地理学报 ›› 2023, Vol. 78 ›› Issue (9): 2186-2208.doi: 10.11821/dlxb202309005
张青青1,2(), 曲衍波1,2,3(
), 展凌云1,2, 苏德胜2,3, 韦川辰2,3
收稿日期:
2022-10-24
修回日期:
2023-06-06
出版日期:
2023-09-25
发布日期:
2023-09-28
通讯作者:
曲衍波(1982-), 男, 山东龙口人, 博士, 教授, 博士生导师, 研究方向为土地系统优化、国民经济运行与低碳绿色发展。E-mail: yanboqu2009@126.com作者简介:
张青青(1995-), 女, 河南濮阳人, 博士生, 研究方向为粮食安全与低碳绿色发展。E-mail: qingqing_zhang2022@126.com
基金资助:
ZHANG Qingqing1,2(), QU Yanbo1,2,3(
), ZHAN Lingyun1,2, SU Desheng2,3, WEI Chuanchen2,3
Received:
2022-10-24
Revised:
2023-06-06
Published:
2023-09-25
Online:
2023-09-28
Supported by:
摘要:
保障“双碳”目标下的粮食安全是中国应对气候变化和构建人类生命共同体的重要课题。本文采用生命周期评价法测算1997—2020年全国及31个省份(数据暂未含港澳台)粮食生产碳排放量,利用基尼系数、标准差椭圆和核密度等方法探析其动态演进特征,从整体、时段、区域分解的角度识别中国粮食生产碳排放的驱动因素及其时空效应。研究发现:① 考察期内中国粮食生产碳排放总量呈增长态势,年均增长率1.30%,物质资料投入和秸秆燃烧的贡献最大,2017年以来呈现下降趋势,2020年碳排放总量为49478.19万t。② 在三大粮食生产功能区和6个粮食作物种植制度区层面,考察期内粮食主产区、长江中下游和华北地区的省份粮食生产碳排量一直处于前列,粮食主销区的碳排放量呈现缩减趋势。③ 考察期内中国粮食生产碳排放量的绝对差异扩大,整体上呈现高水平收敛和区域间差异扩大趋势。④ 中国粮食生产碳排放受经济、社会、技术、人口和自然等因素共同作用,农业总产值和粮食总产量作为关键影响因素表现出负向空间溢出效应,地区经济结构、劳动节约型技术和和农业生产结构与其相反;阶段效应以“十一五”时期为节点,驱动因素趋向简单化;区域效应中驱动因素趋向复杂化。本研究为推进“双碳”战略下粮食绿色生产提供了理论和方法依据。
张青青, 曲衍波, 展凌云, 苏德胜, 韦川辰. 中国粮食生产碳排放动态演进及驱动效应[J]. 地理学报, 2023, 78(9): 2186-2208.
ZHANG Qingqing, QU Yanbo, ZHAN Lingyun, SU Desheng, WEI Chuanchen. Dynamic evolution and driving effects of carbon emissions from grain production in China[J]. Acta Geographica Sinica, 2023, 78(9): 2186-2208.
表1
变量选择及描述性统计
一级指标 | 二级指标 | 符号 | 指标描述 | 单位 | 均值 | 标准差 | 选择依据 |
---|---|---|---|---|---|---|---|
粮食生产碳排放 | 粮食生产碳排放 | CC | 测算方法详见上文 | 万t | 1431.21 | 1136.05 | |
经济发展水平 | 经济增长 | EG | 人均地区生产总值 | 元 | 32415.12 | 28383.29 | [ |
农业总产值 | TAOV | 以1997年为基期,采用农产品生产者价格指数对农业总产值进行折算 | 亿元 | 1095.67 | 1064.93 | [ | |
地区经济结构 | RES | 农业增加值/地区生产总值 | % | 7.51 | 4.39 | [ | |
政府财政投入 | GFI | 农林水事务支出/地方一般公共预算支出 | % | 9.54 | 3.59 | [ | |
人民生活水平 | 农村居民人均可支配收入 | AID | 以1997年为基期,采用农村居民消费价格指数分别对农村居民人均可支配收入和农村居民人均消费支出进行折算 | 元 | 7275.58 | 5880.83 | [ |
农村居民人均消费支出 | FC | 元 | 5665.57 | 4609.77 | [ | ||
城乡收入差距 | IG | 城镇居民人均可支配收入/农村居民人均纯收入 | % | 2.82 | 0.63 | [ | |
非农兼业水平 | NAI | 农村居民经营净收入/农村居民可支配总收入 | % | 51.31 | 18.15 | 非农兼业水平代表农村居民从事非农产业收入占比 | |
技术进步水平 | 劳动节约型技术 | LST | 农业机械总动力/乡村第一产业就业人员数量 | kW/人 | 3.26 | 2.11 | 劳动节约型技术意味着机械化的使用节约的人力资本 |
个体技术水平 | ITL | 以农村劳动力平均受教育年限来表示,不识字或识字很少、小学程度、初中程度、高中程度、大专或大专以上程度的受教育年限分别定义为1 a、6 a、9 a、12 a和16 a | a | 7.32 | 0.93 | [ | |
科技创新水平 | STI | IPC中A01类中的发明专利申请量和实用新型专利申请量之和,来表示粮食生产方面的绿色专利量,即科技创新水平 | 个 | 106.56 | 205.35 | 分类标准见国家知识产权局(www.cnipa.gov.cn/) | |
人口规模 | 农村总人口 | TRP | 农村年末总人口数 | 万人 | 2223.33 | 1625.99 | [ |
