地理学报 ›› 2023, Vol. 78 ›› Issue (9): 2241-2255.doi: 10.11821/dlxb202309008
张晶1(), 郝芳华2, 吴兆飞1, 李明蔚1, 张璇1, 付永硕1(
)
收稿日期:
2023-06-30
修回日期:
2023-08-20
出版日期:
2023-09-25
发布日期:
2023-09-28
通讯作者:
付永硕(1979-), 男, 山东济宁人, 教授, 博士生导师, 中国地理学会会员(S110017319M), 主要从事全球变化生态学、生态水文和植被物候学研究。E-mail: yfu@bnu.edu.cn作者简介:
张晶(1994-), 女, 黑龙江绥化人, 博士生, 研究方向为植被物候学。E-mail: zhangj1127@mail.bnu.edu.cn
基金资助:
ZHANG Jing1(), HAO Fanghua2, WU Zhaofei1, LI Mingwei1, ZHANG Xuan1, FU Yongshuo1(
)
Received:
2023-06-30
Revised:
2023-08-20
Published:
2023-09-25
Online:
2023-09-28
Supported by:
摘要:
人类活动引起的气候变化导致极端气候事件频发,改变植物的生理过程,影响陆地生态系统碳、水循环和能量平衡。植被物候是气候变化最敏感的生物学指示指标,近年来植被物候对气候变化的响应研究主要关注气候平均态,植被物候如何响应极端气候事件研究相对较少,响应机制仍不清楚。本文梳理了植被春季和秋季物候对各类极端气候事件的响应及其机制,发现北半球中高纬度地区,季前极端低温与极端降水直接导致植被返青期推迟、枯黄期提前,而极端高温和极端干旱导致植物气孔关闭,抑制光合和蒸腾作用,间接导致枯黄期提前。目前植被物候响应极端气候事件研究缺乏对复合极端气候事件的关注,而且植被物候对极端气候响应的滞后效应以及极端气候事件发生后植被的恢复过程研究较少。未来气候变化情景下,需构建考虑极端气候事件影响的植被物候模型,并与动态植被模型耦合,以提高陆地生态系统碳循环的模拟精度。
张晶, 郝芳华, 吴兆飞, 李明蔚, 张璇, 付永硕. 植被物候对极端气候响应及机制[J]. 地理学报, 2023, 78(9): 2241-2255.
ZHANG Jing, HAO Fanghua, WU Zhaofei, LI Mingwei, ZHANG Xuan, FU Yongshuo. Response of vegetation phenology to extreme climate and its mechanism[J]. Acta Geographica Sinica, 2023, 78(9): 2241-2255.
[1] |
Zhou Guiyao, Zhou Lingyan, Shao Junjiong, et al. Effects of extreme drought on terrestrial ecosystems: Review and prospects. Chinese Journal of Plant Ecology, 2020, 44(5): 515-525.
doi: 10.17521/cjpe.2019.0317 |
[周贵尧, 周灵燕, 邵钧炯, 等. 极端干旱对陆地生态系统的影响: 进展与展望. 植物生态学报, 2020, 44(5): 515-525.]
doi: 10.17521/cjpe.2019.0317 |
|
[2] | Piao Shilong, Zhang Xinping, Chen Anping, et al. The impacts of climate extremes on the terrestrial carbon cycle: A review. Science China: Terrae, 2019, 49(9): 1321-1334. |
[朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响. 中国科学: 地球科学, 2019, 49(9): 1321-1334.] | |
[3] | IPCC AR6. Climate Change 2021: The Physical Science Basis. Cambridge and New York: Cambridge University Press, 2021. |
[4] |
Sillmann J, Roeckner E. Indices for extreme events in projections of anthropogenic climate change. Climatic Change, 2008, 86(1): 83-104.
doi: 10.1007/s10584-007-9308-6 |
[5] | IPCC. Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge and New York: Cambridge University Press, 2018. |
[6] | Li P, Liu Z L, Zhou X L, et al. Combined control of multiple extreme climate stressors on autumn vegetation phenology on the Tibetan Plateau under past and future climate change. Agricultural and Forest Meteorology, 2021, 308-309: 108571. DOI: 10.1016/j.agrformet.2021.108571. |
[7] |
Wang M, Li P, Peng C H, et al. Divergent responses of autumn vegetation phenology to climate extremes over northern middle and high latitudes. Global Ecology and Biogeography, 2022, 31: 2281-2296.
doi: 10.1111/geb.v31.11 |
[8] |
Easterling D R, Meehl G A, Parmesan C, et al. Climate extremes: Observations, modeling, and impacts. Science, 2000, 289(5487): 2068-2074.
doi: 10.1126/science.289.5487.2068 pmid: 11000103 |
[9] |
Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437(7058): 529-533.
doi: 10.1038/nature03972 |
[10] | Rammig A, Mahecha M D. Ecosystem responses to climate extremes. Nature, 2015, 527(7578): 315-316. |
[11] |
Xu C G, McDowell N G, Fisher R A, et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nature Climate Change, 2019, 9(12): 948-953.
