地理学报 ›› 2023, Vol. 78 ›› Issue (9): 2163-2185.doi: 10.11821/dlxb202309004
刘晶1,2(), 金晓斌1,2,3(
), 徐伟义1,2, 王世磊1,2, 周寅康1,2,3
收稿日期:
2022-10-10
修回日期:
2023-09-01
出版日期:
2023-09-25
发布日期:
2023-09-28
通讯作者:
金晓斌(1974-), 男, 甘肃兰州人, 博士, 教授, 博士生导师, 主要从事土地资源管理研究。E-mail: jinxb@nju.edu.cn作者简介:
刘晶(1992-), 女, 山东济南人, 助理研究员, 主要从事国土空间优化与农用地可持续利用研究。E-mail: JingLiu@nju.edu.cn
基金资助:
LIU Jing1,2(), JIN Xiaobin1,2,3(
), XU Weiyi1,2, WANG Shilei1,2, ZHOU Yinkang1,2,3
Received:
2022-10-10
Revised:
2023-09-01
Published:
2023-09-25
Online:
2023-09-28
Supported by:
摘要:
系统揭示中国耕地景观细碎化的多尺度特征演进规律并就其未来发展趋势进行预测,对优化耕地资源利用与管理、促进农业适度规模经营等具有重要意义。本文以耕地景观细碎化的理论认知为基础,基于中国土地利用数据,集成泰尔指数、尺度方差及分解、马尔可夫链等数理统计和空间分析方法,按照国家、农业区、省域、市域、县域5级尺度,深入探讨1990—2020年中国耕地景观细碎化的多尺度特征演进规律与尺度嵌套效应,并据此预测其长期演变趋势。结果表明:① 中国耕地景观细碎化的格局特征具备明显的空间尺度差异,细碎化指数在县域以地势三级阶梯分界线成梯状分布,在市域依托“胡焕庸线”形成东低西高的“双核心—环核群—带状区”分异格局,在省域则呈现由东向西、自东北至西南逐级提高的同心圆圈层式结构。研究期内县域、市域、省域、农业区尺度差异对中国耕地细碎化总体差异的平均贡献分别为84.87%、14.64%、0.31%、0.18%,尺度越小越能反映耕地细碎化的空间异质性。② 1990—2020年中国耕地景观细碎化呈增强态势,但随时间推移增速减缓,并在2017年以后呈现出明显的减弱态势。其中,2000—2010年是耕地细碎化发展最为剧烈的时期,在不同尺度下均呈现细碎度增长幅度最大、覆盖范围最广、涉及维度最多等特点。③ 近30年中国耕地景观细碎化总体表现为“东增西减”,但不同尺度下耕地细碎化时空演变的趋势、强度、范围等存在较大差异。总体上,经济发达且农业资源禀赋优越的黄淮海平原、长江中下游平原中东部、四川盆地等地区是耕地细碎化增强的高值集聚区。④ 耕地景观细碎化的长期演变将遵循由低向高渐次递增的发展过程,低、较低等级细碎度县域将大幅减少,较高、高等级的县域将明显增加,同时,邻域背景对耕地细碎化的发展演化发挥重要作用。
刘晶, 金晓斌, 徐伟义, 王世磊, 周寅康. 1990—2020年中国耕地景观细碎化演变特征与趋势预判[J]. 地理学报, 2023, 78(9): 2163-2185.
LIU Jing, JIN Xiaobin, XU Weiyi, WANG Shilei, ZHOU Yinkang. Characteristic evolution and trend prediction of cultivated land landscape fragmentation in China from 1990 to 2020[J]. Acta Geographica Sinica, 2023, 78(9): 2163-2185.
