地理学报 ›› 2023, Vol. 78 ›› Issue (9): 2284-2298.doi: 10.11821/dlxb202309011
唐道斌1,2(), 杨坤美2, 曾兰华2, 刘向军2, 辛存林1(
), 徐砚田2
收稿日期:
2023-02-08
修回日期:
2023-08-24
出版日期:
2023-09-25
发布日期:
2023-09-28
通讯作者:
辛存林(1967-), 男, 甘肃秦安人, 教授, 博士生导师, 主要从事自然资源与环境变化研究。E-mail: xincunlin@163.com作者简介:
唐道斌(1997-), 男, 广东湛江人, 硕士生, 主要从事释光测年和第四纪地貌研究。E-mail: 2832884261@qq.com
基金资助:
TANG Daobin1,2(), YANG Kunmei2, ZENG Lanhua2, LIU Xiangjun2, XIN Cunlin1(
), XU Yantian2
Received:
2023-02-08
Revised:
2023-08-24
Published:
2023-09-25
Online:
2023-09-28
Supported by:
摘要:
1.5 ka以来,青藏高原东北部风沙活动增强是因气候变化还是人类活动所致,抑或二者共同作用,目前还不得而知。本文根据自然环境和人口分布将青藏高原东北部分为两个区域:I区主要包括青海湖盆地、共和盆地和河湟谷地,区内水热条件较好、人口较多;II区主要包括黄河源区和柴达木盆地,区内气候寒冷干燥、人口较少。本文归纳整理这两个区域的风成沙年龄、风沙活动记录、古气候代用指标和人类活动等相关的代用记录,分析青藏高原东北部1.5 ka以来风沙活动增强的时空差异及影响因素。结果表明:1.5 ka以来,青藏高原东北部风沙活动增强存在时空差异,I区的风沙活动在相对暖湿的1.5~1.0 ka期间显著增强,而II区的风沙活动直到1.0 ka以来才开始逐渐增强。I区的风沙活动开始增强的时间比II区早了0.5 ka。综合分析发现,人类活动增强对自然植被的破坏是I区的风沙活动增强比II区提前0.5 ka的原因。1.0 ka以来Ⅱ区的风沙活动增强主要是气候变化所致。本文对1.5 ka以来青藏高原东北部风沙活动增强的时空差异的认识,可为未来全球变暖趋势下该地区的生态环境治理和风沙活动变化预测提供参考。
唐道斌, 杨坤美, 曾兰华, 刘向军, 辛存林, 徐砚田. 1.5 ka以来青藏高原东北部风沙活动增强的时空差异[J]. 地理学报, 2023, 78(9): 2284-2298.
TANG Daobin, YANG Kunmei, ZENG Lanhua, LIU Xiangjun, XIN Cunlin, XU Yantian. Spatio-temporal differences of enhanced aeolian sand activity in the northeastern Tibetan Plateau over the past 1500 years[J]. Acta Geographica Sinica, 2023, 78(9): 2284-2298.
[1] |
Archaeo Globe Project. Archaeological assessment reveals Earth's early transformation through land use. Science, 2019, 365(6465): 897-902.
doi: 10.1126/science.aax1192 |
[2] |
Kaplan J O, Krumhardt K M, Ellis E C, et al. Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene, 2011, 21(5): 775-791.
doi: 10.1177/0959683610386983 |
[3] | Ellis E C, Gauthier N, Klein Goldewijk K, et al. People have shaped most of terrestrial nature for at least 12000 years. PNAS, 2021, 118(17): e2023483118. DOI: 10.1073/pnas.2023483118. |
[4] | Crutzen P J, Stoermer E F. The "Anthropocene". IGBP Newsletter, 2000, 41: 17-18. |
[5] |
Zhang C, Zhao C, Zhou A F, et al. Late Holocene lacustrine environmental and ecological changes caused by anthropogenic activities in the Chinese Loess Plateau. Quaternary Science Reviews, 2019, 203: 266-277.
doi: 10.1016/j.quascirev.2018.11.020 |
[6] | Ding G Q, Chen J H, Yan H Y, et al. Late Holocene transition from natural to anthropogenic forcing of vegetation change in the semi-arid region of northern China. Quaternary Science Reviews, 2022, 287: 107561. DOI: 10.1016/j.quascirev.2022.107561. |
[7] |
Chen F H, Chen S Q, Zhang X, et al. Asian dust-storm activity dominated by Chinese dynasty changes since 2000 BP. Nature Communications, 2020, 11(1): 992. DOI: 10.1038/s41467-020-14765-4.
