地理学报 ›› 2012, Vol. 67 ›› Issue (11): 1471-1481.doi: 10.11821/xb201211004
尹云鹤, 吴绍洪, 赵东升, 郑度, 潘韬
收稿日期:
2012-06-12
修回日期:
2012-07-18
出版日期:
2012-11-20
发布日期:
2012-11-20
作者简介:
尹云鹤(1979-),副研究员,中国地理学会会员(S110005959M),主要从事陆表水热耦合及气候变化影响研究。E-mail:yinyh@igsnrr.ac.cn
基金资助:
中国科学院战略性先导科技专项(XDA05090304); 环境保护部公益性行业科研专项(201009056); 国家科技支撑项目(2009BAC61B05)
YIN Yunhe, WU Shaohong, ZHAO Dongsheng, ZHENG Du, PAN Tao
Received:
2012-06-12
Revised:
2012-07-18
Online:
2012-11-20
Published:
2012-11-20
Supported by:
The "Strategic Priority Research Program" of the Chinese Academy of Sciences, No.XDA05090304; Project for Public Service from Ministry of Environmental Protection of China, No.201009056; National Key Technology Research and Development Program, No.2009BAC61B05
摘要: 基于1981-2010 年青藏高原80 个气象台站观测数据, 通过改进的LPJ 动态植被模型, 模拟并分析了青藏高原实际蒸散及其与降水的平衡关系(P-E) 的时空变化。研究结果表明, 在过去三十年来青藏高原气候呈现以变暖为主要特征的背景下, 降水量整体略有增加, 潜在蒸散呈减少趋势, 特别是2000 年以前减少趋势显著;青藏高原大部分地区实际蒸散呈增加趋势, P-E的变化趋势呈西北增加—东南减少的空间格局。大气水分蒸散发能力降低理论上会导致实际蒸散减少, 而青藏高原大部分地区实际蒸散增加, 主要影响因素是降水增加, 实际蒸散呈增加(减少) 趋势的区域中86% (73%) 的降水增加(减少)。
尹云鹤, 吴绍洪, 赵东升, 郑度, 潘韬. 1981-2010 年气候变化对青藏高原实际蒸散的影响[J]. 地理学报, 2012, 67(11): 1471-1481.
YIN Yunhe, WU Shaohong, ZHAO Dongsheng, ZHENG Du, PAN Tao. Impact of Climate Change on Actual Evapotranspiration on the Tibetan Plateau during 1981-2010[J]. Acta Geographica Sinica, 2012, 67(11): 1471-1481.
[1] Nemani R R, White M A, Thornton P et al. Recent trends in hydrologic balance have enhanced the terrestrial carbonsink in the United States. Geophysical Research Letters, 2002, 29(10), doi: 10.1029/2002GL014867.[2] Brutsaert W. Hydrology: An Introduction. New York: Cambridge University Press, 2005.[3] Jung M, Reichstein M, Ciais P et al. Recent decline in the global land evapotranspiration trend due to limited moisturesupply. Nature, 2010, 467(7318): 951-954.[4] Schimel D S, Braswell B H, Parton W J. Equilibration of the terrestrial water, nitrogen, and carbon cycles. Proceedingsof the National Academy of Sciences of the United States of America, 1997, 94(16): 8280-8283.[5] Cox P M, Betts R A, Jones C D et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupledclimate model. Nature, 2000, 408(6809): 184-187.[6] Allen R G, Pereira L S, Howell T A et al. Evapotranspiration information reporting: I. Factors governing measurementaccuracy. Agricultural Water Management, 2011, 98(6): 899-920.[7] Wang K C, Dickinson R E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, andclimatic variability. Reviews of Geophysics, 2012, doi: 10.1029/2011RG000373.[8] Liu Chunzhen. The issues in the impact study of climate change on the terrestrial hydrological cycle. Advance in EarthSciences, 2004, 19(1): 115-119. [刘春蓁. 气候变化对陆地水循环影响研究的问题. 地球科学进展, 2004, 19(1):115-119.][9] Roderick M L, Hobbins M T, Farquhar G D. Pan evaporation trends and the terrestrial water balance: II. Energybalance and interpretation. Geography Compass, 2009, 3(2): 761-780.[10] Brutsaert W, Parlange M B. Hydrologic cycle explains the evaporation paradox. Nature, 1998, 396(6706): 29-30.