地理学报 ›› 2023, Vol. 78 ›› Issue (9): 2256-2270.doi: 10.11821/dlxb202309009
收稿日期:
2023-04-03
修回日期:
2023-08-31
出版日期:
2023-09-25
发布日期:
2023-09-28
通讯作者:
李传华(1979-), 男, 湖北监利人, 副教授, 研究方向为生态遥感与GIS应用。E-mail: lch_nwnu@126.com作者简介:
熊雪婷(1997-), 女, 重庆丰都人, 硕士生, 研究方向为生态遥感与GIS应用。E-mail: xxt10744@163.com
基金资助:
XIONG Xueting(), LI Chuanhua(
), CHEN Jiahao
Received:
2023-04-03
Revised:
2023-08-31
Published:
2023-09-25
Online:
2023-09-28
Supported by:
摘要:
地形很大程度上导致了区域气候变化的空间异质性,从而影响植被对气候变化的响应。本文以青藏高原三江源地区为研究区,利用结构方程模型,探讨地形因子通过气温、降水对归一化差值植被指数的调控作用。研究表明:三江源地区坡度、坡向主要通过调控降水影响植被对气候变化的响应,而海拔主要通过调控气温影响植被对气候变化的响应。海拔的影响最大,其减缓了植被对气候变化的响应,总效应为-0.35;坡度次之,其加剧了植被对气候变化的响应,总效应为0.31;坡向的调控作用最小,总效应为0.03;地形因子的总影响为-0.01,即3类地形因子具有抵消效应。三江源地区在坡度5°~15°、阴坡和海拔3000~3500 m的条件下,地形因子对植被的调控作用最大,其效应分别为0.23、0.08和0.39。在坡度5°~15°和海拔4500~5000 m时,坡向通过调控降水使得植被对气候变化的响应最大;在坡度5°~15°、阴坡和海拔小于4000 m时,海拔通过调控气温加剧植被对气候的响应,在海拔大于4000 m时,海拔主要通过调控降水来减缓植被对气候的响应。本文可为山区植被对气候变化响应规律的研究提供基础。
熊雪婷, 李传华, 陈佳豪. 植被对气候变化响应的地形调控作用[J]. 地理学报, 2023, 78(9): 2256-2270.
XIONG Xueting, LI Chuanhua, CHEN Jiahao. Topographic regulatory role of vegetation response to climate change[J]. Acta Geographica Sinica, 2023, 78(9): 2256-2270.
[1] |
Rangwala I, Miller J R. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Climatic Change, 2012, 114: 527-547.
doi: 10.1007/s10584-012-0419-3 |
[2] |
Lau W K M, Wu H T, Kim K M. A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophysical Research Letters, 2013, 40(12): 3163-3169.
doi: 10.1002/grl.50420 |
[3] |
Cantón Y, Del Barrio G, Solé-Benet A, et al. Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain. CATENA, 2004, 55(3): 341-365.
doi: 10.1016/S0341-8162(03)00108-5 |
[4] | Chang Xueli, Lü Shihai, Feng Zhaoyang, et al. Impact of topography on the spatial distribution pattern of net primary productivity in a meadow. Acta Ecologica Sinica, 2015, 35(10): 3339-3348. |
[常学礼, 吕世海, 冯朝阳, 等. 地形对草甸草原植被生产力分布格局的影响. 生态学报, 2015, 35(10): 3339-3348.] | |
[5] |
Gallardo-Cruz J A, Pérez-García E A, Meave J A. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landscape Ecology, 2009, 24(4): 473-482.
doi: 10.1007/s10980-009-9332-1 |
[6] |
Laamrani A, Valeria O, Bergeron Y, et al. Effects of topography and thickness of organic layer on productivity of black spruce boreal forests of the Canadian Clay Belt region. Forest Ecology and Management, 2014, 330(1): 144-157.
doi: 10.1016/j.foreco.2014.07.013 |
[7] |
Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 2015, 5: 424-430.
doi: 10.1038/nclimate2563 |
[8] | Xu M H, Li X L, Liu M, et al. Spatial variation patterns of plant herbaceous community response to warming along latitudinal and altitudinal gradients in mountainous forests of the Loess Plateau, China. Environment Experimental Botany, 2020, 172: 103983. DOI: 10.1016/j.envexpbot.2020.103983. |
[9] |
Singh P, Kumar N. Effect of orography on precipitation in the western Himalayan region. Journal of Hydrology, 1997, 199: 183-206.
