地理学报 ›› 2012, Vol. 67 ›› Issue (11): 1461-1470.doi: 10.11821/xb201211003
李宝富1,2, 陈亚宁1, 陈忠升1, 李卫红1
收稿日期:
2012-06-08
修回日期:
2012-08-29
出版日期:
2012-11-20
发布日期:
2012-11-20
通讯作者:
陈亚宁(1958-),男,研究员,博士生导师,中国地理学会会员(S110004398M),主要从事干旱区生态水文过程研究。E-mail:chenyn@ms.xjb.ac.cn
作者简介:
李宝富(1983-),男,山东临沂人,博士研究生,主要从事气候变化与水文水资源研究。E-mail:lenny006@163.com
基金资助:
国家重点基础研究发展计划(973 计划) 项目(2010CB951003);中国科学院知识创新工程重要方向项目(No.KZCX2-YW-Q10-3-4)
LI Baofu1,2, CHEN Yaning1, CHEN Zhongsheng1, LI Weihong1
Received:
2012-06-08
Revised:
2012-08-29
Online:
2012-11-20
Published:
2012-11-20
Supported by:
National Basic Research Program of China (973 Program), No.2010CB951003, Knowledge Innovation Project of the CAS, (No. KZCX2- YW-Q10-3-4)
摘要: 利用8 个山区气象站1960-2010 年日平均气温、降水和7 个出山口水文站的年径流数据(1960-2008), 统计分析了山区融雪期开始时间、结束时间、天数、温度和降水的变化趋势及其空间差异性, 并定量评估了年径流量对融雪期温度和降水变化的敏感性。结果表明, 近50年来, 山区融雪期平均提前了15.33 天, 延迟了9.19 天;其中, 天山南部山区融雪期提前时间最长, 为20.01 天, 而延迟时间最短, 仅6.81 天;祁连山北部山区融雪期提前时间最短(10.16天), 而延迟时间最长(10.48 天)。这显示山区融雪期提前时间越长, 延迟时间则越短。山区融雪期平均降水量增加了47.3 mm, 平均温度升高了0.857℃;其中天山南部山区降水增量最大, 达65 mm, 昆仑山北部山区降水和温度增量均最小, 分别为25 mm和0.617℃, 而祁连山北部山区温度增量最高(1.05℃)。河流径流量对融雪期气候变化敏感, 降水变化诱发年径流量变化了7.69%, 温度变化使得年径流量改变了14.15%。
李宝富, 陈亚宁, 陈忠升, 李卫红. 西北干旱区山区融雪期气候变化对径流量的影响[J]. 地理学报, 2012, 67(11): 1461-1470.
LI Baofu, CHEN Yaning, CHEN Zhongsheng, LI Weihong. The Effect of Climate Change during Snowmelt Period on Streamflow in the Mountainous Areas of Northwest China[J]. Acta Geographica Sinica, 2012, 67(11): 1461-1470.