doi: 10.1038/s41558-019-0630-6 |
[12] | Zhu Kezhen. A preliminary study on the climatic fluctuations during the last 5000 years in China. Scientia Sinica, 1973, 3(2): 226-256. |
[竺可桢. 中国近五千年来气候变迁的初步研究. 中国科学, 1973, 3(2): 226-256.] | |
[13] |
Piao S L, Liu Q, Chen A P, et al. Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 2019, 25(6): 1922-1940.
doi: 10.1111/gcb.14619 pmid: 30884039 |
[14] |
Zhang Fuchun. Effects of global warming on plant phenological events in China. Acta Geographica Sinica, 1995, 50(5): 402-410.
doi: 10.11821/xb199505003 |
[张福春. 气候变化对中国木本植物物候的可能影响. 地理学报, 1995, 50(5): 402-410.]
doi: 10.11821/xb199505003 |
|
[15] |
Deng Chenhui, Bai Hongying, Gao Shan, et al. Comprehensive effect of climatic factors on plant phenology in Qinling Mountains region during 1964-2015. Acta Geographica Sinica, 2018, 73(5): 917-931.
doi: 10.11821/dlxb201805011 |
[邓晨晖, 白红英, 高山, 等. 1964—2015年气候因子对秦岭地区植物物候的综合影响效应. 地理学报, 2018, 73(5): 917-931.]
doi: 10.11821/dlxb201805011 |
|
[16] |
Zhuo Li, Zhang Ziyan, Lei Xiaoyu, et al. Monte Carlo survival analysis on the influencing factors of forest phenology in Northeast China. Acta Geographica Sinica, 2019, 74(3): 490-503.
doi: 10.11821/dlxb201903007 |
[卓莉, 张子彦, 雷小雨, 等. 基于蒙特卡洛生存分析探究东北森林物候的影响因素. 地理学报, 2019, 74(3): 490-503.]
doi: 10.11821/dlxb201903007 |
|
[17] | Wang S X, Wu Z F, Gong Y F, et al. Larger responses of trees' leaf senescence to cooling than warming: Results from a climate manipulation experiment. Agricultural and Forest Meteorology, 2023, 339: 109568. DOI: 10.1016/j.agrformet.2023.109568. |
[18] | Menzel A, Fabian P. Growing season extended in Europe. Nature, 1999, 397: 659. DOI: 10.1038/17709. |
[19] |
Piao S L, Fang J Y, Zhou L M, et al. Variations in satellite-derived phenology in China's temperate vegetation. Global Change Biology, 2006, 12(4): 672-685.
doi: 10.1111/gcb.2006.12.issue-4 |
[20] | Chen X Q, Xu L. Temperature controls on the spatial pattern of tree phenology in China's temperate zone. Agricultural and Forest Meteorology, 2012, 154-155: 195-202. |
[21] |
Fu Y H, Piao S L, Delpierre N, et al. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Global Change Biology, 2018, 24(5): 2159-2168.
doi: 10.1111/gcb.14021 pmid: 29245174 |
[22] | Fu Yongshuo, Zhang Jing, Wu Zhaofei, et al. Vegetation phenology response to climate change in China. Journal of Beijing Normal University: Natural Science, 2022, 58(3): 424-433. |
[付永硕, 张晶, 吴兆飞, 等. 中国植被物候研究进展及展望. 北京师范大学学报: 自然科学版, 2022, 58(3): 424-433.] | |
[23] |
Kong Dongdong, Zhang Qiang, Huang Wenlin, et al. Vegetation phenology change in Tibetan Plateau from 1982 to 2013 and its related meteorological factors. Acta Geographica Sinica, 2017, 72(1): 39-52.
doi: 10.11821/dlxb201701004 |
[孔冬冬, 张强, 黄文琳, 等. 1982—2013年青藏高原植被物候变化及气象因素影响. 地理学报, 2017, 72(1): 39-52.]
doi: 10.11821/dlxb201701004 |
|
[24] |
Ding M J, Li L H, Zhang Y L, et al. Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods based on GIMMS and SPOT NDVI data. Journal of Geographical Sciences, 2015, 25(2): 131-148.
doi: 10.1007/s11442-015-1158-y |
[25] |
Fu Y H, Piao S L, Zhao H F, et al. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Global Change Biology, 2014, 20(12): 3743-3755.
doi: 10.1111/gcb.12610 pmid: 24753114 |
[26] | Li X X, Fu Y H, Chen S Z, et al. Increasing importance of precipitation in spring phenology with decreasing latitudes in subtropical forest area in China. Agricultural and Forest Meteorology, 2021, 304-305: 108427. DOI: 10.1016/j.agrformet.2021.108427. |
[27] |
Liu Q, Fu Y H, Zeng Z Z, et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Global Change Biology, 2016, 22(2): 644-655.
doi: 10.1111/gcb.13081 pmid: 26340580 |
[28] |
Nagy L, Kreyling J, Gellesch E, et al. Recurring weather extremes alter the flowering phenology of two common temperate shrubs. International Journal of Biometeorology, 2013, 57(4): 579-588.
doi: 10.1007/s00484-012-0585-z pmid: 22895652 |
[29] |
Liu X F, Sun G P, Fu Z, et al. Compound droughts slow down the greening of the Earth. Global Change Biology, 2023, 29: 3072-3084.