表1
耕地景观细碎化多维评价指标体系
目标层 | 维度层 | 指标层 | 指标含义 | 属性 | 权重 |
---|---|---|---|---|---|
耕地景观细碎化 | 资源 规模性 | 平均斑块面积 | 表征平均耕地斑块面积大小 | + | 0.300 |
斑块总面积 | 表征一定区域范围内的耕地景观的斑块规模 | + | 0.261 | ||
斑块密度 | 表征单位面积的耕地斑块数 | - | 0.264 | ||
细碎度指数 | 表征斑块在数量、大小等方面的离散细碎程度 | - | 0.175 | ||
空间 集聚性 | 平均邻近度 | 表征特定空间范围内耕地斑块间的邻近程度 | + | 0.237 | |
欧式平均最近邻距离 | 反映耕地斑块整体平均邻近状况 | - | 0.320 | ||
斑块数量 | 表征特定区域内的耕地斑块数量及空间连接状况 | - | 0.210 | ||
景观分割度 | 表征耕地景观的空间分割程度及延展水平 | - | 0.233 | ||
形状 规整性 | 平均形状指数 | 反映耕地斑块形状边缘的规整程度 | - | 0.492 | |
景观形状指数 | 表征耕地景观形状边界的规整性及复杂性 | - | 0.508 |
表2
耕地景观细碎化及其分维属性等级划分标准
等级 | 耕地景观细碎化范围 | 资源规模性范围 | 空间集聚性范围 | 形状规整性范围 | |
---|---|---|---|---|---|
1 | 低 | ≤ 0.279 | ≤ 0.266 | ≤ 0.456 | ≤ 0.429 |
2 | 较低 | (0.279, 0.377] | (0.266, 0.419] | (0.456, 0.574] | (0.429, 0.561] |
3 | 中等 | (0.377, 0.465] | (0.419, 0.526] | (0.574, 0.703] | (0.561, 0.665] |
4 | 较高 | (0.465, 0.557] | (0.526, 0.660] | (0.703, 0.836] | (0.665, 0.771] |
5 | 高 | > 0.557 | > 0.660 | > 0.836 | > 0.771 |
表6
1990—2020年中国县域耕地景观细碎化的空间马尔可夫概率转移矩阵
t t+1 | 空间滞后 | n | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|---|
1 | 1 | 9705 | 0.9695 | 0.0305 | 0.0000 | 0.0000 | 0.0000 |
2 | 3415 | 0.0231 | 0.969 | 0.0079 | 0.0000 | 0.0000 | |
3 | 230 | 0.0000 | 0.0591 | 0.9322 | 0.0087 | 0.0000 | |
4 | 11 | 0.0000 | 0.0000 | 0.0909 | 0.9091 | 0.0000 | |
5 | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
1 | 2 | 715 | 0.8727 | 0.1245 | 0.0028 | 0.0000 | 0.0000 |
2 | 11917 | 0.0095 | 0.9521 | 0.0384 | 0.0000 | 0.0000 | |
3 | 4860 | 0.0000 | 0.0430 | 0.9467 | 0.0103 | 0.0000 | |
4 | 384 | 0.0000 | 0.0000 | 0.0644 | 0.9349 | 0.0052 | |
5 | 11 | 0.0000 | 0.0000 | 0.0000 | 0.0909 | 0.9091 | |
1 | 3 | 29 | 0.7241 | 0.1725 | 0.1034 | 0.0000 | 0.0000 |
2 | 1513 | 0.0053 | 0.8863 | 0.1084 | 0.0000 | 0.0000 | |
3 | 16181 | 0.0002 | 0.0146 | 0.9519 | 0.0333 | 0.0000 | |
4 | 4908 | 0.0000 | 0.0002 | 0.044 | 0.9544 | 0.0014 | |
5 | 61 | 0.0000 | 0.0000 | 0.0000 | 0.0656 | 0.9344 | |
1 | 4 | 89 | 0.7079 | 0.2337 | 0.0584 | 0.0000 | 0.0000 |
2 | 92 | 0.0543 | 0.7717 | 0.1523 | 0.0217 | 0.0000 | |
3 | 1864 | 0.0048 | 0.0107 | 0.8718 | 0.1127 | 0.0000 | |
4 | 18409 | 0.0007 | 0.0003 | 0.0171 | 0.9708 | 0.0111 | |
5 | 967 | 0.0000 | 0.0000 | 0.0000 | 0.0601 | 0.9399 | |
1 | 5 | 5 | 0.4000 | 0.378 | 0.0220 | 0.2000 | 0.0000 |
2 | 15 | 0.0000 | 0.6315 | 0.3685 | 0.0000 | 0.0000 | |
3 | 31 | 0.0000 | 0.0032 | 0.8700 | 0.1268 | 0.0000 | |
4 | 3456 | 0.0006 | 0.0000 | 0.0035 | 0.9853 | 0.0706 | |
5 | 6940 | 0.0001 | 0.0000 | 0.0000 | 0.0568 | 0.9431 |
