾污染频繁的主要原因。过去对国家尺度上PM2.5时空分布的认识主要基于卫星观测,因其反演方法的局限性,卫星资料难以真实反映近地面PM2.5浓度的时空变化规律。本文基于中国2014年190个城市中的945个监测站的PM2.5浓度观测数据,采用空间数据统计模型,揭示了中国PM2.5的时空格局。结果显示,2014年中国城市PM2.5平均浓度61 μg/m3,具有显著的冬秋高、春夏低的“U”型逐月变化规律和周期性U-脉冲型逐日变化规律;中国城市PM2.5浓度呈现显著的空间分异与集聚规律,以及两次南北进退的空间循环周期;胡焕庸线和长江是中国PM2.5浓度高值区和低值区的东西和南北分界线,胡焕庸线以东和长江以北的环渤海城市群、中原城市群、长三角城市群、长江中游城市群和哈长城市群等地区是2014年PM2.5的高污染城市聚集地,京津冀城市群是全年污染核心区;以珠三角为核心的东南沿海地区是稳定的空气质量优良区。
王振波, 方创琳, 许光, 潘月鹏. 2014年中国城市PM2.5浓度的时空变化规律[J]. 地理学报, 2015, 70(11): 1720-1734.
Zhenbo WANG, Chuanglin FANG, Guang XU, Yuepeng PAN. Spatial-temporal characteristics of the PM2.5 in China in 2014[J]. Acta Geographica Sinica, 2015, 70(11): 1720-1734.
[1] |
Tian S, Pan Y, Liu Z, et al.Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China. Journal of Hazardous Materials, 2014, 279: 452-460.
doi: 10.1016/j.jhazmat.2014.07.023 pmid: 25106045 |
[2] |
Wang Y, Yao L, Wang L, et al.Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Science China Earth Sciences, 2014, 57: 14-25.
doi: 10.1007/s11430-013-4773-4 |
[3] |
Kan H, Chen R, Tong S.Ambient air pollution, climate change, and population health in China. Environment International, 2012, 42: 10-19.
doi: 10.1016/j.envint.2011.03.003 pmid: 21440303 |
[4] | Guan D B, Su X, Zhang Q, et al.The socioeconomic drivers of China's primary PM2.5 emissions. Environmental Research Letters, 2014, 9: 1-9. |
[5] |
Pan Yuepeng, Jia Lin, Tian Shili, et al.Potential effects of haze pollution on agriculture in China. Journal of Agro-Environment Science, 2014, 33(11): 2279-2280.
doi: 10.11654/jaes.2014.11.30 |
[潘月鹏, 贾琳, 田世丽, 等. 大气霾污染对农业生产的可能影响. 农业环境科学学报, 2014, 33(11): 2279-2280.]
doi: 10.11654/jaes.2014.11.30 |
|
[6] |
Hu M, Jia L, Wang J, et al. Spatial and temporal characteristics of particulate matter in Beijing, China using the Empirical Mode Decomposition method. Science of the Total Environment, 2013, 458-460: 70-80.
doi: 10.1016/j.scitotenv.2013.04.005 pmid: 23644281 |
[7] |
Ho K F, Engling G, Ho S S H, et al. Seasonal variations of anhydrosugars in PM2.5 in the Pearl River Delta Region, China. Tellus Series B-Chemical and Physical Meteorology, 2014, 66: 22577.
doi: 10.3402/tellusb.v66.22577 |
[8] | Li L, Chen C H, Fu J S, et al.Air quality and emissions in theYangtze River Delta, China, Atmos. Chem. Phys., 2011, 11: 1621-1639. |
[9] |
Zhao P S, Dong F, He D, et al.Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmospheric Chemistry and Physics, 2013, 13: 4631-4644.
doi: 10.5194/acp-13-4631-2013 |
[10] | Liu Y, Paciorek C J, Koutrakis P.Estimating Regional Spatial and Temporal Variability of PM2.5 Concentrations Using Satellite Data, Meteorology, and Land Use Information. Environmental health perspectives, 2009, 117: 886-892. |
[11] |
Wang J, Christopher S A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophysical Research Letters, 2003, 30(21): Art. No. 2095.