doi: 10.1111/gcb.16657 pmid: 36854491 |
[30] |
Jentsch A, Kreyling J, Boettcher-Treschkow J, et al. Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Global Change Biology, 2009, 15(4): 837-849.
doi: 10.1111/gcb.2009.15.issue-4 |
[31] |
Lobell D B, Sibley A, Ivan Ortiz-Monasterio J. Extreme heat effects on wheat senescence in India. Nature Climate Change, 2012, 2(3): 186-189.
doi: 10.1038/nclimate1356 |
[32] |
Liu Q, Fu Y H, Zhu Z C, et al. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Global Change Biology, 2016, 22(11): 3702-3711.
doi: 10.1111/gcb.13311 pmid: 27061925 |
[33] |
Fu Y H, Zhou X C, Li X X, et al. Decreasing control of precipitation on grassland spring phenology in temperate China. Global Ecology and Biogeography, 2021, 30(2): 490-499.
doi: 10.1111/geb.v30.2 |
[34] |
Qin G X, Adu B, Li C B, et al. Diverse responses of phenology in multi-grassland to environmental factors on Qinghai-Tibetan Plateau in China. Theoretical and Applied Climatology, 2022, 148(3): 931-942.
doi: 10.1007/s00704-022-03963-3 |
[35] | Shen M G, Wang S P, Jiang N, et al. Plant phenology changes and drivers on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 2022, 3(10): 633-651. |
[36] |
Zhang J, Chen S Z, Wu Z F, et al. Review of vegetation phenology trends in China in a changing climate. Progress in Physical Geography: Earth and Environment, 2022, 46(6): 829-845.
doi: 10.1177/03091333221114737 |
[37] | He Z B, Du J, Chen L F, et al. Impacts of recent climate extremes on spring phenology in arid-mountain ecosystems in China. Agricultural and Forest Meteorology, 2018, 260-261: 31-40. |
[38] |
Javed T, Li Y, Feng K, et al. Monitoring responses of vegetation phenology and productivity to extreme climatic conditions using remote sensing across different sub-regions of China. Environmental Science and Pollution Research, 2021, 28(3): 3644-3659.
doi: 10.1007/s11356-020-10769-1 |
[39] |
Ma X L, Huete A, Moran S S, et al. Abrupt shifts in phenology and vegetation productivity under climate extremes. Journal of Geophysical Research: Biogeosciences, 2015, 120(10): 2036-2052.
doi: 10.1002/jgrg.v120.10 |
[40] |
Körner C, Basler D. Phenology under global warming. Science, 2010, 327(5972): 1461-1462.
doi: 10.1126/science.1186473 |
[41] |
Piao S L, Tan J G, Chen A P, et al. Leaf onset in the Northern Hemisphere triggered by daytime temperature. Nature Communications, 2015, 6: 6911. DOI: 10.1038/ncomms7911.
pmid: 25903224 |
[42] | Zhao J J, Wang Y Y, Zhang Z X, et al. The variations of land surface phenology in Northeast China and its responses to climate change from 1982 to 2013. Remote Sensing, 2016, 8(5): 400. DOI: 10.3390/rs8050400. |
[43] |
Xue Y T, Chen Q L, Zhang J Y, et al. Trends in extreme high temperature at different altitudes of Southwest China during 1961-2014. Atmospheric and Oceanic Science Letters, 2020, 13(5): 417-425.
doi: 10.1080/16742834.2020.1799689 |
[44] |
Zhang Y X, Wang G F. Assessment of the hazard of extreme low-temperature events over China in 2021. Advances in Climate Change Research, 2022, 13(6): 811-818.
doi: 10.1016/j.accre.2022.11.005 |
[45] |
Zhang Y X, Liu Y J, Ding Y H. Identification of winter long-lasting regional extreme low-temperature events in Eurasia and their variation during 1948-2017. Advances in Climate Change Research, 2021, 12(3): 353-362.
doi: 10.1016/j.accre.2021.05.005 |
[46] | Guo D L, Zhang Y, Gao X J, et al. Evaluation and ensemble projection of extreme high and low temperature events in China from four dynamical downscaling simulations. International Journal of Climatology, 2021, 41 (Suppl.1): E1252-E1269. |
[47] |
Park H, Jeong S J, Ho C H, et al. Nonlinear response of vegetation green-up to local temperature variations in temperate and boreal forests in the Northern Hemisphere. Remote Sensing of Environment, 2015, 165: 100-108.
doi: 10.1016/j.rse.2015.04.030 |
[48] | Bórnez K, Verger A, Descals A, et al. Monitoring the responses of deciduous forest phenology to 2000-2018 climatic anomalies in the Northern Hemisphere. Remote Sensing, 2021, 13(14): 2806. DOI: 10.3390/rs13142806. |
[49] |
Zheng C, Tang X G, Gu Q, et al. Climatic anomaly and its impact on vegetation phenology, carbon sequestration and water-use efficiency at a humid temperate forest. Journal of Hydrology, 2018, 565: 150-159.
