地理学报 ›› 2015, Vol. 70 ›› Issue (11): 1735-1746.doi: 10.11821/dlxb201511004
王瑞丽1,2(), 于贵瑞1(
), 何念鹏1, 王秋凤1, 赵宁1,2, 徐志伟1,2
收稿日期:
2015-07-20
修回日期:
2015-08-21
出版日期:
2015-11-20
发布日期:
2015-11-20
作者简介:
作者简介:王瑞丽(1988-), 女, 博士, 主要从事植物功能属性研究。E-mail:
基金资助:
Ruili WANG1,2(), Guirui YU1(
), Nianpeng HE1, Qiufeng WANG1, Ning ZHAO1,2, Zhiwei XU1,2
Received:
2015-07-20
Revised:
2015-08-21
Published:
2015-11-20
Online:
2015-11-20
Supported by:
摘要:
为了探究森林植物叶片功能属性的地理格局及其影响因素,在2013年7-8月期间系统调查了中国东部南北样带9个森林生态系统的847种植物的叶片面积(LA)、叶片厚度(LT)、比叶面积(SLA)和叶片干物质含量(LDMC),并结合群落结构计算了各属性的群落加权平均值(LACWM、SLACWM、LTCWM和LDMCCWM)。结果显示:847种植物的LA、LT、SLA和LDMC的平均值(±标准误)分别为2860.01±135.37 mm2、0.17±0.003 mm、20.15±0.43 m2 kg-1和 316.73±3.81 mg g-1。SLA和LDMC表现出了明显的纬度格局,随着纬度增加,SLA逐渐增加,LDMC降低;然而,LA和LT沿纬度的变化趋势不明显(R2 = 0.02 ~ 0.06)。不同植物类型之间叶片属性的差异是影响LA、LT、SLA和LDMC空间变化的主要因素;叶片功能属性的群落加权值表现出了更加明显的纬度分布格局(R2 = 0.46 ~ 0.71),这主要受到了气候因素和土壤N含量的影响。本文结果完善了中国区域森林生态系统叶片功能属性地理分布的数据库,同时强调了在研究植物属性空间格局时,考虑群落结构在尺度扩展中的重要性。
王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟. 中国森林叶片功能属性的纬度格局及其影响因素[J]. 地理学报, 2015, 70(11): 1735-1746.
Ruili WANG, Guirui YU, Nianpeng HE, Qiufeng WANG, Ning ZHAO, Zhiwei XU. Latitudinal patterns and influencing factors of leaf functional traits in Chinese forest ecosystems[J]. Acta Geographica Sinica, 2015, 70(11): 1735-1746.
表1
野外取样地点的环境和植被类型概况
地点 | 纬度(°N) | 经度(°E) | 年均温(°C) | 年降水量(mm) | 土壤类型 | 植被类型 | 物种数量 |
---|---|---|---|---|---|---|---|
尖峰岭 | 18.7 | 108.9 | 19.8 | 2449.0 | 砖黄壤 | 热带季雨林 | 139 |
鼎湖山 | 23.2 | 112.5 | 20.9 | 1927.0 | 砖红壤 | 亚热带常绿阔叶林 | 158 |
九连山 | 24.6 | 114.4 | 16.7 | 1954.0 | 红壤 | 亚热带常绿阔叶林 | 172 |
神农架 | 31.3 | 110.5 | 10.6 | 1330.0 | 黄棕壤 | 亚热带常绿落叶阔叶混交林 | 120 |
太岳山 | 36.7 | 112.1 | 6.2 | 662.0 | 褐土 | 暖温带落叶阔叶林 | 76 |
东灵山 | 40.0 | 115.4 | 4.8 | 539.1 | 棕壤 | 暖温带落叶阔叶林 | 79 |
长白山 | 42.4 | 128.1 | 2.6 | 691.0 | 暗棕壤 | 温带红松阔叶混交林 | 109 |
凉水 | 47.2 | 128.9 | -0.3 | 676.0 | 暗棕壤 | 温带红松阔叶混交林 | 104 |
呼中 | 51.8 | 123.0 | -4.4 | 481.6 | 棕色针叶 林土 | 寒温带针叶林 | 88 |
表2
中国东部森林叶片功能属性在物种水平和群落水平的统计特征
水平 | 属性 | 数量* | 平均值 | 最小值 | 最大值 | 标准误 | 变异系数 | 偏度 |
---|---|---|---|---|---|---|---|---|
物种 | LA (mm2) † | 847 | 2860.01 | 4.09 | 56085.43 | 135.37 | 1.51 | 5.54 |
LT (mm) | 847 | 0.17 | 0.01 | 0.78 | 0.003 | 0.56 | 2.71 | |