人口密度 | PD | 农村总人口/地区总人口 | % | 50.61 | 15.85 | [ | |
农村老龄化 | RA | 以乡村老年抚养比表示,即农村老年人口与15~64岁人口的比例 | % | 13.92 | 5.07 | ||
城镇化率 | UB | 区域城镇人口/总人口 | % | 49.37 | 16.67 | [ | |
自然条件 | 农业生产结构 | APS | 粮食作物播种面积/农作物总播种面积 | % | 66.34 | 12.69 | [ |
粮食总产量 | TGO | 地区粮食总产量水平 | 万t | 1765.63 | 1480.10 | [ | |
自然灾害 | ND | 农作物受灾面积/农作物播种面积 | % | 23.75 | 16.33 | [ |
表2
时空演进方法介绍
方法名称 | 模型公式 | 公式释义 | 参考文献 |
---|---|---|---|
Dagum基尼系数 | [ | ||
标准差椭圆 | [ | ||
核密度 | [ |
表3
全国视角下SDM模型回归结果
变量 | SDM模型(点估计) | 效应分解 | ||
---|---|---|---|---|
直接效应 | 间接效应 | 总效应 | ||
EG | 0.0006(0.70) | 0.0006(0.68) | 0.0024(1.07) | 0.0030(1.18) |
TAOV | 0.1877(11.27)*** | 0.1871(13.2)*** | -0.0703(-1.73)* | 0.1168(2.96)*** |
RES | -15.7691(-4.49)*** | -15.6667(-4.14)*** | 14.9481(1.70)* | -0.7186(-0.07) |
FC | -0.0334(-4.14)*** | -0.0329(-3.86)*** | -0.0096(-0.43) | -0.0425(-1.83)* |
IG | -55.2664(-3.77)*** | -57.5456(-4.23)*** | 72.1915(1.12) | 14.6459(0.22) |
NAI | -3.1822(-2.74)*** | -3.5015(-2.53)** | 5.4475(1.63) | 1.9459(0.60) |
LST | -18.9970(-3.19)*** | -19.4826(-3.42)*** | 71.3746(4.76)*** | 51.8920(3.60)*** |
ITL | 15.9622(0.78) | 14.7096(0.70) | 65.7949(1.38) | 80.5045(1.61) |
STI | -0.1150(-2.99)*** | -0.1205(-3.32)*** | 0.0756(0.85) | -0.0449(-0.55) |
TRP | 0.0876(2.99)*** | 0.0844(3.03)*** | -0.0554(-0.61) | 0.0290(0.32) |
PD | 3.9570(2.83)*** | 4.0173(2.91)*** | 2.8347(0.75) | 6.8520(1.75)* |
UB | 1.6554(2.57)*** | 1.6782(2.74)*** | 2.4773(1.47) | 4.1554(2.18)** |
APS | -1.2948(1.99)* | -1.3282(-1.91)* | -1.5478(-1.63)* | -2.8761(1.05)* |
TGO | 0.3434(19.35)*** | 0.3449(19.44)*** | -0.1640(-3.35)*** | 0.1809(3.81)*** |
Spatial rho | -0.0781(-0.97) | |||
R2 | 0.7936 |
表4
分阶段效应分解
变量 | “九五”时期 | “十五”时期 | “十一五”时期 | “十二五”时期 | “十三五”时期 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
直接效应 | 间接效应 | 直接效应 | 间接效应 | 直接效应 | 间接效应 | 直接效应 | 间接效应 | 直接效应 | 间接效应 | |||||
EG | 0.0131**(1.87) | 0.0092(0.60) | -0.0053(-1.76) | 0.0096(1.67) | - | - | -0.0040(-1.66) | 0.0039(0.52) | - | - | ||||
TAOV | 0.7478***(7.04) | 1.0737***(2.61) | 0.3762***(8.59) | 0.2756**(2.20) | 0.2419**(7.38) | -0.0531(-0.54) | 0.1981***(6.76) | -0.1769(-1.43) | 0.0745**(2.07) | -0.0369(-0.35) | ||||
RES | 0.1351(0.03) | 2.3720(0.18) | - | - | - | - | -68.2388***(-6.20) | 16.6843(0.50) | -4.4609(-0.69) | -12.1253(-0.76) | ||||
GFI | 0.2257(0.12) | 4.5439(0.87) | 6.6406**(1.97) | -14.2396**(-2.11) | - | - | 22.4611***(3.67) | -2.2172(-0.13) | 11.5515**(2.10) | 2.0072(0.11) | ||||
AID | -0.2187***(-3.79) | 0.3336*(1.95) | 9.85e-07(0.00) | 0.0775*(1.06) | -0.0089(-0.46) | 0.0740*(1.75) | - | - | - | - | ||||