doi: 10.1016/j.jhydrol.2018.08.012 |
[50] | Ladwig L M, Chandler J L, Guiden P W, et al. Extreme winter warm event causes exceptionally early bud break for many woody species. Ecosphere, 2019, 10(1): e02542. DOI: 10.1002/ecs2.2542. |
[51] |
Crabbe R A, Dash J, Rodriguez-Galiano V F, et al. Extreme warm temperatures alter forest phenology and productivity in Europe. Science of the Total Environment, 2016, 563/564: 486-495.
doi: 10.1016/j.scitotenv.2016.04.124 |
[52] | Yuan Moxi, Zhao Lin, Li Xinxin, et al. Diverse responses of end of growing season to extreme climate events in different grasslands in temperate China during 1982-2015. Acta Ecologica Sinica, 2023, 43(14): 6015-6032. |
[袁沫汐, 赵林, 李鑫鑫, 等. 1982—2015年中国温带不同草地植被枯黄期对极端气候事件的响应. 生态学报, 2023, 43(14): 6015-6032.] | |
[53] |
Cremonese E, Filippa G, Galvagno M, et al. Heat wave hinders green wave: The impact of climate extreme on the phenology of a mountain grassland. Agricultural and Forest Meteorology, 2017, 247: 320-330.
doi: 10.1016/j.agrformet.2017.08.016 |
[54] |
Xie Y Y, Wang X J, Silander J A. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts. PNAS, 2015, 112(44): 13585-13590.
doi: 10.1073/pnas.1509991112 pmid: 26483475 |
[55] | Zhao Z H, Wang X Y, Li R J, et al. Impacts of climate extremes on autumn phenology in contrasting temperate and alpine grasslands in China. Agricultural and Forest Meteorology, 2023, 336: 109495. DOI: 10.1016/j.agrformet.2023.109495. |
[56] | Ying H, Zhang H Y, Zhao J J, et al. Effects of spring and summer extreme climate events on the autumn phenology of different vegetation types of Inner Mongolia, China, from 1982 to 2015. Ecological Indicators, 2020, 111: 105974. DOI: 10.1016/j.ecolind.2019.105974. |
[57] | Wu L Z, Zhao C Y, Li J Y, et al. Impact of extreme climates on land surface phenology in Central Asia. Ecological Indicators, 2023, 146: 109832. DOI: 10.1016/j.ecolind.2022.109832. |
[58] |
Jeong S J, Ho C H, Gim H J, et al. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Global Change Biology, 2011, 17(7): 2385-2399.
doi: 10.1111/j.1365-2486.2011.02397.x |
[59] |
Zhang J, Zhao J J, Wang Y Q, et al. Comparison of land surface phenology in the Northern Hemisphere based on AVHRR GIMMS3g and MODIS datasets. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 1-16.
doi: 10.1016/j.isprsjprs.2020.08.020 |
[60] |
Zhao J J, Zhang H Y, Zhang Z X, et al. Spatial and temporal changes in vegetation phenology at middle and high latitudes of the Northern Hemisphere over the past three decades. Remote Sensing, 2015, 7(8): 10973-10995.
doi: 10.3390/rs70810973 |
[61] |
Wang S X, Wu Z F, Gong Y F, et al. Climate warming shifts the time interval between flowering and leaf unfolding depending on the warming period. Science China Life Sciences, 2022, 65(11): 2316-2324.
doi: 10.1007/s11427-022-2094-6 |
[62] | Wu Z F, Lin C F, Wang S X, et al. The sensitivity of ginkgo leaf unfolding to the temperature and photoperiod decreases with increasing elevation. Agricultural and Forest Meteorology, 2022, 315: 108840. DOI: 10.1016/j.agrformet.2022.108840. |
[63] | Gong Yufeng, Wu Zhaofei, Fu Yongshuo, et al. Effects of climate change on spring budburst of typical tree species in Beijing based on manipulative experiments. Acta Ecologica Sinica., 2023, 43(5): 1948-1958. |
[龚玉凤, 吴兆飞, 付永硕, 等. 气候变化对北京常见树种春季萌芽的影响: 基于控制实验研究. 生态学报, 2023, 43(5): 1948-1958.] | |
[64] |
Gulen H, Eris A. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Science, 2004, 166(3): 739-744.
doi: 10.1016/j.plantsci.2003.11.014 |
[65] |
He Y L, Liu X Z, Huang B R. Changes in protein content, protease activity, and amino acid content associated with heat injury in creeping bentgrass. Journal of the American Society for Horticultural Science, 2005, 130(6): 842-847.
doi: 10.21273/JASHS.130.6.842 |
[66] |
Augspurger C K. Spring 2007 warmth and frost: Phenology, damage and refoliation in a temperate deciduous forest. Functional Ecology, 2009, 23(6): 1031-1039.