[11] Hobbins M T, Ramirez J A, Brown T C. Trends in pan evaporation and actual evapotranspiration across theconterminous U.S.: Paradoxical or complementary? Geophysical Research Letters, 2004, 31: L13503.[12] Ohmura A, Wild M. Is the hydrological cycle accelerating? Science, 2002, 298: 1345-1346.[13] Peterson T C, Golubev V S, Groisman P Y. Evaporation losing its strength. Nature, 1995, 377(6551): 687-688.[14] Wang Shaowu, Ye Jinlin, Gong Daoyi et al. Construction of mean annual temperature series for the last one hundredyears in China. Quarterly Journal of Applied Meteorology, 1998, 9(4): 392-401. [王绍武, 叶瑾琳, 龚道溢等. 近百年中国年气温序列的建立. 应用气象学报, 1998, 9(4): 392-401.][15] Zheng Du, Yao Tandong. Uplifting of Tibetan Plateau with its environmental effects. Advances in Earth Science, 2006,21(5): 451-458. [郑度, 姚檀栋. 青藏高原隆升及其环境效应. 地球科学进展, 2006, 21(5): 451-458.][16] Cheng Guodong, Zhao Chuanyan, Wang Yao. Advances in researches of ecological and hydrological processes in theforest ecosystem in inland river basin of the arid regions, China. Advances in Earth Science, 2011, 26(11):1125-1130. [程国栋, 赵传燕, 王瑶. 内陆河流域森林生态系统生态水文过程研究. 地球科学进展, 2011, 26(11):1125-1130.][17] Sitch S, Smith B, Prentice I C et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cyclingin the LPJ dynamic global vegetation model. Global Change Biology, 2003, 9(2): 161-185.[18] Gerten D, Schaphoff S, Haberlandt U et al. Terrestrial vegetation and water balance: Hydrological evaluation of adynamic global vegetation model. Journal of Hydrology, 2004, 286(1-4): 249-270.[19] Doherty R M, Sitch S, Smith B et al. Implications of future climate and atmospheric CO2 content for regionalbiogeochemistry, biogeography and ecosystem services across East Africa. Global Change Biology, 2010, 16(2):617-640.[20] Kaplan J O, Krumhardt K M, Zimmermann N E. The effects of land use and climate change on the carbon cycle ofEurope over the past 500 years. Global Change Biology, 2012, 18(3): 902-914.[21] Morales P, Sykes M T, Prentice I C et al. Comparing and evaluating process-based ecosystem model predictions ofcarbon and water fluxes in major European forest biomes. Global Change Biology, 2005, 11(12): 2211-2233.[22] Tao F L, Zhang Z. Dynamic response of terrestrial hydrological cycles and plant water stress to climate change inChina. Journal of Hydrometeorology, 2011, 12(3): 371-393.[23] Mahecha M D, Reichstein M, Jung M. Comparing observations and process-based simulations of biosphereatmosphereexchanges on multiple timescales. Journal of Geophysical Research-Biogeosciences, 2010, 115: 21.[24] Zheng Du, Yang Qinye, Wu Shaohong et al. Chinese Ecogeographical Regionalization Research. Beijing: TheCommercial Press, 2008. [郑度, 杨勤业, 吴绍洪等. 中国生态地理区域系统研究. 北京: 商务出版社, 2008.][25] Yan Hong. Spline interpolation of spatial-temporal climate data for China. Geography and Geo-Information Science,2003, 19(5): 27-31. [阎洪. 气侯时空数据的样条插值与应用. 地理与地理信息科学, 2003, 19(5): 27-31.][26] Hutchinson M F. Interpolating mean rainfall using thin plate smoothing splines. International Journal of GeographicalInformation Science, 1995, 9(4): 385-403.