[1] | Liu J, Jin X B, Xu W Y, et al. Influential factors and classification of cultivated land fragmentation, and implications for future land consolidation: A case study of Jiangsu province in eastern China. Land Use Policy, 2019, 88: 104185. DOI: 10.1016/j.landusepol.2019.104185. |
[2] | Ntihinyurwa P D, de Vries W T. Farmland fragmentation concourse: Analysis of scenarios and research gaps. Land Use Policy, 2021, 100: 104936. DOI: 10.1016/j.landusepol.2020.104936. |
[3] |
Sklenicka P, Zouhar J, Trpáková I, et al. Trends in land ownership fragmentation during the last 230 years in Czechia, and a projection of future developments. Land Use Policy, 2017, 67: 640-651.
doi: 10.1016/j.landusepol.2017.06.030 |
[4] |
Liu Jing, Jin Xiaobin, Xu Weiyi, et al. Evaluation of cultivated land fragmentation and guidance of land consolidation at provincial level. Scientia Geographica Sinica, 2019, 39(5): 817-826.
doi: 10.13249/j.cnki.sgs.2019.05.013 |
[刘晶, 金晓斌, 徐伟义, 等. 江苏省耕地细碎化评价与土地整治分区研究. 地理科学, 2019, 39(5): 817-826.]
doi: 10.13249/j.cnki.sgs.2019.05.013 |
|
[5] |
Xu W Y, Jin X B, Liu J, et al. Impact of cultivated land fragmentation on spatial heterogeneity of agricultural agglomeration in China. Journal of Geographical Sciences, 2020, 30(10): 1571-1589.
doi: 10.1007/s11442-020-1800-1 |
[6] |
Looga J, Jürgenson E, Sikk K, et al. Land fragmentation and other determinants of agricultural farm productivity: The case of Estonia. Land Use Policy, 2018, 79: 285-292.
doi: 10.1016/j.landusepol.2018.08.021 |
[7] | Wang X E. Changes in cultivated land loss and landscape fragmentation in China from 2000 to 2020. Land, 2022, 11(5): 684. DOI: 10.3390/land11050684. |
[8] | Wei L, Luo Y, Wang M, et al. Essential fragmentation metrics for agricultural policies: Linking landscape pattern, ecosystem service and land use management in urbanizing China. Agricultural Systems, 2020, 182: 102833. DOI: 10.1016/j.agsy.2020.102833. |
[9] |
Kuang Wenhui, Zhang Shuwen, Du Guoming, et al. Remotely sensed mapping and analysis of spatio-temporal patterns of land use change across China in 2015-2020. Acta Geographica Sinica, 2022, 77(5): 1056-1071.
doi: 10.11821/dlxb202205002 |
[匡文慧, 张树文, 杜国明, 等. 2015—2020年中国土地利用变化遥感制图及时空特征分析. 地理学报, 2022, 77(5): 1056-1071.]
doi: 10.11821/dlxb202205002 |
|
[10] |
Liu Jiyuan, Ning Jia, Kuang Wenhui, et al. Spatio-temporal patterns and characteristics of land-use change in China during 2010-2015. Acta Geographica Sinica, 2018, 73(5): 789-802.
doi: 10.11821/dlxb201805001 |
[刘纪远, 宁佳, 匡文慧, 等. 2010-2015年中国土地利用变化的时空格局与新特征. 地理学报, 2018, 73(5): 789-802.]