SLA (m2·kg-1) | 847 | 20.15 | 1.89 | 94.99 | 0.43 | 0.68 | 1.29 | |
LDMC (mg·g-1) | 847 | 316.73 | 44.46 | 775.68 | 3.81 | 0.39 | 0.27 | |
群落 | LACWM (mm2) | 32 | 1443.80 | 22.98 | 3547.5 | 169.35 | 0.66 | 0.49 |
LTCWM (mm) | 32 | 0.34 | 0.18 | 0.69 | 0.03 | 0.46 | 1.00 | |
SLACWM (m2·kg-1) | 32 | 9.83 | 5.08 | 18.34 | 0.71 | 0.41 | 0.68 | |
LDMCCWM (mg·g-1) | 32 | 421.78 | 364.16 | 544.01 | 8.76 | 0.12 | 0.72 |
表3
中国东部环境因素和植物功能型对叶片属性纬度变化的作用
影响因素 | LogLA | LogLT | ||||
---|---|---|---|---|---|---|
自由度 | F值 | 解释率(%) | 自由度 | F值 | 解释率(%) | |
植物功能型 | 4 | 56.79** | 19.43 | 4 | 1.26** | 41.57 |
年均温 | 1 | 98.16** | 6.72 | |||
年降水量 | 1 | 25.22** | 1.65 | |||
土壤氮 | 1 | 30.49** | 2.09 | 1 | 139.73** | 9.13 |
功能型×年均温 | ||||||
功能型×年降水量 | 4 | 4.45** | 1.16 | |||
功能型×土壤氮 | 4 | 3.90** | 1.02 | |||
年均温×土壤氮 | ||||||
年降水量×土壤氮 | 1 | 80.67** | 5.27 | |||
地点 | 8 | 6.31** | 3.46 | 8 | 5.14** | |
残差 | 997 | 68.31 | 1001 | |||
LogSLA | LogLDMC | |||||
自由度 | F值 | 解释率(%) | 自由度 | F值 | 解释率(%) | |
植物功能型 | 4 | 163.24** | 36.83 | 4 | 129.50** | 34.18 |
年均温 | 1 | 41.41** | 2.19 | |||
年降水量 | 1 | 127.55** | 5.76 | |||
土壤氮 | 1 | 197.69** | 8.92 | 1 | 77.47** | 4.09 |
功能型×年均温 | 4 | 9.90** | 2.09 | |||
功能型×年降水量 | 4 | 6.73** | 1.21 | |||
功能型×土壤氮 | 4 | 2.67* | 0.48 | 4 | 4.30** | 0.91 |
年均温×土壤氮 | 1 | 10.18** | 0.54 | |||
年降水量×土壤氮 | 1 | 12.48** | 0.56 | |||
地点 | 8 | 3.86** | 1.39 | 8 | 4.51** | 1.90 |
残差 | 992 | 44.85 | 1022 | 54.11 |
表4
中国东部环境因素对群落水平的叶片属性纬度变化的影响
影响因素 | LogLACWM | LogLTCWM | |||||
---|---|---|---|---|---|---|---|
自由度 | F值 | 解释率(%) | 自由度 | F值 | 解释率(%) | ||
年均温 | 1 | 3.34* | 25.08 | ||||
年降水量 | 1 | 5.30** | 32.75 | ||||
土壤氮 | |||||||
年均温×土壤氮 | |||||||
地点 | 8 | 14.09** | 58.43 | 8 | 14.99** | 54.87 | |
残差 | 22 | 16.49 | 22 | 12.38 | |||
LogSLACWM | LogLDMCCWM | ||||||
自由度 | F值 | 解释率(%) | 自由度 | F值 | 解释率(%) | ||
年均温 | 1 | 7.77* | 16.51 | 1 | 22.56** | 48.04 | |
年降水量 | |||||||
土壤氮 | 1 | 7.75** | 36.41 | ||||
年均温×土壤氮 | 1 | 0.003 | 1.79 | ||||
地点 | 8 | 5.86* | 15.42 | 8 | 1.471 | 3.01 | |
残差 | 20 | 29.87 | 22 | 48.95 |
[1] |
Vendramini F, Diaz S, Gurvich D E, et al.Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytologist, 2002, 154(1): 147-157.