doi: 10.1111/j.1365-2435.2009.01587.x |
[67] | Mo Y H, Zhang X, Liu Z C, et al. Effects of climate extremes on spring phenology of temperate vegetation in China. Remote Sensing, 2023, 15(3): 686. DOI: 10.3390/rs15030686. |
[68] | Cannell M G R, Smith R I. Climatic warming, spring budburst and forest damage on trees. Journal of Applied Ecology, 1986, 23(1): 177. DOI: 10.2307/2403090. |
[69] | Gu L H, Hanson P J, Post W M, et al. The 2007 Eastern US Spring Freeze: Increased cold damage in a warming world? BioScience, 2008, 58(3): 253-262. |
[70] |
Liu Q, Piao S L, Janssens I A, et al. Extension of the growing season increases vegetation exposure to frost. Nature Communications, 2018, 9: 426. DOI: 10.1038/s41467-017-02690-y.
pmid: 29382833 |
[71] |
Zohner C M, Mo L D, Sebald V, et al. Leaf-out in northern ecotypes of wide-ranging trees requires less spring warming, enhancing the risk of spring frost damage at cold range limits. Global Ecology and Biogeography, 2020, 29(6): 1065-1072.
doi: 10.1111/geb.v29.6 |
[72] |
Lamichhane J R. Rising risks of late-spring frosts in a changing climate. Nature Climate Change, 2021, 11(7): 554-555.
doi: 10.1038/s41558-021-01090-x |
[73] |
Hufkens K, Friedl M A, Keenan T F, et al. Ecological impacts of a widespread frost event following early spring leaf-out. Global Change Biology, 2012, 18(7): 2365-2377.
doi: 10.1111/j.1365-2486.2012.02712.x |
[74] |
Bennie J, Kubin E, Wiltshire A, et al. Predicting spatial and temporal patterns of bud-burst and spring frost risk in north-west Europe: The implications of local adaptation to climate. Global Change Biology, 2010, 16(5): 1503-1514.
doi: 10.1111/gcb.2010.16.issue-5 |
[75] |
Vitasse Y, Lenz A, Körner C. The interaction between freezing tolerance and phenology in temperate deciduous trees. Frontiers in Plant Science, 2014, 5: 541. DOI: 10.3389/fpls.2014.00541.
pmid: 25346748 |
[76] |
Zohner C M, Rockinger A, Renner S S. Increased autumn productivity permits temperate trees to compensate for spring frost damage. New Phytologist, 2019, 221(2): 789-795.
doi: 10.1111/nph.15445 pmid: 30240028 |
[77] |
Shen M G, Piao S L, Chen X Q, et al. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Global Change Biology, 2016, 22(9): 3057-3066.
doi: 10.1111/gcb.13301 pmid: 27103613 |
[78] |
Wang X, Gao Q, Wang C, et al. Spatiotemporal patterns of vegetation phenology change and relationships with climate in the two transects of East China. Global Ecology and Conservation, 2017, 10: 206-219.
doi: 10.1016/j.gecco.2017.01.010 |
[79] |
Shen X J, Liu B H, Henderson M, et al. Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China. Agricultural and Forest Meteorology, 2018, 259: 240-249.
doi: 10.1016/j.agrformet.2018.05.006 |
[80] | Meng L, Zhou Y Y, Li X C, et al. Divergent responses of spring phenology to daytime and nighttime warming. Agricultural and Forest Meteorology, 2020, 281: 107832. DOI: 10.1016/j.agrformet.2019.107832. |
[81] | Meng F D, Zhang L R, Zhang Z H, et al. Opposite effects of winter day and night temperature changes on early phenophases. Ecology, 2019, 100(9): e02775. DOI: 10.1002/ecy.2775. |
[82] |
Wu C Y, Wang X Y, Wang H J, et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nature Climate Change, 2018, 8(12): 1092-1096.
doi: 10.1038/s41558-018-0346-z |
[83] | Huang Y, Jiang N, Shen M G, et al. Effect of preseason diurnal temperature range on the start of vegetation growing season in the Northern Hemisphere. Ecological Indicators, 2020, 112: 106161. DOI: 10.1016/j.ecolind.2020.106161. |
[84] |
Myhre G, Alterskjær K, Stjern C W, et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports, 2019, 9(1): 16063. DOI: 10.1038/s41598-019-52277-4.
pmid: 31690736 |
[85] | Tang Y, Huang A N, Wu P L, et al. Drivers of summer extreme precipitation events over East China. Geophysical Research Letters, 2021, 48(11): e2021GL093670. DOI: 10.1029/2021GL093670. |
[86] | Gimeno L, Sorí R, Vázquez M, et al. Extreme precipitation events. WIREs Water, 2022, 9(6): e1611. DOI: 10.1002/wat2.1611. |
[87] | Qiu T, Song C H, Clark J S, et al. Understanding the continuous phenological development at daily time step with a Bayesian hierarchical space-time model: Impacts of climate change and extreme weather events. Remote Sensing of Environment, 2020, 247: 111956. DOI: 10.1016/j.rse.2020.111956. |
[88] | Adu B, Qin G X, Li C B, et al. Grassland phenology's sensitivity to extreme climate indices in the Sichuan province, western China. Atmosphere, 2021, 12(12): 1650. DOI: 10.3390/atmos12121650. |
[89] | Zhang L H, Shen M G, Jiang N, et al. Spatial variations in the response of spring onset of photosynthesis of evergreen vegetation to climate factors across the Tibetan Plateau: The roles of interactions between temperature, precipitation, and solar radiation. Agricultural and Forest Meteorology, 2023, 335: 109440. DOI: 10.1016/j.agrformet.2023.109440. |
[90] |
Wang J, Liu D S, Ciais P, et al. Decreasing rainfall frequency contributes to earlier leaf onset in northern ecosystems. Nature Climate Change, 2022, 12(4): 386-392.