pmid: 32080182 |
[8] |
Chen S Q, Liu J B, Wang X, et al. Holocene dust storm variations over northern China: Transition from a natural forcing to an anthropogenic forcing. Science Bulletin, 2021, 66(24): 2516-2527.
doi: 10.1016/j.scib.2021.08.008 pmid: 36654211 |
[9] | Zhang F, Li S H, Sun C P, et al. >Human impacts overwhelmed hydroclimate control of soil erosion in China 5000 years ago>. Geophysical Research Letters, 2022, 49(5): e2021GL096983. DOI: 10.1029/2021GL096983. |
[10] | Zhao H, Lin Y H, Zhou J, et al. Quantifying the dynamic processes of soil erosion and lake sediment deposition in the Holocene in China. Quaternary Science Reviews, 2023, 304: 107993. DOI: 10.1016/j.quascirev.2023.107993. |
[11] |
Liu J, Wang R J, Zhao Y, et al. A 40,000-year record of aridity and dust activity at Lop Nur, Tarim Basin, northwestern China. Quaternary Science Reviews, 2019, 211: 208-221.
doi: 10.1016/j.quascirev.2019.03.023 |
[12] |
Chen F H, Qiang M R, Zhou A F, et al. A 2000-year dust storm record from Lake Sugan in the dust source area of arid China. Journal of Geophysical Research: Atmospheres, 2013, 118(5): 2149-2160.
doi: 10.1002/jgrd.50140 |
[13] | He Y X, Zhao C, Song M, et al. Onset of frequent dust storms in northern China at -AD 1100. Scientific Reports, 2015, 5(1): 17111. DOI: 10.1038/srep17111. |
[14] |
Xu B, Wang L, Gu Z Y, et al. Decoupling of climatic drying and Asian dust export during the Holocene. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 915-928.
doi: 10.1002/jgrd.v123.2 |
[15] |
Zhang S, Xu H, Lan J H, et al. Dust storms in northern China during the last 500 years. Science China Earth Sciences, 2021, 64(5): 813-824.
doi: 10.1007/s11430-020-9730-2 |
[16] |
Qiang M R, Liu Y Y, Jin Y X, et al. Holocene record of eolian activity from Genggahai Lake, northeastern Qinghai‐Tibetan Plateau, China. Geophysical Research Letters, 2014, 41(2): 589-595.
doi: 10.1002/grl.v41.2 |
[17] | Chen F H, Zhang J F, Liu J B, et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review. Quaternary Science Reviews, 2020, 243: 106444. DOI: 10.1016/j.quascirev.2020.106444. |
[18] | Zhang J, Xu H, Lan J H, et al. Prolonged drought enhances northwest China dust storm activity. Journal of Geophysical Research: Atmospheres, 2022, 127(20): e2022JD037088. DOI:10.1029/2022JD037088. |
[19] |
Hou Guangliang, Lancuo Zhuoma, Zhu Yan, et al. Communication route and its evolution on the Qinghai-Tibet Plateau during the prehistoric time. Acta Geographica Sinica, 2021, 76(5): 1294-1313.
doi: 10.11821/dlxb202105018 |
[侯光良, 兰措卓玛, 朱燕, 等. 青藏高原史前时期交流路线及其演变. 地理学报, 2021, 76(5): 1294-1313.]
doi: 10.11821/dlxb202105018 |
|
[20] |
Chen F H, Dong G H, Zhang D J, et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science, 2015, 347(6219): 248-250.