[1] Chen Yaning, Yang Qing. Ponder on the issue of water resources in the arid region of Northwest China. Arid LandGeography, 2012, 35(1): 1-9. [陈亚宁, 杨青. 西北干旱区水资源问题研究思考. 干旱区地理, 2012, 35(1): 1-9.][2] Bao Anming, Chen Xiaona, Li Lanhai. Theories and methods of snowmelt runoff and its application in arid regiones.Arid Land Geography, 2010, 33(5): 684-691. [包安明, 陈晓娜, 李兰海. 融雪径流研究的理论与方法及其在干旱区的应用. 干旱区地理, 2010, 33(5): 684-691.][3] Wang Jian, Li Wenjun. Establishing simulated model of snowmelt runoff for large scale basin in western China. Journalof Glaciology and Geocryology, 1999, 21(3): 264-268. [王建, 李文君. 中国西部大尺度流域建立分带式融雪径流模拟模型. 冰川冻土, 1999, 21(3): 264-268.][4] Li Hongyi. The snowmelt runoff model applied in the upper Heihe River basin. Journal of Glaciology and Geocryology,2008, 30(5): 769-775. [李弘毅. SRM融雪径流模型在黑河流域上游的模拟研究. 冰川冻土, 2008, 30(5): 769-775.][5] Ma Hong, Cheng Guodong. Snowmelt runoff simulation in Gongnaisi River Basin by the using of SRM. ChineseScience Bulletin, 2003, 48(19): 2088 -2093. [马虹, 程国栋. SRM 融雪径流模型在西天山巩乃斯河流域的应用实验.科学通报, 2003, 48(19): 2088-2093.][6] Liu Junfeng, Yang Jianping, Chen Rensheng et al. The simulation of snowmelt runoff model in the Dongkemadi RiverBasin, headwater of the Yangtze River. Acta Geographica Sinica, 2006, 61(11): 1149-1159. [刘俊峰, 杨建平, 陈仁升等. SRM 融雪径流模型在长江源区冬克玛底河流域的应用. 地理学报, 2006, 61(11): 1149-1159.][7] Beebee R A, Manga M. Variation in the relationship between snowmelt runoff in Oregon and ENSO and PDO. Journalof the American Water Resources Association, 2004, 40(4):1011-24.[8] Burns D A, Klaus J, McHale M R. Recent climate trends and implications for water resources in the Catskill Mountainregion, New York, USA. Journal of Hydrology, 2007, 336(1/2): 155-70.[9] Stewart I T, Cayan D R, Dettinger M D. Changes in snowmelt runoff timing in western North America under a"busines as usual" climate change scenario. Climatic Change, 2004, 62: 217-232.[10] Stewart I T, Cayan D, Dettinger MD. Changes in snowmelt runoff timing in western North America under a 'businessas usual' climate change scenario. Climatic Change, 2004, 62(1-3): 217-232.[11] Butt M J, Bilal M. Application of snowmelt runoff model for water resource management. Hydrological Processes,2011, 25(24): 3735-3747.[12] Clow D W. Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming. Journal ofClimate, 2010, 23(9): 2293-2306.[13] Hodgkins G A, Dudley R W. Changes in the timing of winter-spring streamflows in eastern North America,1913-2002. Geophysical Research Letters, 2006, 33(6), doi: 10.1029/2005GL025593.[14] Lu Aifeng, Jia Shaofeng. Temporal variations and trend analysis of the snowmelt runoff timing across the sourceregions of the Yangtze River, Yellow River and Lancang River. Resources Science, 2009, 31(10): 1704-1709. [吕爱锋,贾绍凤. 三江源地区融雪径流时间变化特征与趋势分析. 资源科学, 2009, 31(10): 1704-1709.][15] Wang Jian, Li Shuo. The impact of climate change on the mountain snowmelt runoff of inland areas. Science inChina: Series D, 2005, 35(7): 664-670. [王建, 李硕. 气候变化对中国内陆干旱区山区融雪径流的影响. 