[27] Zhao D S, Wu S H, Yin Y H et al. Vegetation distribution on Tibetan Plateau under climate change scenario. RegionalEnvironmental Change, 2011, 11(4): 905-915.[28] Zhao Dongsheng, Wu Shaohong, Yin Yunhe. Variation trends of natural vegetation net primary productivity in Chinaunder climate change scenario. Chinese Journal of Applied Ecology, 2011, 22(4): 897-904. [赵东升, 吴绍洪, 尹云鹤.气候变化情景下中国自然植被净初级生产力分布. 应用生态学报, 2011, 22(4): 897-904. ][29] Western A W, Grayson R B, Blöschl G. Scaling of soil moisture: A hydrologic perspective. Annual Review of Earthand Planetary Sciences, 2002, 30(1): 149-180.[30] Yin Y H, Wu S H, Zheng D et al. Radiation calibration of FAO56 Penman-Monteith model to estimate reference cropevapotranspiration in China. Agricultural Water Management, 2008, 95: 77-84.[31] Allen R G, Pereira L S, Raes D et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements.FAO Irrigation and Drainage Paper 56, 1998.[32] Wu Shaohong, Yin Yunhe, Zheng Du et al. Climate changes in the Tibetan Plateau during the last three decades. ActaGeographica Sinica, 2005, 60(1): 3-11. [吴绍洪, 尹云鹤, 郑度等. 青藏高原近30 年气候变化趋势. 地理学报, 2005,60(1): 3-11. ][33] Jones P D, Hulme M. Calculating regional climatic time series for temperature and precipitation: methods andillustrations. International Journal of Climatology, 1996, 16(4): 361-377.[34] Zhang Y Q, Liu C M, Tang Y H et al. Trends in pan evaporation and reference and actual evapotranspiration acrossthe Tibetan Plateau. Journal of Geophysical Research, 2007, 112: D12110, doi: 10.1029/2006JD008161.[35] National Assessment Report on Climate Change Compiling Committee. Second National Assessment Report on Climate Change. Beijing: Science Press, 2011. [气候变化国家评估报告编写委员会. 第二次气候变化国家评估报告.北京: 科学出版社, 2011.] |
[1] | 黄海, 田尤, 刘建康, 张佳佳, 杨东旭, 杨顺. 藏东地区斜坡土壤冻融侵蚀力学机制及敏感性分析[J]. 地理学报, 2021, 76(1): 87-100. |
[2] | 李哲, 丁永建, 陈艾姣, 张智华, 张世强. 1960—2019年西北地区气候变化中的Hiatus现象及特征[J]. 地理学报, 2020, 75(9): 1845-1859. |
[3] | 封志明, 李文君, 李鹏, 肖池伟. 青藏高原地形起伏度及其地理意义[J]. 地理学报, 2020, 75(7): 1359-1372. |
[4] | 孙思奥, 王晶, 戚伟. 青藏高原地区城乡虚拟水贸易格局与影响因素[J]. 地理学报, 2020, 75(7): 1346-1358. |
[5] | 梁馨月, 徐梦珍, 吕立群, 崔一飞, 张风宝. 基于地貌特征的青藏高原边缘泥石流沟分类[J]. 地理学报, 2020, 75(7): 1373-1385. |
[6] | 冯雨雪, 李广东. 青藏高原城镇化与生态环境交互影响关系分析[J]. 地理学报, 2020, 75(7): 1386-1405. |
[7] | 许珺, 徐阳, 胡蕾, 王振波. 基于位置大数据的青藏高原人类活动时空模式[J]. 地理学报, 2020, 75(7): 1406-1417. |
[8] | 王楠, 王会蒙, 杜云艳, 易嘉伟, 刘张, 涂文娜. 青藏高原人口流入流出时空模式研究[J]. 地理学报, 2020, 75(7): 1418-1431. |
[9] | 金凯, 王飞, 韩剑桥, 史尚渝, 丁文斌. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974. |
[10] | 李双双, 汪成博, 延军平, 刘宪锋. 面向事件过程的秦岭南北极端降水时空变化特征[J]. 地理学报, 2020, 75(5): 989-1007. |
[11] | 戚伟, 刘盛和, 周亮. 青藏高原人口地域分异规律及“胡焕庸线”思想应用[J]. 地理学报, 2020, 75(2): 255-267. |
[12] | 田晶, 郭生练, 刘德地, 陈启会, 王强, 尹家波, 吴旭树, 何绍坤. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11): 2307-2318. |
[13] | 范科科, 张强, 孙鹏, 宋长青, 余慧倩, 朱秀迪, 申泽西. 青藏高原土壤水分变化对近地面气温的影响[J]. 地理学报, 2020, 75(1): 82-97. |
[14] | 高星, 康世昌, 刘青松, 陈鹏飞, 段宗奇. 1899—2011年青藏高原南部枪勇错沉积物磁性矿物的环境意义[J]. 地理学报, 2020, 75(1): 68-81. |
[15] | 萧凌波, 闫军辉. 基于地方志的1736-1911年华北秋粮丰歉指数序列重建及其与气候变化的关系[J]. 地理学报, 2019, 74(9): 1777-1788. |