FC | 0.1295**(2.41) | -0.1967(-1.37) | -0.0125(-0.35) | -0.0937(-1.55) | - | - | -0.0133(-1.18) | -0.0019(-0.07) | -0.0042(-0.31) | 0.0096(0.30) | ||||
IG | -10.9165*(-1.88) | -35.5993(-0.56) | -25.1003*(-2.23) | -19.5517(-0.23) | -77.7230*(-1.73) | 11.4164(0.10) | 45.7370(1.22) | 132.4146(1.38) | - | - | ||||
NAI | 1.4880(0.97) | -0.9994(-0.25) | 0.6116(0.66) | 5.2679(1.26) | - | - | - | - | 0.2694(0.09) | -0.0262(-0.18) | ||||
LST | 20.6416(1.28) | 42.6954(0.96) | 4.7857(0.60) | -57.3295(-1.11) | -8.5334(-0.55) | 93.8520***(3.19) | 6.6337(0.64) | 85.4482**(2.36) | -16.6534(-1.45) | 28.7742**(1.25) | ||||
ITL | -19.2751(-1.49) | 16.3759(0.57) | - | - | - | - | 47.5075*(1.86) | -12.7284(-0.18) | -64.2875*(-1.79) | -27.9906(-0.28) | ||||
STI | -0.5373(-0.74) | -5.6656***(-2.82) | 0.3386(0.90) | -1.1444*(-1.53) | -0.0981(-1.13) | 0.5323**(2.29) | -0.0886**(-2.16) | 0.1596(1.35) | 0.0507(1.19) | -0.1524(-1.18) | ||||
TRP | -0.1496**(-2.57) | 0.1861(0.97) | -0.2965***(-5.08) | 0.1212(0.64) | -0.0561*(-1.86) | -0.0459(-0.71) | 0.7776***(7.48) | 0.2535(0.50) | - | - | ||||
PD | -0.7939(-0.28) | 22.7967**(2.16) | -3.2678(-0.88) | -9.8060(-0.80) | - | - | -8.4094(-0.81) | -59.2798*(-1.88) | -17.8929**(-2.22) | -23.6108*(-1.20) | ||||
RA | -0.7393(-0.14) | -21.7477*(-1.84) | -5.4746**(-2.23) | -6.2712*(-0.97) | -1.4658(-0.36) | -6.9139*(-0.77) | -0.2741(-0.10) | -3.9315(-0.61) | - | - | ||||
UB | - | - | - | - | -2.2332(-0.41) | -2.6759(-0.20) | 14.1162(1.09) | -46.1311(-1.02) | -2.1586(-0.22) | -19.5559(-0.80) | ||||
APS | 1.0030(0.46) | 6.9806(1.17) | 5.1533***(2.60) | -0.7874(-0.21) | 4.1566*(1.96) | -6.1748(-1.24) | -3.2038(-0.92) | -2.9667(-0.41) | 0.6122(0.19) | 0.7105(0.10) | ||||
TGO | 0.2733***(8.57) | -0.3458***(-3.64) | 0.1497***(4.65) | -0.0311(-0.40) | 0.2508***(6.74) | -0.0137(-0.20) | 0.4931***(8.92) | -0.1979(-1.01) | 0.2145***(5.08) | 0.0270(0.37) | ||||
ND | - | - | - | - | - | - | - | - | - | - |
表5
分区域效应分解
变量 | 主产区 | 主销区 | 产销平衡区 | |||||
---|---|---|---|---|---|---|---|---|
直接效应 | 间接效应 | 直接效应 | 间接效应 | 直接效应 | 间接效应 | |||
EG | 0.0018 (1.40) | -0.0004 (-0.18) | -0.0006 (-2.02) | -0.0008 (-2.54) | -0.0006 (-0.31) | 0.0119 (1.50) | ||
TAOV | - | - | 0.0207* (1.65) | 0.0307 (1.45) | 0.3359*** (14.87) | -0.2312*** (-2.82) | ||
RES | -11.7711*** (-2.72) | 31.7285*** (3.55) | -5.3779** (-1.57) | 4.8057** (0.89) | -13.0367*** (-2.74) | 46.1485*** (3.97) | ||
GFI | 6.4114 (1.30) | 10.2832 (1.09) | 2.1765 (1.31) | 0.6488 (0.23) | - | - | ||
AID | - | - | - | - | 0.0180 (0.96) | -0.2084*** (-3.21) | ||