doi: 10.1038/s41558-022-01285-w |
[91] |
Cong N, Wang T, Nan H J, et al. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: A multimethod analysis. Global Change Biology, 2013, 19(3): 881-891.
doi: 10.1111/gcb.12077 pmid: 23504844 |
[92] |
Heisler-White J L, Blair J M, Kelly E F, et al. Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Global Change Biology, 2009, 15(12): 2894-2904.
doi: 10.1111/gcb.2009.15.issue-12 |
[93] |
Zhang Bin, Zhu Jianjun, Liu Huamin, et al. Effects of extreme rainfall and drought events on grassland ecosystems. Chinese Journal of Plant Ecology, 2014, 38(9): 1008-1018.
doi: 10.3724/SP.J.1258.2014.00095 |
[张彬, 朱建军, 刘华民, 等. 极端降水和极端干旱事件对草原生态系统的影响. 植物生态学报, 2014, 38(9): 1008-1018.]
doi: 10.3724/SP.J.1258.2014.00095 |
|
[94] |
Haugaasen T, Peres C A. Tree phenology in adjacent Amazonian flooded and unflooded forests. Biotropica, 2005, 37(4): 620-630.
doi: 10.1111/btp.2005.37.issue-4 |
[95] | Pei T T, Ji Z X, Chen Y, et al. The sensitivity of vegetation phenology to extreme climate indices in the Loess Plateau, China. Sustainability, 2021, 13(14): 7623. DOI: 10.3390/su13147623. |
[96] |
Dai A G. Increasing drought under global warming in observations and models. Nature Climate Change, 2013, 3(1): 52-58.
doi: 10.1038/nclimate1633 |
[97] |
Trenberth K E, Dai A G, van der Schrier G, et al. Global warming and changes in drought. Nature Climate Change, 2014, 4(1): 17-22.
doi: 10.1038/nclimate2067 |
[98] |
Choat B, Brodribb T J, Brodersen C R, et al. Triggers of tree mortality under drought. Nature, 2018, 558(7711): 531-539.
doi: 10.1038/s41586-018-0240-x |
[99] |
Gitlin A R, Sthultz C M, Bowker M A, et al. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conservation Biology, 2006, 20(5): 1477-1486.
pmid: 17002765 |
[100] | Li X Y, Piao S L, Huntingford C, et al. Global variations in critical drought thresholds that impact vegetation. National Science Review, 2023, 10(5): nwad049. DOI: 10.1093/nsr/nwad049. |
[101] |
Rivero R M, Kojima M, Gepstein A, et al. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. PNAS, 2007, 104(49): 19631-19636.
doi: 10.1073/pnas.0709453104 pmid: 18048328 |
[102] |
Bernal M, Estiarte M, Peñuelas J. Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora. Plant Biology, 2011, 13(2): 252-257.
doi: 10.1111/j.1438-8677.2010.00358.x pmid: 21309971 |
[103] | Kang W P, Wang T, Liu S L. The response of vegetation phenology and productivity to drought in semi-arid regions of northern China. Remote Sensing, 2018, 10(5): 727. DOI: 10.3390/rs10050727. |
[104] | Wu R H, Zhao J J, Zhang H Y, et al. Preseason drought controls on patterns of spring phenology in grasslands of the Mongolian Plateau. Science of the Total Environment, 2022, 838: 156018. DOI: 10.1016/j.scitotenv.2022.156018. |
[105] |
Tao F, Yokozawa M, Zhang Z, et al. Land surface phenology dynamics and climate variations in the North East China Transect (NECT), 1982-2000. International Journal of Remote Sensing, 2008, 29(19): 5461-5478.
doi: 10.1080/01431160801908103 |
[106] | Yuan M X, Zhao L, Lin A W, et al. Impacts of preseason drought on vegetation spring phenology across the Northeast China Transect. Science of the Total Environment, 2020, 738: 140297. DOI: 10.1016/j.scitotenv.2020.140297. |
[107] | Zeng Z Q, Wu W X, Ge Q S, et al. Legacy effects of spring phenology on vegetation growth under Preseason meteorological drought in the Northern Hemisphere. Agricultural and Forest Meteorology, 2021, 310: 108630. DOI: 10.1016/j.agrformet.2021.108630. |
[108] | Mou Chengxiang, Sun Geng, Luo Peng, et al. Flowering responses of alpine meadow plant in the Qinghai-Tibetan Plateau to lowering responses of alpine meadow plant in the Qinghai-Tibetan Plateau to extreme drought imposed in different periods. Chinese Journal of Applied & Environmental Biology, 2013, 19(2): 272-279. |
[牟成香, 孙庚, 罗鹏, 等. 青藏高原高寒草甸植物开花物候对极端干旱的响应. 应用与环境生物学报, 2013, 19(2): 272-279.] | |
[109] | Yuan Z H, Tong S Q, Bao G, et al. Spatiotemporal variation of autumn phenology responses to preseason drought and temperature in alpine and temperate grasslands in China. Science of the Total Environment, 2023, 859: 160373. DOI: 10.1016/j.scitotenv.2022.160373. |
[110] | Ge W Y, Han J Q, Zhang D J, et al. Divergent impacts of droughts on vegetation phenology and productivity in the Yungui Plateau, southwest China. Ecological Indicators, 2021, 127: 107743. DOI: 10.1016/j.ecolind.2021.107743. |
[111] |
Arend M, Sever K, Pflug E, et al. Seasonal photosynthetic response of European beech to severe summer drought: Limitation, recovery and post-drought stimulation. Agricultural and Forest Meteorology, 2016, 220: 83-89.