doi: 10.1016/S0022-1694(96)03222-2 |
[10] | Liu W C, Zhang Q, Fu Z, et al. Analysis and estimation of geographical and topographic influencing factors for precipitation distribution over complex terrains: A case of the northeast slope of the Qinghai-Tibet Plateau. Atmosphere, 2018, 9: 349. DOI: 10.3390/atmos9090349. |
[11] |
Wei P, Pan X B, Xu L, et al. The effects of topography on aboveground biomass and soil moisture at local scale in dryland grassland ecosystem, China. Ecological Indicators, 2019, 105(10): 107-115.
doi: 10.1016/j.ecolind.2019.05.002 |
[12] | Peng H, Jia Y W, Zhan C S, et al. Topographic controls on ecosystem evapotranspiration and net primary productivity under climate warming in the Taihang Mountains, China. Journal of Hydrology, 2020, 581: 124394. DOI: 10.1016/j.jhydrol.2019.124394. |
[13] | Xiong Y L, Li Y R, Xiong S Y, et al. Multi-scale spatial correlation between vegetation index and terrain attributes in a small watershed of the upper Minjiang River. Ecological Indicators, 2021, 126(7): 107610. DOI: 10.1016/j.ecolind.2021.107610. |
[14] | Wang C Y, Wang J N, Naudiyal N, et al. Multiple effects of topographic factors on spatio-temporal variations of vegetation patterns in the Three Parallel Rivers region, southeast Qinghai-Tibet Plateau. Remote Sensing, 2021, 14(1): 151. DOI: 10.3390/rs14010151. |
[15] |
Ao Rongjun, Chang Liang. Influencing mechanism of regional ageing in China based on the Structural Equation Model. Acta Geographica Sinica, 2020, 75(8): 1572-1584.
doi: 10.11821/dlxb202008002 |
[敖荣军, 常亮. 基于结构方程模型的中国县域人口老龄化影响机制. 地理学报, 2020, 75(8): 1572-1584.]
doi: 10.11821/dlxb202008002 |
|
[16] | Hao J, Xu G Y, Luo L, et al. Quantifying the relative contribution of natural and human factors to vegetation coverage variation in coastal wetlands in China. CATENA, 2020, 188(2): 104429. DOI: 10.1016/j.catena.2019.104429. |
[17] | Santillan V, Quitian M, Tinoco B A, et al. Direct and indirect effects of elevation, climate and vegetation structure on bird communities on a tropical mountain. Acta Oecologica, 2020, 102: 103500. DOI: 10.1016/j.actao.2019.103500. |
[18] | Sun Y X, Liu S L, Liu Y X, et al. Effects of the interaction among climate, terrain and human activities on biodiversity on the Qinghai-Tibet Plateau. Science of the Total Environment, 2021, 794: 148497. DOI: 10.1016/j.scitotenv.2021.148497. |
[19] |
Peng S S, Piao S L, Ciais P, et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 2013, 501(7465): 88-92.
doi: 10.1038/nature12434 |
[20] | Piao S L, Wang X H, Park T J, et al. Characteristics, drivers, and feedback of global greening. Nature Reviews Earth & Environment, 2020, 1: 14-27. |
[21] |
Qi Guizeng, Bai Hongying, Zhao Ting, et al. Sensitivity and areal differentiation of vegetation responses to hydrothermal dynamics on the southern and northern slopes of the Qinling Mountains in Shaanxi province. Acta Geographica Sinica, 2021, 76(1): 44-56.
doi: 10.11821/dlxb202101004 |
[齐贵增, 白红英, 赵婷, 等. 秦岭陕西段南北坡植被对干湿变化响应敏感性及空间差异. 地理学报, 2021, 76(1): 44-56.]