FC | -0.0311* (-1.11) | 0.0984*** (3.41) | - | - | -0.0248* (-0.73) | -0.1113** (-1.98) | ||
IG | 46.7902 (1.04) | 129.3354 (1.25) | 9.8614 (0.46) | 56.6290 (1.86) | 12.6662 (1.00) | -47.7325 (-0.76) | ||
NAI | -1.8931* (-2.93) | 8.2315** (2.55) | -0.4092 (-0.70) | -4.6811*** (-6.75) | 0.7816 (0.73) | 3.7739 (0.86) | ||
LST | -22.8996** (-2.46) | 31.8371** (1.50) | -4.1095 (-1.24) | -3.7142 (-0.94) | -13.2169** (-1.62) | 133.1993*** (4.11) | ||
ITL | -23.6301 (-0.74) | 24.9214 (0.43) | - | - | -14.8211 (-0.86) | 10.3733 (-0.18) | ||
STI | -0.1871*** (-4.44) | 0.1791*** (2.87) | - | - | - | - | ||
TRP | 0.2417*** (6.61) | 0.1925 (1.57) | 0.0056 (0.38) | -0.0176 (-0.82) | 0.4282*** (6.41) | 0.0488 (0.57) | ||
PD | 7.3935*** (2.89) | -9.7461 (-1.55) | -2.6106*** (-3.06) | -0.5226 (-0.35) | 3.1176 (0.75) | 17.6796*** (2.90) | ||
RA | -19.4179*** (-5.28) | -0.8790 (-0.10) | -1.1176* (-1.69) | 0.1424 (0.17) | -1.9680* (-1.79) | -15.5187 (-1.31) | ||
UB | 0.4190 (0.39) | -0.1931 (-0.13) | -0.2149 (-0.37) | -0.8702 (-1.05) | -0.9621 (-1.44) | -3.9512** (-2.38) | ||
APS | -8.5440*** (-3.95) | -18.4176*** (-3.70) | -1.1756*** (-2.84) | -1.2379** (-2.23) | -7.2307*** (-3.36) | -12.5795* (-1.72) | ||
TGO | 0.3584*** (18.52) | -0.1640*** (-4.35) | 0.3850*** (12.79) | -0.0922* (-1.87) | 0.6825*** (8.49) | -0.0980* (-1.37) | ||
ND | - | - | - | - | 2.3395*** (5.90) | 1.0089 (0.94) |
[1] |
Chen Yangfen, Wang Jieyong, Zhang Fengrong, et al. New patterns of globalization and food security. Journal of Natural Resources, 2021, 36(6): 1362-1380.
doi: 10.31497/zrzyxb.20210602 |
[陈秧分, 王介勇, 张凤荣, 等. 全球化与粮食安全新格局. 自然资源学报, 2021, 36(6): 1362-1380.]
doi: 10.31497/zrzyxb.20210602 |
|
[2] |
Li J, Rodriguez D, Tang X Y. Effects of land lease policy on changes in land use, mechanization and agricultural pollution. Land Use Policy, 2017, 64: 405-413.
doi: 10.1016/j.landusepol.2017.03.008 |
[3] |
Qi X X, Wang R Y, Li J C, et al. Ensuring food security with lower environmental costs under intensive agricultural land use patterns: A case study from China. Journal of Environmental Management, 2018, 213: 329-340.
doi: S0301-4797(18)30155-5 pmid: 29502018 |
[4] | Luo Wanchun. China's food security governance: Development trends, challenges and improvements. Chinese Rural Economy, 2020(12): 56-66. |
[罗万纯. 中国粮食安全治理: 发展趋势、挑战及改进. 中国农村经济, 2020(12): 56-66.] | |
[5] |
Chen Yangfen, Wang Jieyong. China's food security situation and strategy under the background of opening-up. Journal of Natural Resources, 2021, 36(6): 1616-1630.