doi: 10.1016/j.agrformet.2016.01.011 |
[112] |
Hui-Mean F, Yusop Z, Yusof F. Drought analysis and water resource availability using standardised precipitation evapotranspiration index. Atmospheric Research, 2018, 201: 102-115.
doi: 10.1016/j.atmosres.2017.10.014 |
[113] |
Wells N, Goddard S, Hayes M J. A self-calibrating Palmer drought severity index. Journal of Climate, 2004, 17(12): 2335-2351.
doi: 10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2 |
[114] | Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales//American Meteorological Society. Proceedings of the 8th Conference on Applied Climatology. Boston, 1993: 17-22. |
[115] | Li X Y, Piao S L, Wang K, et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nature Ecology & Evolution, 2020, 4(8): 1075-1083. |
[116] |
Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368(6488): 266-269.
doi: 10.1126/science.aaz7614 pmid: 32299946 |
[117] |
Vicente-Serrano S M, Gouveia C, Camarero J J, et al. Response of vegetation to drought time-scales across global land biomes. PNAS, 2013, 110(1): 52-57.
doi: 10.1073/pnas.1207068110 pmid: 23248309 |
[118] | Hao Z C. Compound events and associated impacts in China. iScience. 2022, 25(8): 104689. DOI: 10.1016/j.isci.2022.104689. |
[119] | Li J, Bevacqua E, Chen C, et al. Regional asymmetry in the response of global vegetation growth to springtime compound climate events. Communications Earth & Environment, 2022, 3: 123. DOI: 10.1038/s43247-022-00455-0. |
[120] |
Mazdiyasni O, AghaKouchak A. Substantial increase in concurrent droughts and heatwaves in the United States. PNAS, 2015, 112(37): 11484-11489.
doi: 10.1073/pnas.1422945112 pmid: 26324927 |
[121] |
Dreesen F E, De Boeck H J, Janssens I A, et al. Do successive climate extremes weaken the resistance of plant communities? An experimental study using plant assemblages. Biogeosciences, 2014, 11(1): 109-121.
doi: 10.5194/bg-11-109-2014 |
[122] |
Škvareninová J, Babálová D, Valach J, et al. Impact of temperature and wetness of summer months on autumn vegetative phenological phases of selected species in Fageto-Quercetum in the years 2011-2015. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2017, 65(3): 939-946.
doi: 10.11118/actaun201765030939 |
[123] | Wang J M, Zhang X Y. Impacts of wildfires on interannual trends in land surface phenology: An investigation of the Hayman Fire. Environmental Research Letters, 2017, 12(5): 054008. DOI: 10.1088/1748-9326/aa6ad9. |
[124] |
Borchert R, Rivera G, Hagnauer W. Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica, 2002, 34(1): 27-39.
doi: 10.1111/btp.2002.34.issue-1 |
[125] | Dong L W, Wu C Y, Wang X Y, et al. Satellite observed delaying effects of increased winds on spring green-up dates. Remote Sensing of Environment, 2023, 284: 113363. DOI: 10.1016/j.rse.2022.113363. |
[126] | Wu C Y, Wang J, Ciais P, et al. Widespread decline in winds delayed autumn foliar senescence over high latitudes. PNAS, 2021, 118(16): e2015821118. DOI: 10.1073/pnas.2015821118. |
[127] |
Peng J, Wu C Y, Zhang X Y, et al. Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Global Change Biology, 2019, 25(6): 2174-2188.
doi: 10.1111/gcb.14627 pmid: 30897264 |
[128] |
Vitasse Y, Bottero A, Cailleret M, et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Global Change Biology, 2019, 25(11): 3781-3792.
doi: 10.1111/gcb.14803 pmid: 31436853 |
[129] | Choukri H, Hejjaoui K, El-Baouchi A, et al. Heat and drought stress impact on phenology, grain yield, and nutritional quality of lentil (Lens culinaris Medikus). Frontiers in Nutrition, 2020, 7: 596307. DOI: 10.3389/fnut.2020.596307. |
[130] |
Peñuelas J, Rutishauser T, Filella I. Phenology feedbacks on climate change. Science, 2009, 324(5929): 887-888.