doi: 10.11821/dlxb201805001 |
|
[11] |
Liu Jing, Jin Xiaobin, Xu Weiyi, et al. Influence mechanism of cultivated land fragmentation on sustainable intensification and its governance framework. Acta Geographica Sinica, 2022, 77(11): 2703-2720.
doi: 10.11821/dlxb202211002 |
[刘晶, 金晓斌, 徐伟义, 等. 耕地细碎化对可持续集约利用的影响机理与治理框架. 地理学报, 2022, 77(11): 2703-2720.]
doi: 10.11821/dlxb202211002 |
|
[12] |
Ren Hongyu, Zhao Yuluan, Li Xiubin, et al. Cultivated land fragmentation in mountainous areas based on different resolution images and its scale effects. Geographical Research, 2020, 39(6): 1283-1294.
doi: 10.11821/dlyj020190863 |
[任红玉, 赵宇鸾, 李秀彬, 等. 基于不同分辨率影像的山区耕地细碎化评价及其尺度效应. 地理研究, 2020, 39(6): 1283-1294.]
doi: 10.11821/dlyj020190863 |
|
[13] |
Liu J, Jin X B, Xu W Y, et al. Evolution of cultivated land fragmentation and its driving mechanism in rural development: A case study of Jiangsu Province. Journal of Rural Studies, 2022, 91: 58-72.
doi: 10.1016/j.jrurstud.2022.02.011 |
[14] |
Zheng Y H, Long H L, Chen K Q. Spatio-temporal patterns and driving mechanism of farmland fragmentation in the Huang-Huai-Hai Plain. Journal of Geographical Sciences, 2022, 32(6): 1020-1038.
doi: 10.1007/s11442-022-1983-8 |
[15] |
Shi Changliang, Zhang Yi, Guo Yan, et al. The impact of land fragmentation on farmer's chemical fertilizer use efficiency. Journal of Natural Resources, 2019, 34(12): 2687-2700.
doi: 10.31497/zrzyxb.20191216 |
[史常亮, 张益, 郭焱, 等. 耕地细碎化对农户化肥使用效率的影响. 自然资源学报, 2019, 34(12): 2687-2700.]
doi: 10.31497/zrzyxb.20191216 |
|
[16] | Wang Xue, Xu Xiaofan. Spatiotemporal characteristics and influencing factors of landscape fragmentation of cultivated land in China. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(16): 11-20. |
[王学, 徐晓凡. 中国耕地景观细碎度时空变化特征及其影响因素. 农业工程学报, 2022, 38(16): 11-20.] | |
[17] | Du Guoming, Gai Zhaoxue, Wang Hongyan. Theoretical explanation and research framework of cultivated land fragmentation in China. Journal of Earth Sciences and Environment, 2021, 43(6): 997-1008. |
[杜国明, 盖兆雪, 王洪彦. 中国耕地细碎化的理论解析与研究框架. 地球科学与环境学报, 2021, 43(6): 997-1008.] | |
[18] |
Hartvigsen M. Land reform and land fragmentation in central and eastern Europe. Land Use Policy, 2014, 36: 330-341.