doi: 10.31497/zrzyxb.20210620 |
[陈秧分, 王介勇. 对外开放背景下中国粮食安全形势研判与战略选择. 自然资源学报, 2021, 36(6): 1616-1630.]
doi: 10.31497/zrzyxb.20210620 |
|
[6] | Yang Guo, Chen Yao. China's agriculture carbon sink estimation and its coupling analysis with agricultural economy development. China Population, Resources and Environment, 2016, 26(12): 171-176. |
[杨果, 陈瑶. 中国农业源碳汇估算及其与农业经济发展的耦合分析. 中国人口·资源与环境, 2016, 26(12): 171-176.] | |
[7] | Tian Yun, Yin Minhao. Re-evaluation of China's agricultural carbon emissions: Basic status, dynamic evolution and spatial spillover effects. Chinese Rural Economy, 2022(3): 104-127. |
[田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应. 中国农村经济, 2022(3): 104-127.] | |
[8] |
Johnson J M, Franzluebbers A J, Weyers S L, et al. Agricultural opportunities to mitigate greenhouse gas emission. Environmental Pollution, 2007, 150(1): 107-124.
pmid: 17706849 |
[9] | Li Bo, Zhang Junbiao, Li Haipeng. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China. China Population, Resources and Environment, 2011, 21(8): 80-86. |
[李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解. 中国人口·资源与环境, 2011, 21(8): 80-86.] | |
[10] | Zhang Hengshuo, Li Shaoping, Peng Min. Regional imbalance of carbon emission from China's rural energy consumption and dynamic identification of driving factors. Chinese Rural Economy, 2022(1): 112-134. |
[张恒硕, 李绍萍, 彭民. 中国农村能源消费碳排放区域非均衡性及驱动因素动态识别. 中国农村经济, 2022(1): 112-134.] | |
[11] | Wang Changhai. Farmers' attitude towards ecological protection: New findings and policy implications. Journal of Management World, 2014(11): 70-79. |
[王昌海. 农户生态保护态度:新发现与政策启示. 管理世界, 2014(11): 70-79.] | |
[12] | Shao S, Li B L, Fan M T, et al. How does labor transfer affect environmental pollution in rural China? Evidence from a survey. Energy Economics, 2021, 102: 105515. DOI: 10.1016/j.eneco.2021.105515. |
[13] |
Zhang L, Pang J X, Chen X P, et al. Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China's main grain-producing areas. Science of the Total Environment, 2019, 665: 1017-1025.
doi: 10.1016/j.scitotenv.2019.02.162 |
[14] | Cao Xiang, Gao Yu, Liu Ziqi. The impact of urbanization of rural residents on carbon emissions from household energy consumption. Chinese Rural Economy, 2021(10): 64-83. |
[曹翔, 高瑀, 刘子琪. 农村人口城镇化对居民生活能源消费碳排放的影响分析. 中国农村经济, 2021(10): 64-83.] | |
[15] | Tian Xiaohui, Li Wei, Li Rong. The environmental effects of agricultural mechanization: Evidence from agricultural machinery purchase subsidy policy. Chinese Rural Economy, 2021(9): 95-109. |
[田晓晖, 李薇, 李戎. 农业机械化的环境效应: 来自农机购置补贴政策的证据. 中国农村经济, 2021(9): 95-109.] | |
[16] | Liu M C, Chen C, Yang L, et al. Agricultural eco-compensation may not necessarily reduce chemical inputs. Science of the Total Environment, 2020, 741: 139847. DOI: 10.1016/j.scitotenv.2020.139847. |
[17] | Zhang Chao, Sun Yiduo, Sun Shengyang, et al. Does the urban-rural income gap increase agricultural chemical input? A case study of pesticide use. Chinese Rural Economy, 2019(1): 96-111. |
[张超, 孙艺夺, 孙生阳, 等. 城乡收入差距是否提高了农业化学品投入? 以农药施用为例. 中国农村经济, 2019(1): 96-111.] | |
[18] | Xia Qiu, Li Dan, Zhou Hong. Study on the influence of farmers' concurrent business behavior on agricultural non-point source pollution. China Population, Resources and Environment, 2018, 28(12): 131-138. |
[夏秋, 李丹, 周宏. 农户兼业对农业面源污染的影响研究. 中国人口·资源与环境, 2018, 28(12): 131-138.] | |
[19] | Qin Tian, Peng Jue, Deng Zongbing, et al. Environmental decentralization, environmental regulation and agricultural non-point source pollution. China Population, Resources and Environment, 2021, 31(2): 61-70. |
[秦天, 彭珏, 邓宗兵, 等. 环境分权、环境规制对农业面源污染的影响. 中国人口·资源与环境, 2021, 31(2): 61-70.] | |
[20] | Wang Baoyi, Zhang Weiguo. Cross-provincial differences in determinants of agricultural eco-efficiency in China: An analysis based on panel data from 31 provinces in 1996-2015. Chinese Rural Economy, 2018(1): 46-62. |
[王宝义, 张卫国. 中国农业生态效率的省际差异和影响因素: 基于1996—2015年31个省份的面板数据分析. 中国农村经济, 2018(1): 46-62.] | |
[21] |
Tian Xu, Wang Shangao. Environmental efficiency and its determinants regarding China's grain production. Resources Science, 2016, 38(11): 2106-2116.
