地理学报 ›› 2012, Vol. 67 ›› Issue (11): 1471-1481.doi: 10.11821/xb201211004

• 气候变化 • 上一篇    下一篇

1981-2010 年气候变化对青藏高原实际蒸散的影响

尹云鹤, 吴绍洪, 赵东升, 郑度, 潘韬   

  1. 中国科学院地理科学与资源研究所, 北京100101
  • 收稿日期:2012-06-12 修回日期:2012-07-18 出版日期:2012-11-20 发布日期:2013-01-07
  • 作者简介:尹云鹤(1979-),副研究员,中国地理学会会员(S110005959M),主要从事陆表水热耦合及气候变化影响研究。E-mail:yinyh@igsnrr.ac.cn
  • 基金资助:

    中国科学院战略性先导科技专项(XDA05090304); 环境保护部公益性行业科研专项(201009056); 国家科技支撑项目(2009BAC61B05)

Impact of Climate Change on Actual Evapotranspiration on the Tibetan Plateau during 1981-2010

YIN Yunhe, WU Shaohong, ZHAO Dongsheng, ZHENG Du, PAN Tao   

  1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • Received:2012-06-12 Revised:2012-07-18 Online:2012-11-20 Published:2013-01-07
  • Supported by:

    The "Strategic Priority Research Program" of the Chinese Academy of Sciences, No.XDA05090304; Project for Public Service from Ministry of Environmental Protection of China, No.201009056; National Key Technology Research and Development Program, No.2009BAC61B05

摘要: 基于1981-2010 年青藏高原80 个气象台站观测数据, 通过改进的LPJ 动态植被模型, 模拟并分析了青藏高原实际蒸散及其与降水的平衡关系(P-E) 的时空变化。研究结果表明, 在过去三十年来青藏高原气候呈现以变暖为主要特征的背景下, 降水量整体略有增加, 潜在蒸散呈减少趋势, 特别是2000 年以前减少趋势显著;青藏高原大部分地区实际蒸散呈增加趋势, P-E的变化趋势呈西北增加—东南减少的空间格局。大气水分蒸散发能力降低理论上会导致实际蒸散减少, 而青藏高原大部分地区实际蒸散增加, 主要影响因素是降水增加, 实际蒸散呈增加(减少) 趋势的区域中86% (73%) 的降水增加(减少)。

关键词: 青藏高原, 实际蒸散, 潜在蒸散, 动态植被模型, 气候变化

Abstract: To quantify the impact of climate change on the evapotranspiration process of alpine ecosystems on the Tibetan Plateau, we performed a series of simulations with the LPJ dynamic vegetation model and 80 meteorological stations from 1981 to 2010. Changes in actual evapotranspiration and the difference between precipitation and actual evapotranspiration (P-E) on the Tibetan Plateau were analyzed. Over the last 30 years, climate change was characterized by significantly increased temperature, slightly increased precipitation and decreased potential evapotranspiration which was significant before 2000. Actual evapotranspiration had increasing trends in most parts of the Tibetan Plateau, and P-E mainly had decreasing trends in southeastern plateau and increasing trends in northwestern plateau. Descending atmospheric water demand would lead to a decreasing trend in actual evapotranspiration; however, it increased in most regions due to more precipitation. Actual evapotranspiration increased (decreased) in most regions where there was 86% (73%) of increased (decreased) precipitation.

Key words: Tibetan Plateau, actual evapotranspiration, potential evapotranspiration, dynamic global vegetation model, climate change