doi: 10.1046/j.1469-8137.2002.00357.x |
[2] |
Garnier E, Navas M L.A trait-based approach to comparative functional plant ecology: Concepts, methods and applications for agroecology. A review. Agronomy for Sustainable Development, 2012, 32(2): 365-399.
doi: 10.1007/s13593-011-0036-y |
[3] | Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51(4): 335-380. |
[4] |
Moles A T, Perkins S E, Laffan S W, et al.Which is a better predictor of plant traits: Temperature or precipitation? Journal of Vegetation Science, 2014, 25(5): 1167-1180.
doi: 10.1111/jvs.12190 |
[5] |
Wright I J, Reich P B, Westoby M, et al.The worldwide leaf economics spectrum. Nature, 2004, 428(6985): 821-827.
doi: 10.1038/nature02403 pmid: 15103368 |
[6] |
Li Yonghua, Lu Qi, Wu Bo, et al.A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chinese Journal of Plant Ecology, 2012, 36(1): 88-98.
doi: 10.3724/SP.J.1258.2012.00088 |
[李永华, 卢琦, 吴波, 等. 干旱区叶片形态特征与植物响应和适应的关系. 植物生态学报, 2012, 36(1): 88-98.]
doi: 10.3724/SP.J.1258.2012.00088 |
|
[7] |
Song Lulu.Research advances on canges of leaf traits along an altitude gradient. Process in Geography, 2011, 30(11): 1431-1439.
doi: 10.11820/dlkxjz.2011.11.014 |
[宋璐璐. 植物叶片性状沿海拔梯度变化研究进展. 地理科学进展, 2011, 30(11): 1431-1439.]
doi: 10.11820/dlkxjz.2011.11.014 |
|
[8] |
Liu C, Wang X P, Wu X, et al.Relative effects of phylogeny, biological characters and environments on leaf traits in shrub biomes across central Inner Mongolia, China. Journal of Plant Ecology, 2013, 6(3): 220-231.
doi: 10.1093/jpe/rts028 |
[9] | Ordonez J C, van Bodegom P M, Witte J P M, et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 2009, 18(2): 137-149. |
[10] |
Feng Qiuhong, Shi Zuomin, Dong Lili, et al.Relationships among functional traits of Quercus species and their response to meteorological factors in the temperate zone of the North-South Transect of Eastern China. Chinese Journal of Plant Ecology, 2010, 34(6): 619-627.
doi: 10.3773/j.issn.1005-264x.2010.06.001 |
[冯秋红, 史作民, 董莉莉, 等. 南北样带温带区栎属树种功能性状间的关系及其对气象因子的响应. 植物生态学报, 2010, 34(6): 619-627.]
doi: 10.3773/j.issn.1005-264x.2010.06.001 |
|
[11] | Shi Yu, Wen Zhongming, Gong Shihui, et al.Traits variations along a climatic gradient in hilly area of Loess Plateau. Research of Soil and Water Conversation, 2012, 19(1): 107-116. |
[施宇, 温仲明, 龚时慧, 等. 黄土丘陵区植物功能性状沿气候梯度的变化规律. 水土保持研究, 2012, 19(1): 107-116.] | |
[12] |
Poorter H, Niinemets U, Poorter L, et al.Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist, 2009, 182(3): 565-588.
doi: 10.1111/j.1469-8137.2009.02830.x pmid: 19434804 |
[13] |
Hodgson J G, Montserrat-Marti G, Charles M, et al.Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany, 2011, 108(7): 1337-1345.
doi: 10.1093/aob/mcr225 pmid: 21948627 |
[14] |
Niinemets U.Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 2001, 82(2): 453-469.
doi: 10.2307/2679872 |
[15] |
Moles A T, Wallis I R, Foley W J, et al.Putting plant resistance traits on the map: A test of the idea that plants are better defended at lower latitudes. New Phytologist, 2011, 191(3): 777-788.
doi: 10.1111/j.1469-8137.2011.03732.x pmid: 21539574 |
[16] |
Li Dongsheng, Shi Zuomin, Feng Qiuhong, et al.Response of leaf morphometric traits of Quercus species to climate in the temperate zone of the North-South Transect of Eastern China. Chinese Journal of Plant Ecology, 2013, 37(9): 793-802.