doi: 10.1126/science.1259172 pmid: 25593179 |
[21] | Wei H C, E C Y, Zhang J, et al. Climate change and anthropogenic activities in Qinghai Lake basin over the last 8500 years derived from pollen and charcoal records in an aeolian section. CATENA, 2020, 193: 104616. DOI: 10.1016/j.catena.2020.104616. |
[22] | Wende Z M, Hou G L, Gao J Y, et al. Reconstruction of cultivated land in the northeast margin of Qinghai-Tibetan Plateau and anthropogenic impacts on palaeo-environment during the mid-Holocene. Frontiers in Earth Sciences, 2021, 9: 681995. DOI: 10.3389/feart.2021.681995. |
[23] | Sun M P, Sun Y J, Wei H C, et al. Luminescence dating of relics in ancient cities provides absolute dates for understanding human-land relationships in Qinghai Lake Basin, northeastern Tibetan Plateau. Frontiers in Earth Science, 2021, 9: 701037. DOI: 10.3389/feart.2021.701037. |
[24] | Zhang Shanjia, Dong Guanghui. Human adaptation strategies to different altitude environment during mid-late Bronze Age in northeast Tibetan Plateau. Quaternary Science, 2017, 37(4): 696-708. |
[张山佳, 董广辉. 青藏高原东北部青铜时代中晚期人类对不同海拔环境的适应策略探讨. 第四纪研究, 2017, 37(4): 696-708.] | |
[25] |
Jia X, Lee H F, Cui M C, et al. Differentiations of geographic distribution and subsistence strategies between Tibetan and other major ethnic groups are determined by the physical environment in Hehuang Valley. Science China Earth Sciences, 2019, 62(2): 412-422.
doi: 10.1007/s11430-018-9301-5 |
[26] |
Dong G H, Liu H G, Yang Y S, et al. Emergence of ancient cities in relation to geopolitical circumstances and climate change during late Holocene in northeastern Tibetan Plateau, China. Frontiers of Earth Science, 2016, 10(4): 669-682.
doi: 10.1007/s11707-015-0575-7 |
[27] |
Mo Xingguo, Liu Suxia, Hu Shi. Co-evolution of climate-vegetation-hydrology and its mechanisms in the source region of Yellow River. Acta Geographica Sinica, 2022, 77(7): 1730-1744.
doi: 10.11821/dlxb202207011 |
[莫兴国, 刘苏峡, 胡实. 黄河源区气候—植被—水文协同演变及成因辨析. 地理学报, 2022, 77(7): 1730-1744.]
doi: 10.11821/dlxb202207011 |
|
[28] | Yao Huiru, Li Dongliang. The interannual variation of wind speed in the Tibetan Plateau in spring and its response to global warming during 1971-2012. Acta Meteorologica Sinica, 2016, 74(1): 60-75. |
[姚慧茹, 李栋梁. 1971—2012年青藏高原春季风速的年际变化及对气候变暖的响应. 气象学报, 2016, 74(1): 60-75.] | |
[29] |
Liu X J, Lai Z P, Madsen D, et al. Lake level variations of Qinghai Lake in northeastern Qinghai-Tibetan Plateau since 3.7 ka based on OSL dating. Quaternary International, 2011, 236(1/2): 57-64.
doi: 10.1016/j.quaint.2010.08.009 |
[30] |
Lu H Y, Zhao C F, Mason J, et al. Holocene climatic changes revealed by aeolian deposits from the Qinghai Lake area (northeastern Qinghai-Tibetan Plateau) and possible forcing mechanisms. The Holocene, 2011, 21(2): 297-304.
doi: 10.1177/0959683610378884 |
[31] |
Lu R J, Jia F F, Gao S Y, et al. Holocene aeolian activity and climatic change in Qinghai Lake basin, northeastern Qinghai-Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 1-10.
doi: 10.1016/j.palaeo.2015.03.044 |
[32] |
Wang L D, Lu R J, Ding Z Y, et al. Holocene aeolian activity in the Ganzihe sandy land, Qinghai Lake basin. Quaternary International, 2021, 598: 56-65.
doi: 10.1016/j.quaint.2021.05.023 |
[33] | E C Y, Zhang J, Chen Z Y, et al. High resolution OSL dating of aeolian activity at Qinghai Lake, northeast Tibetan Plateau. CATENA, 2019, 183: 104180. DOI: 10.1016/j.catena.2019.104180. |
[34] | Zhang J R, Liu Q, Yang L H, et al. Regional hydroclimates regulate the Holocene aeolian accumulation processes of the Qinghai Lake basin on the northeastern Tibetan Plateau. CATENA, 2022, 210: 105866. DOI: 10.1016/j.catena.2021.105866. |
[35] |
Liu B, Jin H L, Sun L Y, et al. Holocene climatic change revealed by aeolian deposits from the Gonghe Basin, northeastern Qinghai-Tibetan Plateau. Quaternary International, 2013, 296: 231-240.