doi: 10.1016/j.landusepol.2013.08.016 |
[19] | Cao Shuai, Jin Xiaobin, Yang Xuhong, et al. Multidimensional evaluation of the influence of agricultural land consolidation on the fragmentation of cultivated land: Method and demonstration. Journal of China Agricultural University, 2019, 24(8): 157-167. |
[曹帅, 金晓斌, 杨绪红, 等. 农用地整治对耕地细碎化影响的多维评价: 方法与实证. 中国农业大学学报, 2019, 24(8): 157-167.] | |
[20] | Sun Rui, Jin Xiaobin, Xiang Xiaomin, et al. Applicability analysis of indices in assessment on effect of land consolidation on cultivated land fragmentation. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(13): 279-287. |
[孙瑞, 金晓斌, 项晓敏, 等. 土地整治对耕地细碎化影响评价指标适用性分析. 农业工程学报, 2018, 34(13): 279-287.] | |
[21] | Liu J, Jin X B, Xu W Y, et al. A new framework of land use efficiency for the coordination among food,economy and ecology in regional development. Science of the Total Environment, 2020, 710: 135670. DOI: 10.1016/j.scitotenv.2019.135670. |
[22] | Liu J, Jin X B, Li H B, et al. Spatial-temporal changes and driving factors of the coordinated relationship among multiple land use effciencies integrating stakeholders' vision in eastern China. Journal of Cleaner Production, 2022, 336: 130406. DOI: 10.1016/j.jclepro.2022.130406. |
[23] | He Nianpeng, Xu Li, He Honglin. The methods of evaluation ecosystem quality: Ideal reference and key parameters. Acta Ecologica Sinica, 2020, 40(6): 1877-1886. |
[何念鹏, 徐丽, 何洪林. 生态系统质量评估方法: 理想参照系和关键指标. 生态学报, 2020, 40(6): 1877-1886.] | |
[24] |
Su S L, Yang C X, Hu Y, et al. Progressive landscape fragmentation in relation to cash crop cultivation. Applied Geography, 2014, 53: 20-31.
doi: 10.1016/j.apgeog.2014.06.002 |
[25] | Yang J E, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Environmental Earth System Science Data, 2021, 13: 3907-3925. |
[26] |
Liu J Y, Kuang W H, Zhang Z X, et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. Journal of Geographical Sciences, 2014, 24(2): 195-210.
doi: 10.1007/s11442-014-1082-6 |
[27] |
Li Xinyu, Fang Bin, Li Yi, et al. Spatio-temporal coupling evolution and zoning regulation of grain-to-arable value ratio and cropping structures in China. Acta Geographica Sinica, 2022, 77(11): 2721-2737.
doi: 10.11821/dlxb202211003 |
[李欣宇, 方斌, 李怡, 等. 中国粮耕价值比与种植结构时空耦合演化及分区调控. 地理学报, 2022, 77(11): 2721-2737.]
doi: 10.11821/dlxb202211003 |
|
[28] |
Chen Peiyang, Zhu Xigang. Regional inequalities in China at different scales. Acta Geographica Sinica, 2012, 67(8): 1085-1097.
doi: 10.11821/xb201208007 |
[陈培阳, 朱喜钢. 基于不同尺度的中国区域经济差异. 地理学报, 2012, 67(8): 1085-1097.]
doi: 10.11821/xb201208007 |
|
[29] |
Hou Mengyang, Yao Shunbo. Spatial-temporal evolution and trend prediction of agricultural eco-efficiency in China: 1978-2016. Acta Geographica Sinica, 2018, 73(11): 2168-2183.
doi: 10.11821/dlxb201811009 |
[侯孟阳, 姚顺波. 1978—2016年中国农业生态效率时空演变及趋势预测. 地理学报, 2018, 73(11): 2168-2183.]
doi: 10.11821/dlxb201811009 |
|
[30] |
Wang Shaojian, Gao Shuang, Huang Yongyuan, et al. Spatio-temporal evolution and trend prediction of urban carbon emission performance in China based on super-efficiency SBM model. Acta Geographica Sinica, 2020, 75(6): 1316-1330.
doi: 10.11821/dlxb202006016 |
[王少剑, 高爽, 黄永源, 等. 基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测. 地理学报, 2020, 75(6): 1316-1330.]
doi: 10.11821/dlxb202006016 |
|
[31] |
Ge Yujuan, Zhao Yuluan, Ren Hongyu. The effect of farmland fragmentation on the intensity of farmland in different utilization ways. Advances in Earth Science, 2020, 35(2): 180-188.
doi: 10.11867/j.issn.1001-8166.2020.011 |
[葛玉娟, 赵宇鸾, 任红玉. 山区耕地细碎化对不同利用方式农地集约度的影响. 地球科学进展, 2020, 35(2): 180-188.]