doi: 10.18402/resci.2016.11.09 |
[田旭, 王善高. 中国粮食生产环境效率及其影响因素分析. 资源科学, 2016, 38(11): 2106-2116.]
doi: 10.18402/resci.2016.11.09 |
|
[22] |
Li J, Bo Y, Xie S D. Estimating emissions from crop residue open burning in China based on statistics and MODIS fire products. Journal of Environmental Sciences, 2016, 44: 158-170.
doi: S1001-0742(16)00006-1 pmid: 27266312 |
[23] |
Zhang D, Shen J B, Zhang F S, et al. Carbon footprint of grain production in China. Scientific Reports, 2017, 7: 4126. DOI: 10.1038/s41598-017-04182-x.
pmid: 28663590 |
[24] | Lu Qingyao, Yang Chunhong. A study on the changing trend and driving factors of carbon emissions from grain planting in China. On Economic Problems, 2023(1): 114-121. |
[鲁庆尧, 杨春红. 我国粮食种植碳排放量变化趋势与驱动因素研究. 经济问题, 2023(1): 114-121.] | |
[25] | Zhang Yunhua, Peng Chao, Zhang Chen. The use of nitrogen element and grain production efficiency: Evidence from national fixed point survey data. Journal of Management World, 2019, 35(4): 109-119. |
[张云华, 彭超, 张琛. 氮元素施用与农户粮食生产效率: 来自全国农村固定观察点数据的证据. 管理世界, 2019, 35(4): 109-119.] | |
[26] | Chen Fei, Fan Qingquan, Gao Tiemei. Agricultural policies, food production and food production-adjustment ability. Economic Research Journal, 2010, 45(11): 101-114, 140. |
[陈飞, 范庆泉, 高铁梅. 农业政策、粮食产量与粮食生产调整能力. 经济研究, 2010, 45(11): 101-114, 140.] | |
[27] | Wang Yuemei, Yao Xianguo, Zhou Minghai. Rural labor outflow, regional differences and food production. Journal of Management World, 2013(11): 67-76. |
[王跃梅, 姚先国, 周明海. 农村劳动力外流、区域差异与粮食生产. 管理世界, 2013(11): 67-76.] | |
[28] |
Jin Tao. The adjustment of China's grain cropping structure and its effects on the consumption of water and land resources. Journal of Natural Resources, 2019, 34(1): 14-25.
doi: 10.31497/zrzyxb.20190102 |
[金涛. 中国粮食作物种植结构调整及其水土资源利用效应. 自然资源学报, 2019, 34(1): 14-25.]
doi: 10.31497/zrzyxb.20190102 |
|
[29] | Tian Yun, Zhang Junbiao, Li Bo. Agricultural carbon emissions in China: Calculation, spatial-temporal comparison and decoupling effects. Resources Science, 2012, 34(11): 2097-2105. |
[田云, 张俊飚, 李波. 中国农业碳排放研究: 测算、时空比较及脱钩效应. 资源科学, 2012, 34(11): 2097-2105.] | |
[30] | Zhang Fan, Xuan Xin, Jin Gui, et al. Agricultural non-CO2 greenhouse gases emissions and scenario simulation analysis. Acta Geographica Sinica, 2023, 78(1): 35-53. |
[张帆, 宣鑫, 金贵, 等. 农业源非二氧化碳温室气体排放及情景模拟. 地理学报, 2023, 78(1): 35-53.]