doi: 10.1016/j.quaint.2012.05.003 |
[36] |
Liu B, Zhao H, Jin H L, et al. Holocene moisture variation recorded by aeolian sand palaeosol sequences of the Gonghe Basin, northeastern Qinghai-Tibetan Plateau, China. Acta Geologica Sinica (English Edition), 2020, 94(3): 668-681.
doi: 10.1111/acgs.v94.3 |
[37] |
Qiang M R, Chen F H, Song L, et al. Late quaternary aeolian activity in Gonghe Basin, northeastern Qinghai-Tibetan Plateau, China. Quaternary Research, 2013, 79(3): 403-412.
doi: 10.1016/j.yqres.2013.03.003 |
[38] |
Zhou J X, Zhu Y, Yuan C Q. Origin and lateral migration of linear dunes in the Qaidam Basin of NW China revealed by dune sediments, internal structures, and optically stimulated luminescence ages, with implications for linear dunes on Titan. Geological Society of America Bulletin, 2012, 124(7/8): 1147-1154.
doi: 10.1130/B30550.1 |
[39] |
Yu L P, Lai Z P. Holocene climate change inferred from stratigraphy and OSL chronology of aeolian sediments in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau. Quaternary Research, 2014, 81(3): 488-499.
doi: 10.1016/j.yqres.2013.09.006 |
[40] |
Yu L P, Lai Z P, An P, et al. Aeolian sediments evolution controlled by fluvial processes, climate change and human activities since LGM in the Qaidam Basin, Qinghai-Tibetan Plateau. Quaternary International, 2015, 372: 23-32.
doi: 10.1016/j.quaint.2014.09.043 |
[41] |
Hu G Y, Yu L P, Dong Z B, et al. Holocene aeolian activity in the headwater region of the Yellow River, northeast Tibet Plateau, China: A first approach by using OSL-dating. CATENA, 2017, 149: 150-157.
doi: 10.1016/j.catena.2016.09.014 |
[42] |
Yan D D, Wünnemann B, Zhang Y Z, et al. Response of lake-catchment processes to Holocene climate variability: Evidences from the NE Tibetan Plateau. Quaternary Science Reviews, 2018, 201: 261-279.
doi: 10.1016/j.quascirev.2018.10.017 |
[43] |
Stauch G, IJmker J, Pötsch S, et al. Aeolian sediments on the north-eastern Tibetan Plateau. Quaternary Science Reviews, 2012, 57: 71-84.
doi: 10.1016/j.quascirev.2012.10.001 |
[44] |
Stauch G. Multi-decadal periods of enhanced aeolian activity on the north-eastern Tibet Plateau during the last 2 ka. Quaternary Science Reviews, 2016, 149: 91-101.
doi: 10.1016/j.quascirev.2016.07.027 |
[45] |
Stauch G. Geomorphological and palaeoclimate dynamics recorded by the formation of aeolian archives on the Tibetan Plateau. Earth-Science Reviews, 2015, 150: 393-408.
doi: 10.1016/j.earscirev.2015.08.009 |
[46] |
Singhvi A K, Bluszcz A, Bateman M D, et al. Luminescence dating of loess-palaeosol sequences and coversands: Methodological aspects and palaeoclimatic implications. Earth-Science Reviews, 2001, 54(1-3): 193-211.
doi: 10.1016/S0012-8252(01)00048-4 |
[47] |
Lai Z P, Kaiser K, Brückner H. Luminescence-dated aeolian deposits of late Quaternary age in the southern Tibetan Plateau and their implications for landscape history. Quaternary Research, 2009, 72(3): 421-430.
doi: 10.1016/j.yqres.2009.07.005 |
[48] | Liu X J, Miao X D, Nie J S, et al. Distribution and fate of Tibetan Plateau loess. CATENA, 2023, 225: 107022. DOI: 10.1016/j.catena.2023.107022. |
[49] |
Huang L X, Chen J, Yang K, et al. The northern boundary of the Asian summer monsoon and division of westerlies and monsoon regimes over the Tibetan Plateau in present-day. Science China Earth Sciences, 2023, 66(4): 882-893.
doi: 10.1007/s11430-022-1086-1 |
[50] |
Chen F H, Wu D, Chen J H, et al. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies. Quaternary Science Reviews, 2016, 154: 111-129.
doi: 10.1016/j.quascirev.2016.10.021 |
[51] |
Yang B, Qin C, Wang J L, et al. A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. PNAS, 2014, 111(8): 2903-2908.