doi: 10.3724/SP.J.1258.2013.00083 |
[李东胜, 史作民, 冯秋红, 等. 中国东部南北样带暖温带区栎属树种叶片形态性状对气候条件的响应. 植物生态学报, 2013, 37(9): 793-802.]
doi: 10.3724/SP.J.1258.2013.00083 |
|
[17] |
Garnier E, Cortez J, Billes G, et al.Plant functional markers capture ecosystem properties during secondary succession. Ecology, 2004, 85(9): 2630-2637.
doi: 10.1890/03-0799 |
[18] |
Vile D, Shipley B, Garnier E.Ecosystem productivity can be predicted from potential relative growth rate and species abundance. Ecology Letters, 2006, 9(9): 1061-1067.
doi: 10.1111/j.1461-0248.2006.00958.x pmid: 16925655 |
[19] | Perez-Ramos I M, Roumet C, Cruz P, et al. Evidence for a 'plant community economics spectrum' driven by nutrient and water limitations in a Mediterranean rangeland of southern France. Journal of Ecology, 2012, 100(6): 1315-1327. |
[20] |
Domínguez M T, Aponte C, Perez-Ramos I M, et al. Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities. Plant and Soil, 2012, 357(1/2): 407-424.
doi: 10.1007/s11104-012-1214-7 |
[21] |
Bu Wensheng, Zang Runguo, Ding Yi, et al.Relationships between plant functional traits at the community level and environmental factors during succession in a tropical lowland rainforest on Hainan Island, South China. Biodiversity Science, 2013, 21(3): 278-287.
doi: 10.3724/SP.J.1003.2013.10012 |
[卜文圣, 臧润国, 丁易, 等. 海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化. 生物多样性, 2013, 21(3): 278-287.]
doi: 10.3724/SP.J.1003.2013.10012 |
|
[22] | Zhang Xinshi, Yang Dianan.Allocation and study on global change transects in China. Quaternary Sciences, 1995, (1): 43-52. |
[张新时, 杨奠安. 中国全球变化样带的设置与研究. 第四纪研究, 1995, (1): 43-52.] | |
[23] |
Sheng W P, Ren S J, Yu G R, et al.Patterns and driving factors of WUE and NUE in natural forest ecosystems along the North-South Transect of Eastern China. Journal of Geographical Sciences, 2011, 21(4): 651-665.
doi: 10.1007/s11442-011-0870-5 |
[24] | Zhou Guangsheng, He Qijin.Terrestrial transect study on the responses of ecosystem to global change. Advances in Earth Sciences, 2012, 27(5): 563-572. |
[周广胜, 何奇瑾. 生态系统响应全球变化的陆地样带研究. 地球科学进展, 2012, 27(5): 563-572.] | |
[25] |
Fang Jingyun, Wang Xiangping.Methods and protocols for plant community inventory. Biodiversity Science, 2009, 17(6): 533-548.
doi: 10.3724/SP.J.1003.2009.09253 |
[方精云, 王襄平. 植物群落清查的主要内容、方法和技术规范. 生物多样性, 2009, 17(6): 533-548.]
doi: 10.3724/SP.J.1003.2009.09253 |
|
[26] | Xiao Qiang, Ye Wenjing, Zhu Zhu, et al.A simple non-destruction method to measure leaf area using digital cameral and Photoshop software. Chinese Journal od Ecology, 2005, 24(6): 711-714. |
[肖强, 叶文景, 朱珠, 等. 利用数码相机和Photoshop 软件非破坏性测定叶面积的简便方法. 生态学杂志, 2005, 24(6): 711-714.] | |
[27] | Wang R L, Yu G R, He N P, et al.Latitudinal variation of leaf stomatal traits from species to community level in forests: Linkage with ecosystem productivity. Scie.pngic Reports, 2015, 5: 14454. doi: 10.1038/srep14454. |
[28] | Zhu Xudong, He Hongling, Liu Min, et al.Spatio-temporal variation of photosynthetically active radiation in China in recent 50 years. Journal of Geographical Sciences, 2010, 65(3): 270-280. |
[朱旭东, 何洪林, 刘敏, 等. 近50年中国光合有效辐射的时空变化特征. 地理学报, 2010, 65(3): 270-280.] | |
[29] |
Chen Y H, Han W X, Tang L Y, et al.Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 2013, 36(2): 178-184.