doi: 10.1029/2003GL018174 |
[12] |
Paciorek C J, Liu Y.Limitations of remotely-sensed aerosol as a spatial proxy for fine particulate matter. Environ Health Perspect, 2009, 117: 904-909.
doi: 10.1289/ehp.0800360 |
[13] | Ministry of environmental protection of the People's Republic of China. Ambient Air Quality Standards (on trial). National Environmental Protection Standards of the People's Republic of China (GB3095-2012), 2012-02-29. |
[国家环境保护部. 环境空气质量标准(试行). 中华人民共和国国家环境保护标准(GB3095-2012), 2012-02-29.] | |
[14] |
Wang Zhanshan, Li Yunting, Chen Tian, et al.Spatial-temporal characteristics of PM2.5 in Beijing in 2013. Acta Geographica Sinica, 2015, 70(1): 110-120.
doi: 10.13671/j.hjkxxb.2014.0915 |
[王占山, 李云婷, 陈添, 等. 2013年北京市PM2.5的时空分布. 地理学报, 2015, 70(1): 110-120.]
doi: 10.13671/j.hjkxxb.2014.0915 |
|
[15] | Seung-Jae L, Marc L S, Aaron V D, et al. Comparison of geostatistical interpolation and remote sensing techniques for estimating long-term exposure to ambient PM2.5 concentrations across the continental United States. Environmental Health Perspectives, 2012, 120(12): 1727-1732. |
[16] | Zhang A, Qi Q, Jiang L, et al.Population Exposure to PM2.5 in the Urban Area of Beijing. PLOS ONE, 2013, 8(5): 1-9. |
[17] | Pan Jinghu, Zhang Wen, Li Junfeng, et al.Spatial distribution characteristics of air pollutants in major cities in China during the period of wide range haze pollution. Chinese Journal of Ecology, 2014, 33(12): 3423-3431. |
[潘竟虎, 张文, 李俊峰, 等. 中国大范围雾霾期间主要城市空气污染物分布特征. 生态学杂志, 2014, 33(12): 3423-3431.] | |
[18] |
Tobler W A.A computer movie simulat ing urban growth in the Detroit region. Economic Geography, 1970, 46: 234-240.
doi: 10.2307/143141 |
[19] |
Moran P A.The interpretation of statistical maps. Journal of the Royal Statistical Society B, 1948, 37: 243-251.
doi: 10.2307/2980817 |
[20] |
Geary R C.The contiguity ratio and statistical mapping. The Incorporated Statistician, 1954, 5: 115-145.
doi: 10.2307/2986645 |
[21] |
Wu J S, Li J C, Peng J, et al.Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China. Environmental science and pollution research international, 2015, 22(9): 7045-7061.
doi: 10.1007/s11356-014-3893-5 pmid: 25487555 |
[22] | Chen Gangqiang, Li Xun, Xu Xueqiang.Spatial agglomeration and evolution of urban population in China. Acta Geographica Sinica, 2008, 63(10): 1045-1054. |
[陈刚强, 李郇, 许学强. 中国城市人口的空间集聚特征与规律分析. 地理学报, 2008, 63(10): 1045-1054.] | |
[23] | Zhou Tianmo, Fu Qiang, Chu Yunqiang, et al. Research on the application of spatial autocorrelation method in environmental pollution. Bulletin of Surveying and Mapping, 2013(1): 53-56. |
[周天墨, 付强, 诸云强, 等. 空间自相关方法及其在环境污染领域的应用分析. 测绘通报, 2013(1): 53-56.] | |
[24] |
Xu Weijia, He Fangfang, Li Hongxia, et al.Spatial and temporal variations of PM2.5 in the Pearl River Delta. Research of Environmental Sciences, 2014, 27(9): 951-957.
doi: 10.13198/j.issn.1001-6929.2014.09.02 |
[徐伟嘉, 何芳芳, 李红霞, 等. 珠三角区域 PM2.5时空变异特征. 环境科学研究, 2014, 27(9) :951-957.]