doi: 10.1073/pnas.1319238111 pmid: 24516152 |
[52] | Liu Y, Cai Q F, Song H M, et al. Amplitudes, rates, periodicities and causes of temperature variations in the past 2485 years and future trends over the central-eastern Tibetan Plateau. Chinese Science Bulletin, 2011, 56: 2986. DOI: 10.1007/s11434-011-4713-7. |
[53] | Liu X Q, Yu Z T, Dong H L, et al. A less or more dusty future in the Northern Qinghai-Tibetan Plateau? Scientific Reports, 2014, 4(1): 6672. DOI: 10.1038/srep06672. |
[54] |
Miao Y F, Zhang D J, Cai X M, et al. Holocene fire on the northeast Tibetan Plateau in relation to climate change and human activity. Quaternary International, 2017, 443: 124-131.
doi: 10.1016/j.quaint.2016.05.029 |
[55] |
Zhao W W, Zhao Y, Qin F. Holocene fire, vegetation, and climate dynamics inferred from charcoal and pollen record in the eastern Tibetan Plateau. Journal of Asian Earth Sciences, 2017, 147: 9-16.
doi: 10.1016/j.jseaes.2017.07.017 |
[56] |
Miehe G, Miehe S, Böhner J, et al. How old is the human footprint in the world's largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists' viewpoint. Quaternary Science Reviews, 2014, 86: 190-209.
doi: 10.1016/j.quascirev.2013.12.004 |
[57] | Li Yiyin, Hou Shufang, Zhao Pengfei. Comparison of different quantification methods for microfossil charcoal concentration and the implication for human activities. Quaternary Sciences, 2010, 30(2): 356-363. |
[李宜垠, 侯树芳, 赵鹏飞. 微炭屑的几种统计方法比较及其对人类活动的指示意义. 第四纪研究, 2010, 30(2): 356-363.] | |
[58] | Jiang Yingying, E Chongyi, Hou Guangliang, et al. Charcoal concentration reflect of environment change and human activities in Qinghai-Lake JXG2 relic. Journal of Earth Environment, 2015, 6(2): 98-105. |
[姜莹莹, 鄂崇毅, 侯光良, 等. 青海湖江西沟2号遗址炭屑浓度反映的环境变化与人类活动. 地球环境学报, 2015, 6(2): 98-105.] | |
[59] |
Shen J, Liu X Q, Wang S M, et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International, 2005, 136(1): 131-140.
doi: 10.1016/j.quaint.2004.11.014 |
[60] |
Cheng B, Chen F H, Zhang J W. Palaeovegetational and palaeoenvironmental changes since the last deglacial in Gonghe Basin, northeast Tibetan Plateau. Journal of Geographical Sciences, 2013, 23(1): 136-146.
doi: 10.1007/s11442-013-0999-5 |
[61] | Wei H C, Duan R L, Xu Q H, et al. Fungal spore indicators of vegetation and highland pastoralism in modern topsoil and dung, eastern Tibetan Plateau. CATENA, 2021, 202: 105231. DOI: 10.1016/j.catena.2021.105231. |
[62] |
Wei H C, E C Y, Duan R L, et al. Fungal spore record of pastoralism on the NE Qinghai-Tibetan Plateau since the middle Holocene. Science China Earth Sciences, 2021, 64(8): 1318-1331.
doi: 10.1007/s11430-020-9787-4 |
[63] | Huang X Z, Zhang J, Storozum M, et al. Long-term herbivore population dynamics in the northeastern Qinghai-Tibetan Plateau and its implications for early human impacts. Review of Palaeobotany and Palynology, 2020, 275: 104171. DOI: 10.1016/j.revpalbo.2020.104171. |
[64] |
Wei H C, Hou G L, Fan Q S, et al. Using coprophilous fungi to reconstruct the history of pastoralism in the Qinghai Lake Basin, northeastern Qinghai-Tibetan Plateau. Progress in Physical Geography: Earth and Environment, 2020, 44(1): 70-93.
doi: 10.1177/0309133319869596 |
[65] |
Baker A G, Bhagwat S A, Willis K J. Do dung fungal spores make a good proxy for past distribution of large herbivores? Quaternary Science Reviews, 2013, 62: 21-31.
doi: 10.1016/j.quascirev.2012.11.018 |
[66] |
Huang X Z, Liu S S, Dong G H, et al. Early human impacts on vegetation on the northeastern Qinghai-Tibetan Plateau during the middle to late Holocene. Progress in Physical Geography: Earth and Environment, 2017, 41(3): 286-301.