doi: 10.11821/dlxb202101004 |
|
[22] | Wang Zhen, Yan Wende, Liu Shuguang, et al. Spatial-temporal characteristics of three main land-use types in China based on MODIS data. Acta Ecologica Sinica, 2017, 37(10): 3295-3301. |
[王震, 闫文德, 刘曙光, 等. 基于MODIS数据的中国三种主要土地类型变化的空间特征分析. 生态学报, 2017, 37(10): 3295-3301.] | |
[23] |
Xi Y, Miao C Y, Wu J W, et al. Spatiotemporal changes in extreme temperature and precipitation events in the Three-Rivers headwater region, China. Journal of Geophysical Research: Atmospheres, 2018, 123: 5827-5844.
doi: 10.1029/2017JD028226 |
[24] |
Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 1997, 386(6626): 698-702.
doi: 10.1038/386698a0 |
[25] | Wang Junbang, Liu Peixia, Zhu Duoping. Normalized Difference Vegetation Index dataset in the Three-River Headwaters Region from 2000 to 2018[DB/OL]. Beijing: National Ecological Science Data Center, 2021. DOI: 10.12199/nesdc.ecodb.rs.2021.013. |
[王军邦, 刘佩霞, 朱躲萍. 2000—2018年三江源区归一化差植被指数数据集. 北京: 国家生态科学数据中心, 2021. DOI: 10.12199/nesdc.ecodb.rs.2021.013.] | |
[26] | Wang Junbang, Ye Hui. Spatial interpolation dataset of meteorological data in the Three-River Headwaters Region from 2000 to 2018[DB/OL]. Beijing: National Ecological Science Data Center, 2021. DOI: 10.12199/nesdc.ecodb.rs.2021.014. |
[王军邦, 叶辉. 2000—2018年三江源区气象数据空间插值数据集. 北京: 国家生态科学数据中心, 2021. DOI: 10.12199/nesdc.ecodb.rs.2021.014.] | |
[27] |
Lefcheck J S. PiecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 2016, 7: 573-579.
doi: 10.1111/mee3.2016.7.issue-5 |
[28] |
Gosling W D, Miller C S, Shanahan T M, et al. A stronger role for long-term moisture change than for CO2 in determining tropical woody vegetation change. Science, 2022, 376(6593): 653-656.
doi: 10.1126/science.abg4618 |
[29] |
Shipley B. Confirmatory path analysis in a generalized multilevel context. Ecology, 2009, 90: 363-368.
doi: 10.1890/08-1034.1 pmid: 19323220 |
[30] |
Wang Youshi, Chu Chengjin. A brief introduction of structural equation model and its application in ecology. Chinese Journal of Plant Ecology, 2011, 35(3): 337-344.
doi: 10.3724/SP.J.1258.2011.00337 |
[王酉石, 储诚进. 结构方程模型及其在生态学中的应用. 植物生态学报, 2011, 35(3): 337-344.]
doi: 10.3724/SP.J.1258.2011.00337 |
|
[31] |
Li S P, Jia P, Fan S Y, et al. Functional traits explain the consistent resistance of biodiversity to plant invasion under nitrogen enrichment. Ecology Letters, 2022, 25(4): 778-789.
doi: 10.1111/ele.v25.4 |
[32] | Yin Duoduo, Wang Yanhui. Temporal and spatial changes of vegetation coverage and its topographic differentiation in temperate continental semi-arid monsoon climate region. Acta Ecologica Sinica, 2021, 41(3): 1158-1167. |
[银朵朵, 王艳慧. 温带大陆性半干旱季风气候区植被覆盖度时空变化及其地形分异研究. 生态学报, 2021, 41(3): 1158-1167.] | |
[33] | Sun L J, Zhao D, Zhang G Z, et al. Using SPOT VEGETATION for analyzing dynamic changes and influencing factors on vegetation restoration in the Three-River Headwaters Region in the last 20 years (2000-2019), China. Ecological Engineering, 2022, 183(6): 106742. DOI: 10.1016/j.ecoleng.2022.106742. |
[34] | Zhang X C, Jin X M. Vegetation dynamics and responses to climate change and anthropogenic activities in the Three-River Headwaters Region, China. Ecological indicators, 2021, 131: 108223. DOI: 10.1016/j.ecolind.2021.108223. |
[35] |
Fang Y P. Managing the Three-Rivers headwater region, China: From ecological engineering to social engineering. Ambio, 2013, 42(5): 566-576.