doi: 10.13198/j.issn.1001-6929.2014.09.02 |
|
[25] | Ministry of Environmental Protection of the People's Republic of China. Technical Regulation on Ambient Air Quality Index (on trial). National Environmental Protection Standards of the People's Republic of China (HJ 633-2012), 2012-02-29. |
[国家环境保护部. 环境空气质量指数(AQ)技术规定(试行). 中华人民共和国国家环境保护标准(HJ 633-2012), 2012-02-29.] | |
[26] | Hu J L, Wang Y G, Ying Q, et al.Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmos Environ, 2014, 95: 598-609. |
[27] | Environmental Protection Department. The air quality condition of key area and 74 cities in China in 2014. . 2015-02-02. |
[环境保护部. 2014年重点区域和74个城市空气质量状况. . 2015-02-02.] | |
[28] | Xu Hong, Zhang Xiaoyong, Bi Xiaohui, et al.Spatial and seasonal distribution characteristics of sulfate and nitrate in PM2.5 Chjna. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2013, 46(6): 32-40. |
[徐虹, 张晓勇, 毕晓辉, 等. 中国PM2.5中水溶性硫酸盐和硝酸盐的时空变化特征. 南开大学学报(自然科学版), 2013, 46(6): 32-40.] | |
[29] | Lin G, Fu J, Jiang D, et al.Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in China. International Journal of Environmental Research and Public Health, 2014, 11(1): 173-186. |
[30] | China National Environmental Monitoring Centre. Air Quality On-Line Monitoring and Analysing System of China. , 2015-08-02. |
[中国环境监测总站. 中国空气质量在线监测分析平台. ,2015-08-02.] | |
[31] |
Liu Y, Li Y, Chen C.Pollution: Build on success in China. Nature, 2015, 517(8): 145-145.
doi: 10.1038/517145d pmid: 25567275 |
[1] | 魏石梅, 潘竟虎. 中国地级及以上城市网络结构韧性测度[J]. 地理学报, 2021, 76(6): 1394-1407. |
[2] | 杨忍, 潘瑜鑫. 中国县域乡村脆弱性空间特征与形成机制及对策[J]. 地理学报, 2021, 76(6): 1438-1454. |
[3] | 殷江滨, 李尚谦, 姜磊, 程哲, 黄晓燕, 路改改. 中国连片特困地区非农就业增长的时空特征与驱动因素[J]. 地理学报, 2021, 76(6): 1471-1488. |
[4] | 胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162. |
[5] | 黄晓东, 马海涛, 苗长虹. 基于创新企业的中国城市网络联系特征[J]. 地理学报, 2021, 76(4): 835-852. |
[6] | 王录仓, 刘海洋, 刘清. 基于腾讯迁徙大数据的中国城市网络研究[J]. 地理学报, 2021, 76(4): 853-869. |
[7] | 夏兴生, 潘耀忠, 朱秀芳, 张锦水. 中国综合农业分区下的Ångström-Prescott公式系数逐月校正与优选[J]. 地理学报, 2021, 76(4): 888-902. |
[8] | 王淑佳, 孙九霞. 中国传统村落可持续发展评价体系构建与实证[J]. 地理学报, 2021, 76(4): 921-938. |
[9] | 范泽孟. 中国生态过渡带分布的空间识别及情景模拟[J]. 地理学报, 2021, 76(3): 626-644. |
[10] | 徐羽, 李秀彬, 辛良杰. 中国耕地规模化流转租金的分异特征及其影响因素[J]. 地理学报, 2021, 76(3): 753-763. |
[11] | 古恒宇, 沈体雁. 中国高学历人才的空间演化特征及驱动因素[J]. 地理学报, 2021, 76(2): 326-340. |
[12] | 朱晟君, 金文纨. 地方出口产品结构及制度环境与企业出口相关多样化[J]. 地理学报, 2021, 76(2): 398-414. |
[13] | 李钢, 薛淑艳, 马雪瑶, 周俊俊, 徐婷婷, 王皎贝. 中国失踪人口的时空格局演变与形成机制[J]. 地理学报, 2021, 76(2): 310-325. |
[14] | 葛全胜, 朱会义. 两千年来中国自然与人文地理环境变迁及启示[J]. 地理学报, 2021, 76(1): 3-14. |
[15] | 张兴航, 张百平, 王晶, 余付勤, 赵超, 姚永慧. 中国南北过渡带东段样带植被序列与气候分界问题[J]. 地理学报, 2021, 76(1): 30-43. |