doi: 10.1111/j.1600-0587.2011.06833.x |
[30] |
Freschet G T, Dias A T C, Ackerly D D, et al. Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. Global Ecology and Biogeography, 2011, 20(5): 755-765.
doi: 10.1111/j.1466-8238.2011.00651.x |
[31] |
Reich P B, Wright I J, Lusk C H.Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecological Applications, 2007, 17(7): 1982-1988.
doi: 10.1890/06-1803.1 pmid: 17974336 |
[32] |
Han W, Chen Y, Zhao F J, et al.Floral, climatic and soil pH controls on leaf ash content in China's terrestrial plants. Global Ecology and Biogeography, 2012, 21(3): 376-382.
doi: 10.1111/j.1466-8238.2011.00677.x |
[33] |
Han Wei, Liu Chao.Responses of leaf morphological traits for broadleaved woody plants along the altitudinal gradient of Changbai Mountai, northeastern China. Journal of Beijing Forestry University, 2014, 36(4): 47-53.
doi: 10.13332/j.cnki.jbfu.2014.04.012 |
[韩威, 刘超. 长白山阔叶木本植物叶片形态性状沿海拔梯度的响应特征. 北京林业大学学报, 2014, 36(4): 47-53.]
doi: 10.13332/j.cnki.jbfu.2014.04.012 |
|
[34] |
Kikuzawa K, Onoda Y, Wright I J, et al.Mechanisms underlying global temperature-related patterns in leaf longevity. Global Ecology and Biogeography, 2013, 22(8): 982-993.
doi: 10.1111/geb.12042 |
[35] |
Garnier E, Shipley B, Roumet C, et al.A standardized protocol for the determination of specific leaf area and leaf dry matter content. Functional Ecology, 2001, 15(5): 688-695.
doi: 10.1046/j.0269-8463.2001.00563.x |
[36] |
Gurevitch J, Scheiner S M, Fox G A.The Ecology of Plants. Sinauer Associates Incorporated, 2002.
doi: 10.1658/1100-9233(2003)014[0623:BR]2.0.CO;2 |
[37] |
Han W X, Fang J Y, Reich P B, et al.Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 2011, 14(8): 788-796.
doi: 10.1111/j.1461-0248.2011.01641.x pmid: 21692962 |
[38] |
Chapin F S III, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology. New York: Springer, 2002.
doi: 10.1007/b97397 |
[39] |
Cornwell W K, Ackerly D D.Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 2009, 79(1): 109-126.
doi: 10.1890/07-1134.1 |
[40] |
Andersen K M, Endara M J, Turner B L, et al.Trait-based community assembly of understory palms along a soil nutrient gradient in a lower montane tropical forest. Oecologia, 2012, 168(2): 519-531.
doi: 10.1007/s00442-011-2112-z pmid: 21894517 |
[1] | 贺灿飞, 胡绪千. 1978年改革开放以来中国工业地理格局演变[J]. 地理学报, 2019, 74(10): 1962-1979. |
[2] | 金凤君, 陈卓. 1978年改革开放以来中国交通地理格局演变与规律[J]. 地理学报, 2019, 74(10): 1941-1961. |
[3] | 任小丽,路倩倩,何洪林,张黎,牛忠恩. 中国东部南北样带森林生态系统蒸腾与蒸散比值(T/ET)时空变化[J]. 地理学报, 2019, 74(1): 63-75. |
[4] | 周扬,郭远智,刘彦随. 中国县域贫困综合测度及2020年后减贫瞄准[J]. 地理学报, 2018, 73(8): 1478-1493. |
[5] | 吴绍洪,刘路路,刘燕华,高江波,戴尔阜,冯爱青. “一带一路”陆域地理格局与环境变化风险[J]. 地理学报, 2018, 73(7): 1214-1225. |
[6] | 樊杰. “人地关系地域系统”是综合研究地理格局形成与演变规律的理论基石[J]. 地理学报, 2018, 73(4): 597-607. |
[7] | 赵鸣飞, 王宇航, 邢开雄, 康慕谊, 刘全儒, 李秋颐, 黄永梅. 黄土高原山地森林群落植物区系特征与地理格局[J]. 地理学报, 2014, 69(7): 916-925. |
[8] | 姚亦锋. 南京古都景观核心和生态文化研究[J]. 地理学报, 2009, 64(6): 677-686. |