doi: 10.1007/s13280-012-0366-2 pmid: 23335004 |
[36] |
Zhu Z C, Piao S L, Myneni R B, et al. Greening of the Earth and its drivers. Nature Climate Change, 2016, 6(8): 791-795.
doi: 10.1038/NCLIMATE3004 |
[37] |
Yao Y T, Wang X H, Li Y, et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Global Change Biology, 2018, 24(1): 184-196.
doi: 10.1111/gcb.13830 pmid: 28727222 |
[38] | Bai Y F, Guo C C, Degen A A, et al. Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Science of the Total Environment, 2020, 742(5): 140574. DOI: 10.1016/j.scitotenv.2020.140574. |
[39] |
Liu Xianfeng, Pan Yaozhong, Zhu Xiufang, et al. Spatiotemporal variation of vegetation coverage in Qinling-Daba Mountains in relation to environmental factors. Acta Geographica Sinica, 2015, 70(5): 705-716.
doi: 10.11821/dlxb201505003 |
[刘宪锋, 潘耀忠, 朱秀芳, 等. 2000—2014年秦巴山区植被覆盖时空变化特征及其归因. 地理学报, 2015, 70(5): 705-716.]
doi: 10.11821/dlxb201505003 |
|
[40] | Chen Chaonan, Zhu Lianqi, Tian Li, et al. Spatial-temporal changes in vegetation characteristics and climate in the Qinling-Daba Mountains. Acta Ecologica Sinica, 2019, 39(9): 3257-3266. |
[陈超男, 朱连奇, 田莉, 等. 秦巴山区植被覆盖变化及气候因子驱动分析. 生态学报, 2019, 39(9): 3257-3266.] | |
[41] |
Tao J, Zhang Y J, Dong J W, et al. Elevation-dependent relationships between climate change and grassland vegetation variation across the Qinghai-Xizang Plateau. International Journal of Climatology, 2015, 35: 1638-1647.
doi: 10.1002/joc.2015.35.issue-7 |
[42] | Wang Z W, Wang Q, Wu X D. Vegetation changes in the permafrost regions of the Qinghai-Tibetan plateau from 1982-2012: Different responses related to geographical locations and vegetation types in high-altitude areas. Plos One, 2017, 12(1): e0169732. DOI: 10.1371/journal.pone.0169732. |
[43] | Du Mengjie, Zheng Jianghua, Ren Xuan, et al. Effects of topography on the distribution pattern of net primary productivity of grassland in Changji prefecture, Xinjiang. Acta Ecologica Sinica, 2018, 38(13): 4789-4799. |
[杜梦洁, 郑江华, 任璇, 等. 地形对新疆昌吉州草地净初级生产力分布格局的影响. 生态学报, 2018, 38(13): 4789-4799.] | |
[44] |
Bochet E, García-Fayos P. Factors controlling vegetation establishment and water erosion on motorway slopes in Valencia, Spain. Restoration Ecology, 2004, 12(2): 166-174.
doi: 10.1111/rec.2004.12.issue-2 |
[45] |
Yang W J, Wang Y H, Webb A A, et al. Influence of climatic and geographic factors on the spatial distribution of Qinghai spruce forests in the dryland Qilian Mountains of Northwest China. Science of the Total Environment, 2018, 612: 1007-1017.
doi: 10.1016/j.scitotenv.2017.08.180 |
[46] |
White A B, Kumar P, Tcheng D. A data mining approach for understanding topographic control on climate-induced inter-annual vegetation variability over the United States. Remote Sensing of Environment, 2005, 98: 1-20.
doi: 10.1016/j.rse.2005.05.017 |
[47] |
Zhou Q W, Luo Y, Zhou X, et al. Response of vegetation to water balance conditions at different time scales across the karst area of southwestern China: A remote sensing approach. Science of the Total Environment, 2018, 645: 460-470.
doi: 10.1016/j.scitotenv.2018.07.148 |
[48] |
Deng H J, Chen Y N, Wang H J, et al. Climate change with elevation and its potential impact on water resources in the Tianshan Mountains, Central Asia. Global and Planetary Change, 2015, 135: 28-37.