doi: 10.1177/0309133317703035 |
[67] | Li Zhixin. Research on the Ancient City of Qinghai. Xi'an: Northwest University Press, 1995: 277-284. |
[李智信. 青海古城考辨. 西安: 西北大学出版社, 1995: 277-284.] | |
[68] | Li Shengmei, Hou Guangliang, Xu Changjun, et al. Human activities in the Gonghe Basin since the middle Holocene based on sporopollen. Journal of Salt Lake Research, 2020, 28(4): 56-63. |
[李生梅, 侯光良, 许长军, 等. 基于孢粉的中全新世以来共和盆地人类活动探讨. 盐湖研究, 2020, 28(4): 56-63.] | |
[69] |
Singhvi A K, Porat N. Impact of luminescence dating on geomorphological and palaeoclimate research in drylands. Boreas, 2008, 37(4): 536-558.
doi: 10.1111/bor.2008.37.issue-4 |
[70] |
Chase B. Evaluating the use of dune sediments as a proxy for palaeo-aridity: A southern African case study. Earth-Science Reviews, 2009, 93(1/2): 31-45.
doi: 10.1016/j.earscirev.2008.12.004 |
[71] | Zhao Yajuan. Aeolian sediment and environmental evolution since last deglaciation period in the west bank of Qinghai lake revealed by a high resolution OSL dating[D]. Xining: Qinghai Normal University, 2017. |
[赵亚娟. 末次冰消期以来青海湖西岸风成沉积记录的高密度光释光年代学及环境演变[D]. 西宁: 青海师范大学, 2017.] | |
[72] |
Zeng F M, Liu X J, Li X Z, et al. Aquatic species dominate organic matter in Qinghai Lake during the Holocene: Evidence from eolian deposits around the lake. Journal of Earth Science, 2017, 28(3): 484-491.
doi: 10.1007/s12583-016-0926-x |
[73] | Xu C X, E C Y, Shi Y K, et al. Holocene aeolian activity recorded by mountain paleosols, Gonghe Basin, northeast Qinghai-Tibet Plateau. Frontiers in Earth Science, 2022, 10: 832993. DOI: 10.3389/feart.2022.832993. |
[74] |
Liu B, Jin H L, Sun L Y, et al. Spatial-temporal differences in climate change at different altitudes, northeastern Qinghai-Tibetan Plateau during the Holocene period. International Journal of Earth Sciences, 2014, 103(6): 1699-1710.
doi: 10.1007/s00531-014-1042-5 |
[75] | Liu G X, He S N, Wong M L, et al. Tropical Pacific forcing of hydroclimate in the source area of the Yellow River. Geophysical Research Letters, 2021, 48(23): e2021GL095876. DOI: 10.1029/2021GL095876. |
[76] | Zhao W W, Chen C Z, Jiang Q F, et al. Holocene hydroclimate in the source region of the Yellow River: A new sediment record from Lake Gyaring, NE Tibetan Plateau. Journal of Asian Earth Sciences, 2021, 205: 104601. DOI: 10.1016/j.jseaes.2020.104601. |
[77] | Liu X D, Yin Z Y, Zhang X, et al. Analyses of the spring dust storm frequency of northern China in relation to antecedent and concurrent wind, precipitation, vegetation, and soil moisture conditions. Journal of Geophysical Research: Atmospheres, 2004, 109: D16210. DOI: 9/2004JD004615. |
[78] |
Neff J C, Ballantyne A P, Farmer G L, et al. Increasing eolian dust deposition in the western United States linked to human activity. Nature Geoscience, 2008, 1(3): 189-195.
doi: 10.1038/ngeo133 |
[79] |
An Z S, Colman S M, Zhou W J, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Scientific Reports, 2012, 2: 619. DOI: 10.1038/srep00619.