doi: 10.1126/science.1173004 pmid: 19443770 |
[131] |
Liu Fengshan, Chen Ying, Shi Wenjiao, et al. Influences of agricultural phenology dynamics on land surface biophysical processes and climate feedback: A review. Acta Geographica Sinica, 2017, 72(7): 1139-1150.
doi: 10.11821/dlxb201707001 |
[刘凤山, 陈莹, 史文娇, 等. 农业物候动态对地表生物物理过程及气候的反馈研究进展. 地理学报, 2017, 72(7): 1139-1150.]
doi: 10.11821/dlxb201707001 |
|
[132] |
Li C L, Wang J, Hu R C, et al. Relationship between vegetation change and extreme climate indices on the Inner Mongolia Plateau, China, from 1982 to 2013. Ecological Indicators, 2018, 89: 101-109.
doi: 10.1016/j.ecolind.2018.01.066 |
[133] | Ding Y X, Li Z, Peng S Z. Global analysis of time-lag and -accumulation effects of climate on vegetation growth. International Journal of Applied Earth Observation and Geoinformation, 2020, 92: 102179. DOI: 10.1016/j.jag.2020.102179. |
[134] | Zhao A Z, Yu Q Y, Feng L L, et al. Evaluating the cumulative and time-lag effects of drought on grassland vegetation: A case study in the Chinese Loess Plateau. Journal of Environmental Management, 2020, 261: 110214. DOI: 10.1016/j.jenvman.2020.110214. |
[135] | Zhou R L, Liu Y Y, Cui M Y, et al. Global assessment of cumulative and time-lag effects of drought on land surface phenology. GIScience & Remote Sensing, 2022, 59(1): 1918-1937. |
[136] | Huang Wenlin, Zhang Qiang, Kong Dongdong, et al. Response of vegetation phenology to drought in Inner Mongolia from 1982 to 2013. Acta Ecologica Sinica, 2019, 39(13): 4953-4965. |
[黄文琳, 张强, 孔冬冬, 等. 1982—2013年内蒙古地区植被物候对干旱变化的响应. 生态学报, 2019, 39(13): 4953-4965.] | |
[137] |
Wen Y Y, Liu X P, Xin Q C, et al. Cumulative effects of climatic factors on terrestrial vegetation growth. Journal of Geophysical Research: Biogeosciences, 2019, 124(4): 789-806.
doi: 10.1029/2018JG004751 |
[138] |
Wang L X. Spring phenology alters vegetation drought recovery. Nature Climate Change, 2023, 13: 123-124.
doi: 10.1038/s41558-022-01579-z |
[139] | Ge C H, Sun S, Yao R, et al. Long-term vegetation phenology changes and response to multi-scale meteorological drought on the Loess Plateau, China. Journal of Hydrology, 2022, 614: 128605. DOI: 10.1016/j.jhydrol.2022.128605. |
[140] |
Fu Y S, Li X X, Zhou X C, et al. Progress in plant phenology modeling under global climate change. Science China Earth Sciences, 2020, 63(9): 1237-1247.
doi: 10.1007/s11430-019-9622-2 |
[141] |
Zhou Guangsheng, Song Xingyang, Zhou Mengzi, et al. Advances in influencing mechanism and model of total climatic production factors of plant phenology change. Scientia Sinica Vitae, 2023, 53(3): 380-389.
doi: 10.1360/SSV-2022-0010 |
[周广胜, 宋兴阳, 周梦子, 等. 植物物候变化的全气候生产要素影响机制与模型研究. 中国科学: 生命科学, 2023, 53(3): 380-389.] | |
[142] |
Wu C Y, Peng J, Ciais P, et al. Increased drought effects on the phenology of autumn leaf senescence. Nature Climate Change, 2022, 12: 943-949.
doi: 10.1038/s41558-022-01464-9 |
[143] |
Wang J, Liu D S. Larger diurnal temperature range undermined later autumn leaf senescence with warming in Europe. Global Ecology and Biogeography, 2023, 32(5): 734-746.
doi: 10.1111/geb.v32.5 |
[1] | 高江波, 刘路路, 郭灵辉, 孙东琪, 刘婉露, 侯文娟, 吴绍洪. 气候变化和物候变动对东北黑土区农业生产的协同作用及未来粮食生产风险[J]. 地理学报, 2022, 77(7): 1681-1700. |
[2] | 刘瑞清, 李加林, 孙超, 孙伟伟, 曹罗丹, 田鹏. 基于Sentinel-2遥感时间序列植被物候特征的盐城滨海湿地植被分类[J]. 地理学报, 2021, 76(7): 1680-1692. |
[3] | 周玉科. 中国东北地区植被生产力控制因素分析[J]. 地理学报, 2020, 75(1): 53-67. |
[4] | 卓莉, 张子彦, 雷小雨, 李秋萍, 陶海燕. 基于蒙特卡洛生存分析探究东北森林物候的影响因素[J]. 地理学报, 2019, 74(3): 490-503. |
[5] | 周伟, 刚成诚, 李建龙, 章超斌, 穆少杰, 孙政国. 1982-2010年中国草地覆盖度的时空动态及其对气候变化的响应[J]. 地理学报, 2014, 69(1): 15-30. |