doi: 10.11821/dlxb202301003 |
|
[31] | Min Jisheng, Hu Hao. Calculation of greenhouse gases emission from agricultural production in China. China Population, Resources and Environment, 2012, 22(7): 21-27. |
[闵继胜, 胡浩. 中国农业生产温室气体排放量的测算. 中国人口·资源与环境, 2012, 22(7): 21-27.] | |
[32] |
Lessmann M, Ros G H, Young M D, et al. Global variation in soil carbon sequestration potential through improved cropland management. Global Change Biology, 2022, 28(3): 1162-1177.
doi: 10.1111/gcb.v28.3 |
[33] | Ye X, Chuai X W. Carbon sinks/sources' spatiotemporal evolution in China and its response to built-up land expansion. Journal of Environmental Management, 2022, 321: 115863. DOI: 10.1016/j.jenvman.2022.115863. |
[34] |
Zhu Wenbo, Zhang Jingjing, Cui Yaoping, et al. Assessment of territorial ecosystem carbon storage based on land use change scenario: A case study in Qihe River Basin. Acta Geographica Sinica, 2019, 74(3): 446-459.
doi: 10.11821/dlxb201903004 |
[朱文博, 张静静, 崔耀平, 等. 基于土地利用变化情景的生态系统碳储量评估: 以太行山淇河流域为例. 地理学报, 2019, 74(3): 446-459.]
doi: 10.11821/dlxb201903004 |
|
[35] | Li Bo, Wang Chunyu, Zhang Junbiao. Dynamic evolution and spatial spillover of China's agricultural net carbon sink. China Population, Resources and Environment, 2019, 29(12): 68-76. |
[李波, 王春妤, 张俊飚. 中国农业净碳汇效率动态演进与空间溢出效应. 中国人口·资源与环境, 2019, 29(12): 68-76.] | |
[36] | Wang Xiaoyu, Xue Shuai, Xie Guanghui. Value-taking for residue factor as a parameter to assess the field residue of field crops. Journal of China Agricultural University, 2012, 17(1): 1-8. |
[王晓玉, 薛帅, 谢光辉. 大田作物秸秆量评估中秸秆系数取值研究. 中国农业大学学报, 2012, 17(1): 1-8.] | |
[37] |
Dagum C. A new approach to the decomposition of the Gini income inequality ratio. Empirical Economics, 1997, 22(4): 515-531.
doi: 10.1007/BF01205777 |
[38] |
Lefever D W. Measuring geographic concentration by means of the standard deviational ellipse. American Journal of Sociology, 1926, 32(1): 88-94.
doi: 10.1086/214027 |
[39] |
Xu Di, Xu Yan. Spatio-temporal pattern of registered population in Nanjing from 1928 to 2017. Acta Geographica Sinica, 2022, 77(10): 2439-2456.
doi: 10.11821/dlxb202210003 |
[徐旳, 徐彦. 1928—2017年南京城市户籍人口时空格局演变. 地理学报, 2022, 77(10): 2439-2456.]
doi: 10.11821/dlxb202210003 |
|
[40] | Liu Huajun, Guo Lixiang, Qiao Liecheng, et al. Spatial-temporal pattern and dynamic evolution of logistics efficiency in China. Journal of Quantitative & Technological Economics, 2021, 38(5): 57-74. |
[刘华军, 郭立祥, 乔列成, 等. 中国物流业效率的时空格局及动态演进. 数量经济技术经济研究, 2021, 38(5): 57-74.] | |
[41] |
Zhao Yanyan, Zhang Xiaoping, Chen Mingxing, et al. Regional variation of urban air quality in China and its dominant factors. Acta Geographica Sinica, 2021, 76(11): 2814-2829.
doi: 10.11821/dlxb202111015 |
[赵艳艳, 张晓平, 陈明星, 等. 中国城市空气质量的区域差异及归因分析. 地理学报, 2021, 76(11): 2814-2829.]
doi: 10.11821/dlxb202111015 |
|
[42] |
Lam C, Souza P C L. Estimation and selection of spatial weight matrix in a spatial lag model. Journal of Business & Economic Statistics, 2020, 38(3): 693-710.
doi: 10.1080/07350015.2019.1569526 |
[43] | Liu Jiaqi, Ru Shaofeng. Research on factors of economic growth and path selection for high quality development of western China. Inquiry into Economic Issues, 2019(9): 82-90. |
[刘家旗, 茹少峰. 西部地区经济增长影响因素分析及其高质量发展的路径选择. 经济问题探索, 2019(9): 82-90.] | |
[44] |
Zou H. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 2006, 101(476): 1418-1429.
doi: 10.1198/016214506000000735 |
[45] |
Elhorst J P. Matlab software for spatial panels. International Regional Science Review, 2014, 37(3): 389-405.