pmid: 22943005 |
[80] | Wang M, Shen C M, Wu X D, et al. A 1400-year eolian dust activity record from Lake Erhai in the northeastern Tibetan Plateau. CATENA, 2022, 212: 106050. DOI: 10.1016/j.catena.2022.106050. |
[81] | Mayewski P A, Maasch K A. Recent warming inconsistent with natural association between temperature and atmospheric circulation over the last 2000 years. Climate of the Past Discussions, 2006, 2(3): 327-355. |
[82] | Liu Sisi, Huang Xiaozhong, Qiang Mingrui, et al. Vegetation and climate change during the mid-late Holocene reflected by the pollen record from Lake Genggahai, northeastern Tibetan Plateau. Quaternary Sciences, 2016, 36(2): 247-256. |
[刘思丝, 黄小忠, 强明瑞, 等. 孢粉记录的青藏高原东北部更尕海地区中晚全新世植被和气候变化. 第四纪研究, 2016, 36(2): 247-256.] | |
[83] | Zhang Jinsheng. Research on the historical changes of Qinghai region forestry[D]. Yangling: Northwest Agricultural and Forestry University, 2013. |
[张进升. 青海林业变迁史研究[D]. 杨凌: 西北农林科技大学, 2013.] | |
[84] |
Dong Guanghui, Qiu Menghan, Li Ruo, et al. Using the Fulcrum Cognitive Model to explore the mechanism of past human-land co-evolution. Acta Geographica Sinica, 2021, 76(1): 15-29.
doi: 10.11821/dlxb202101002 |
[董广辉, 仇梦晗, 李若, 等. 探讨过去人地关系演变机制的“支点”概念模型. 地理学报, 2021, 76(1): 15-29.]
doi: 10.11821/dlxb202101002 |
|
[85] | Cai Y, Zhang J R, Yang N, et al. Human impacts on vegetation exceeded the hydroclimate control 2 ka ago in the Qinghai Lake basin revealed by n-alkanes of loess. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 607: 111269. DOI: 10.1016/j.palaeo.2022.111269. |
[86] | Liu Lu, Su Yun, Fang Xiuqi. Wars between farming and nomadic groups from Western Han Dynasty to Qing Dynasty in north China and relationship with temperature change. Journal of Beijing Normal University (Natural Science), 2016, 52(4): 450-457. |
[刘璐, 苏筠, 方修琦. 中国西汉至清代北方农牧民族战争及其与温度变化的关联. 北京师范大学学报(自然科学版), 2016, 52(4): 450-457.] | |
[87] | Pei Tingting, He Lihui. On the influence of peace and war contacts between Tubo and Tang Dynasty on Tang Dynasty. China's Borderland History and Geography Studies, 2007, 17(1): 27-35, 147. |
[裴婷婷, 何立慧. 吐蕃、唐朝和战交往及对唐朝的影响. 中国边疆史地研究, 2007, 17(1): 27-35, 147.] | |
[88] |
Hou J Z, Ji K J, Zhu E L, et al. Climate change fostered rise and fall of the Tibetan Empire during 600-800 AD. Science Bulletin, 2023, 68(11): 1187-1194.
doi: 10.1016/j.scib.2023.04.040 pmid: 37179230 |
[89] |
Whinam J, Chilcott N M. Impacts after four years of experimental trampling on alpine/sub-alpine environments in western Tasmania. Journal of Environmental Management, 2003, 67(4): 339-351.
pmid: 12710922 |
[90] | Cui Yonghong. The reduction of forest land in Gan-Ning-Qing region in Qing Dynasty and its consequences. Qinghai Social Sciences, 2007(3): 128-132. |
[崔永红. 清代甘宁青地区林地的减少及其后果. 青海社会科学, 2007(3): 128-132.] | |
[91] | Liu Xu. Old Tang Book. Beijing: Zhonghua Book Company, 1975: 2481-2482. |
[刘昫. 旧唐书. 北京: 中华书局, 1975: 2481-2482.] | |
[92] |
Jia X, Dong G H, Wang L, et al. How humans inhabited the northeastern Tibetan Plateau during the Little Ice Age: A case study at Hualong county, Qinghai province, China. Journal of Archaeological Science: Reports, 2016, 7: 27-36.
doi: 10.1016/j.jasrep.2016.03.036 |
[93] |
Guo Rong, Liu Fenggui, Chen Qiong, et al. Reconstruction of cultivated land pattern in the upper reaches of the Yellow River in the late Northern Song Dynasty: Take Hehuang Valley as an example. Journal of Natural Resources, 2021, 36(1): 27-37.