中国科学: D辑, 2005, 35(7): 664-670][16] Immerzeel W W, van Beek L P H. Climate change will affect the Asian Water Towers. Science, 2010, 328: 1382-1385.[17] Zheng Hongxing, Zhang Lu, Zhu Ruirui et al. Responses of streamflow to climate and land surface change in theheadwaters of the Yellow River Basin. Water Resource Research, 2009, 45, W00A19, doi: 10.1029/2007WR006665.[18] Ma Huan, Yang Dawen, Soon Keat Tan et al. Impact of climate variability and human activity on streamflow decreasein the Miyun Reservoir catchment. Journal of Hydrology, 2010, 389(3/4): 317-324.[19] Chen Yaning, Xu Zongxue. Plausible impact of global climate change on water resources in the Tarim River Basin.Science in China: Series D, 2005, 48: 65-73.[20] Zhang Xueqin, Sun Yang, Mao Weifeng et al. Regional response of temperature change in the arid regions of China toglobal warming. Arid Zone Research, 2010, 27(4): 592-599. [张雪芹, 孙杨, 毛炜峄等. 中国干旱区气温变化对全球变暖的区域响应. 干旱区研究, 2010, 27(4): 592-599.][21] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Contributionof Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change//Solomon Set al. Cambridge, UK: Cambridge University Press, 2007: 996pp.[22] Li Qihu, Chen Yaning, Shen Yanjun et al. Spatial and temporal trends of climate change in Xinjiang, China. Journal ofGeographical Sciences, 2011, 21(6): 1007-1018.[23] Huang Xiaoyan, Zhang Mingjun, Wang Shengjie et al. Variation of 0℃ isotherm height and ground temperature insummer in Northwest China during the past 50 years. Acta Geographica Sinica, 2011, 66(9): 1191-1199. [黄小燕, 张明军, 王圣杰等. 中国西北地区近50 年夏季0℃层高度及气温时空变化特征. 地理学报, 2011, 66(9): 1191-1199.][24] Shi Yafeng. Concise Glacier Inventory of China. Shanghai: Shanghai Popular Science Press, 2005. [施雅风. 简明中国冰川目录. 上海: 上海科学普及出版社, 2005.] |
[1] | 郭泽呈, 魏伟, 石培基, 周亮, 王旭峰, 李振亚, 庞素菲, 颉斌斌. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 2020, 75(9): 1948-1965. |
[2] | 温庆志, 孙鹏, 张强, 姚蕊. 非平稳标准化降水蒸散指数构建及中国未来干旱时空格局[J]. 地理学报, 2020, 75(7): 1465-1482. |
[3] | 李双双, 汪成博, 延军平, 刘宪锋. 面向事件过程的秦岭南北极端降水时空变化特征[J]. 地理学报, 2020, 75(5): 989-1007. |
[4] | 田晶, 郭生练, 刘德地, 陈启会, 王强, 尹家波, 吴旭树, 何绍坤. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11): 2307-2318. |
[5] | 王芳, 张晋韬. 《巴黎协定》排放情景下中亚地区降水变化响应[J]. 地理学报, 2020, 75(1): 25-40. |
[6] | 何丽烨, 程善俊, 马宁, 郭军. 海河流域夏季降水关键区季内演变及其环流配置的定量化分析[J]. 地理学报, 2020, 75(1): 41-52. |
[7] | 谢林环, 江涛, 曹英杰, 张得胜, 黎坤, 唐常源. 城镇化流域降水径流氢氧同位素特征及洪水径流分割[J]. 地理学报, 2019, 74(9): 1733-1744. |
[8] | 刘晓琼, 吴泽洲, 刘彦随, 赵新正, 芮旸, 张健. 1960-2015年青海三江源地区降水时空特征[J]. 地理学报, 2019, 74(9): 1803-1820. |
[9] | 杜军, 胡军, 尼玛吉, 次旺顿珠. 1981-2017年西藏“一江两河”流域5 cm地温及其界限温度时空变化特征[J]. 地理学报, 2019, 74(9): 1821-1834. |
[10] | 郑景云,刘洋,吴茂炜,张学珍,郝志新. 中国中世纪气候异常期温度的多尺度变化特征及区域差异[J]. 地理学报, 2019, 74(7): 1281-1291. |
[11] | 曾岁康,雍斌. 全球降水计划IMERG和GSMaP反演降水在四川地区的精度评估[J]. 地理学报, 2019, 74(7): 1305-1318. |
[12] | 李朝君,王世杰,白晓永,谭秋,李汇文,李琴,邓元红,杨钰杰,田诗琪,胡泽银. 全球主要河流流域碳酸盐岩风化碳汇评估[J]. 地理学报, 2019, 74(7): 1319-1332. |
[13] | 陆福志,鹿化煜. 秦岭—大巴山高分辨率气温和降水格点数据集的建立及其对区域气候的指示[J]. 地理学报, 2019, 74(5): 875-888. |
[14] | 严鑫,孙昭华,谢翠松,夏军强. 基于经验模型的长江口南支上段压咸临界流量[J]. 地理学报, 2019, 74(5): 935-947. |
[15] | 曹晓娟, 谢林妤, 张风宝, 杨明义, 李占斌. 沙层特性对沙盖黄土坡面产流产沙变化贡献的定量分析[J]. 地理学报, 2019, 74(5): 962-974. |