doi: 10.1016/j.gloplacha.2015.09.015 |
[49] | Li C H, Sun H, Liu L H, et al. The importance of permafrost in the steady and fast increase in net primary production of the grassland on the Qinghai-Tibet Plateau. CATENA, 2022, 211(1): 105964. DOI: 10.1016/j.catena.2021.105964. |
[50] | Ding Mingjun, Li Lanhui, Zhang Yili, et al. Temperature change and its elevation dependency on the Tibetan Plateau and vicinity from 1971 to 2012. Resources Science, 2014, 36(7): 1509-1518. |
[丁明军, 李兰晖, 张镱锂, 等. 1971—2012年青藏高原及周边地区气温变化特征及其海拔敏感性分析. 资源科学, 2014, 36(7): 1509-1518.] | |
[51] |
Yao J Q, Yang Q, Mao W Y, et al. Precipitation trend: Elevation relationship in arid regions of the China. Global and Planetary Change, 2016, 143: 1-9.
doi: 10.1016/j.gloplacha.2016.05.007 |
[52] | Wei Y Q, Lu H Y, Wang J N, et al. Dual influence of climate change and anthropogenic activities on the spatiotemporal vegetation dynamics over the Qinghai-Tibetan Plateau from 1981 to 2015. Earth's Future, 2022, 10: e2021EF002566. DOI: 10.1029/2021EF002566. |
[1] | 马炳鑫, 和彩霞, 靖娟利, 王永锋, 刘兵, 何宏昌. 1982—2019年中国西南地区植被变化归因研究[J]. 地理学报, 2023, 78(3): 714-728. |
[2] | 郎立晨, 唐诚, 高星, 李志慧, 吴锋. 复杂地形下降水的高空间分辨率插值方法研究[J]. 地理学报, 2023, 78(1): 101-120. |
[3] | 张海平, 汤国安, 熊礼阳, 杨昕, 李发源. 面向地貌学本源的DEM增值理论框架与构建方法[J]. 地理学报, 2022, 77(3): 518-533. |
[4] | 张玉, 张道军. 地形位指数模型改进及其在植被覆盖评价中的应用[J]. 地理学报, 2022, 77(11): 2757-2772. |
[5] | 李文君, 李鹏, 封志明, 游珍, 肖池伟. 基于人居环境特征的青藏高原“无人区”空间界定[J]. 地理学报, 2021, 76(9): 2118-2129. |
[6] | 张俊华, 朱连奇, 李国栋, 赵芳, 秦静婷. 中国南北过渡带土壤碳氮空间特征及暖温带与亚热带界限[J]. 地理学报, 2021, 76(9): 2269-2282. |
[7] | 李程, 庄大方, 何剑锋, 文可戈. 东西伯利亚苔原—泰加林过渡带植被遥感物候时空特征及其对气温变化的响应[J]. 地理学报, 2021, 76(7): 1634-1648. |
[8] | 熊礼阳, 汤国安, 杨昕, 李发源. 面向地貌学本源的数字地形分析研究进展与展望[J]. 地理学报, 2021, 76(3): 595-611. |
[9] | 胡胜, 邱海军, 王宁练, 崔一飞, 曹明明, 王家鼎, 王新刚. 地形对黄土高原滑坡的影响[J]. 地理学报, 2021, 76(11): 2697-2709. |
[10] | 齐贵增, 白红英, 赵婷, 孟清, 张善红. 秦岭陕西段南北坡植被对干湿变化响应敏感性及空间差异[J]. 地理学报, 2021, 76(1): 44-56. |
[11] | 封志明, 李文君, 李鹏, 肖池伟. 青藏高原地形起伏度及其地理意义[J]. 地理学报, 2020, 75(7): 1359-1372. |
[12] | 金凯, 王飞, 韩剑桥, 史尚渝, 丁文斌. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974. |
[13] | 徐勇, 赵燊, 樊杰. 中国城市规划建设用地标准及气候和地形地貌修订[J]. 地理学报, 2020, 75(1): 194-208. |
[14] | 周玉科. 中国东北地区植被生产力控制因素分析[J]. 地理学报, 2020, 75(1): 53-67. |
[15] | 彭文甫, 张冬梅, 罗艳玫, 陶帅, 徐新良. 自然因子对四川植被NDVI变化的地理探测[J]. 地理学报, 2019, 74(9): 1758-1776. |