doi: 10.31497/zrzyxb.20210102 |
[郭蓉, 刘峰贵, 陈琼, 等. 北宋后期黄河上游地区耕地格局重建: 以河湟谷地为例. 自然资源学报, 2021, 36(1): 27-37.] | |
[94] | Chen S Q, Liu J B, Chen J H, et al. Differences in the evolutionary pattern of dust storms over the past 2000 years between eastern and western China and the driving mechanisms. Science China. Earth Sciences, 2020, 63(9): 1422-1424. |
[95] | Zhang Y R, Li Y Q, Liu L N, et al. No evidence of human disturbance to vegetation in the Zoige region (north-eastern Tibetan Plateau) in the last millennium until recent decades. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 589: 110843. DOI: 10.1016/j.palaeo.2022.110843. |
[96] |
Tian F, Qin W, Zhang R, et al. Palynological evidence for the temporal stability of the plant community in the Yellow River source area over the last 7400 years. Vegetation History and Archaeobotany, 2022, 31: 549-558.
doi: 10.1007/s00334-022-00870-5 |
[97] | Wu X D, Li X Z, Li J F, et al. Eolian dust activity during the last -850 years on the southeastern margin of the arid Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 110022. DOI: 10.1016/j.palaeo.2020.110022. |
[1] | 杨华, 徐勇, 周侃, 王丽佳, 徐琳. 青藏高原建设用地的适宜性与适应性及后备潜力评价[J]. 地理学报, 2023, 78(9): 2128-2146. |
[2] | 夏军, 陈进, 佘敦先, 骆文广. 变化环境下中国现代水网建设的机遇与挑战[J]. 地理学报, 2023, 78(7): 1608-1617. |
[3] | 汤秋鸿, 徐锡蒙, 贺莉, 彭守璋, 胡亚伟, 靳晓辉, 樊玉苗, 祝欣荣, 邓浩鑫, 杨淋, 王志慧. 黄河中游生态水文模型及洪旱灾害风险评估[J]. 地理学报, 2023, 78(7): 1666-1676. |
[4] | 罗贤, 李运刚, 季漩, 何大明. 中国国际河流水文地理研究进展[J]. 地理学报, 2023, 78(7): 1703-1717. |
[5] | 王皓言, 杨晹, 周伯睿, 李凯, 廖梦娜, 倪健. 长期人类活动对浙江全新世植被的影响[J]. 地理学报, 2023, 78(5): 1153-1175. |
[6] | 高铭君, 李育, 张占森, 周雪如, 李海烨, 段俊杰, 薛雅欣. 祁连山周边内流区湖泊沉积物与人类活动研究[J]. 地理学报, 2023, 78(5): 1192-1212. |
[7] | 张丹枫, 王先彦, 张瀚之, 刘全玉, 王社江, 鹿化煜. 汉江上游早—中更新世河流地貌演化促进南秦岭山间盆地古人类扩散[J]. 地理学报, 2023, 78(5): 1213-1232. |
[8] | 杨仕琪, 王冀, 窦银银, 栾庆祖, 匡文慧. 1916—2020年北京城市变迁及其与区域气候演化的关系[J]. 地理学报, 2023, 78(3): 620-639. |
[9] | 马炳鑫, 和彩霞, 靖娟利, 王永锋, 刘兵, 何宏昌. 1982—2019年中国西南地区植被变化归因研究[J]. 地理学报, 2023, 78(3): 714-728. |
[10] | 刘悦, 刘欢欢, 陈印, 刚成诚. 2000—2018年中国植被光学厚度时空动态特征及驱动因素[J]. 地理学报, 2023, 78(3): 729-745. |
[11] | 李双双, 胡佳岚, 段克勤, 何锦屏, 延军平. 基于遥感监测的秦岭南北积雪日数时空变化及影响因素[J]. 地理学报, 2023, 78(1): 121-138. |
[12] | 刘俊, 王胜宏, 余云云, 赵旭, 彭聪. 基于微博大数据的气候变化对中国赏樱旅游的影响[J]. 地理学报, 2022, 77(9): 2292-2307. |
[13] | 徐勇, 王丽佳, 杨华. 青藏高原土地资源人类活动适宜性评价方法及实证应用[J]. 地理学报, 2022, 77(7): 1615-1633. |
[14] | 莫兴国, 刘苏峡, 胡实. 黄河源区气候—植被—水文协同演变及成因辨析[J]. 地理学报, 2022, 77(7): 1730-1744. |
[15] | 马忠学, 崔惠娟, 葛全胜. 基于植被动态模式预估中国植被净初级生产力变化格局[J]. 地理学报, 2022, 77(7): 1821-1836. |