doi: 10.1177/0160017612452429 |
[46] | LeSage J P, Pace R K. Introduction to Spatial Econometrics. Boca Raton: CRC Press Taylor & Francis Group, 2009. |
[47] | Dong Xiaoxia, Huang Jikun, Scott Rozelle, et al. Research on the adjustment of geographical location, transportation infrastructure and planting structure. Journal of Management World, 2006(9): 59-63, 79. |
[董晓霞, 黄季焜, Scott Rozelle, 等. 地理区位、交通基础设施与种植业结构调整研究. 管理世界, 2006(9): 59-63, 79.] | |
[48] |
Liu Yansui, Zhang Ziwen, Wang Jieyong. Regional differentiation and comprehensive regionalization scheme of modern agriculture in China. Acta Geographica Sinica, 2018, 73(2): 203-218.
doi: 10.11821/dlxb201802001 |
[刘彦随, 张紫雯, 王介勇. 中国农业地域分异与现代农业区划方案. 地理学报, 2018, 73(2): 203-218.]
doi: 10.11821/dlxb201802001 |
|
[49] |
Lei Ming, Kong Xiangbin, Wang Jianing. Estimation of sustainable grain productivity for arable land under water balance in the Huang-Huai-Hai Plain. Acta Geographica Sinica, 2018, 73(3): 535-549.
doi: 10.11821/dlxb201803011 |
[雷鸣, 孔祥斌, 王佳宁. 水平衡下黄淮海平原区耕地可持续生产能力测算. 地理学报, 2018, 73(3): 535-549.]
doi: 10.11821/dlxb201803011 |
|
[50] | Zhong Funing, Gu Hejun, Ji Yueqing. The role differentiation of farmers and the income distribution effect of agricultural subsidies: An empirical study on the income distribution effect of agricultural tax reduction and food direct subsidies in Jiangsu province. Journal of Management World, 2008(5): 65-70, 76. |
[钟甫宁, 顾和军, 纪月清. 农民角色分化与农业补贴政策的收入分配效应: 江苏省农业税减免、粮食直补收入分配效应的实证研究. 管理世界, 2008(5): 65-70, 76.] | |
[51] | Xu Qing, Yang Qing, Zhang Yuan. The effect of agricultural subsidies reform on the optimum-scale management of grain. Economic Research Journal, 2021, 56(8): 192-208. |
[许庆, 杨青, 章元. 农业补贴改革对粮食适度规模经营的影响. 经济研究, 2021, 56(8): 192-208.] | |
[52] | Wu Liancui, Tan Junmei. Empirical analysis on yield effect and action path of grain subsidy policy. China Population, Resources and Environment, 2013, 23(9): 100-106. |
[吴连翠, 谭俊美. 粮食补贴政策的作用路径及产量效应实证分析. 中国人口·资源与环境, 2013, 23(9): 100-106.] | |
[53] |
Gong B L. Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978-2015. Journal of Development Economics, 2018, 132: 18-31.
doi: 10.1016/j.jdeveco.2017.12.005 |
[54] |
Chen P C, Yu M M, Chang C C, et al. Total factor productivity growth in China's agricultural sector. China Economic Review, 2008, 19: 580-593.
doi: 10.1016/j.chieco.2008.07.001 |
[55] |
Chien S S. Local farmland loss and preservation in China: A perspective of quota territorialization. Land Use Policy, 2015, 49: 65-74.
doi: 10.1016/j.landusepol.2015.07.010 |
[56] |
Duan J K, Ren C C, Wang S T, et al. Consolidation of agricultural land can contribute to agricultural sustainability in China. Nature Food, 2021, 2(12): 1014-1022.
doi: 10.1038/s43016-021-00415-5 pmid: 37118257 |
[1] | 陈明华, 王哲, 谢琳霄, 李倩. 中国中部地区高质量发展的时空演变及形成机理[J]. 地理学报, 2023, 78(4): 859-876. |
[2] | 方远平, 毕斗斗, 陈宏洋, 彭婷. 知识密集型服务业集聚对城市群旅游创新影响的空间效应[J]. 地理学报, 2021, 76(6): 1521-1536. |
[3] | 王少剑,苏泳娴,赵亚博. 中国城市能源消费碳排放的区域差异、空间溢出效应及影响因素[J]. 地理学报, 2018, 73(3): 414-428. |
[4] | 王少剑, 王洋, 赵亚博. 1990年来广东区域发展的空间溢出效应及驱动因素[J]. 地理学报, 2015, 70(6): 965-979. |
[5] | 席强敏, 李国平. 京津冀生产性服务业空间分工特征及溢出效应[J]. 地理学报, 2015, 70(12): 1926-1938. |