doi: 10.11867/j.issn.1001-8166.2020.011 |
|
[32] | Geng Lina, Zhu Lanyan, Xu Yan, et al. Application of high resolution remote sensing image in the feasibility stage of land consolidation projects. Jiangsu Agricultural Sciences, 2020, 48(4): 240-246. |
[耿黎娜, 朱兰艳, 徐燕, 等. 高分辨率遥感影像在土地整治项目可研阶段的应用. 江苏农业科学, 2020, 48(4): 240-246.] | |
[33] |
Jiang P H, Chen D S, Li M C. Farmland landscape fragmentation evolution and its driving mechanism from rural to urban: A case study of Changzhou City. Journal of Rural Studies, 2021, 82: 1-18.
doi: 10.1016/j.jrurstud.2021.01.004 |
[34] | Li S Y, Cai Y Y. Effect analysis of road structure on multidimensional fragmentation of cultivated land: A case study in the international metropolis of Shanghai city. Chinese Journal of Eco-Agriculture. 2022, 30(7): 1203-1214. |
[35] | Liu Zhiyuan, Liu Shuling, Shao Jing'an. Analysis of the characteristics and motivation of arable land fragmentation in Yuxi Hill District: Taking Shuitou Community in Bozi Town, Tongnan District as an example. Hubei Agricultural Sciences, 2022, 61(22): 42-52. |
[刘志远, 刘属灵, 邵景安. 渝西方山丘陵区耕地细碎化的特征及动因分析: 以潼南区柏梓镇水头社区为例. 湖北农业科学, 2022, 61(22): 42-52.] | |
[36] | Zhang Bangbang, Niu Wenhao, Zuo Xuyang, et al. Farmer-dominated pattern land consolidation to solve arable land fragmentation and its effectiveness evaluation in Guangxi. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 265-274. |
[张蚌蚌, 牛文浩, 左旭阳, 等. 广西农民自主型细碎化耕地归并整治模式及效果评价. 农业工程学报, 2019, 35(9): 265-274.] | |
[37] | Kong Xiangbin, Chen Wenguang, Yang Zhihui. Transformation of arable land protection in China: Objectives, approaches and policies. Land Science Developments, 2022(1): 1-6. |
[孔祥斌, 陈文广, 杨智慧. 中国耕地保护转型: 目标、路径与政策. 土地科学动态, 2022(1): 1-6.] | |
[38] |
Zhou Liang, Dang Xuewei, Zhou Chenghu, et al. Evolution characteristics of slope spectrum and slope-climbing effects of built-up land in China. Acta Geographica Sinica, 2021, 76(7): 1747-1762.
doi: 10.11821/dlxb202107013 |
[周亮, 党雪薇, 周成虎, 等. 中国建设用地的坡谱演化规律与爬坡影响. 地理学报, 2021, 76(7): 1747-1762.]
doi: 10.11821/dlxb202107013 |
[1] | 张溢堃, 王永生. 中国省域城乡要素流动测度方法与时空特征[J]. 地理学报, 2023, 78(8): 1888-1903. |
[2] | 李迎成, 杨钰华, 马海涛. 邻近视角下长三角城市多尺度创新网络形成的微观机制[J]. 地理学报, 2023, 78(8): 2074-2091. |
[3] | 戈大专. 新时代中国乡村空间特征及其多尺度治理[J]. 地理学报, 2023, 78(8): 1849-1868. |
[4] | 陈思宇, 方修琦, 叶瑜, 赵琬一. 清代自然灾害所致极端人口死亡事件的识别及特征[J]. 地理学报, 2023, 78(5): 1074-1087. |
[5] | 杨仕琪, 王冀, 窦银银, 栾庆祖, 匡文慧. 1916—2020年北京城市变迁及其与区域气候演化的关系[J]. 地理学报, 2023, 78(3): 620-639. |
[6] | 周侃, 殷悦, 陈妤凡. 城市群水污染物排放的驱动因素及尺度效应[J]. 地理学报, 2022, 77(9): 2219-2235. |
[7] | 李晓玲, 刘志高, 谭爽, 修春亮, 贺红士. 中国黑龙江省与俄远东跨境经济合作空间组织模式的演变[J]. 地理学报, 2022, 77(8): 2083-2096. |
[8] | 付晶莹, 郜强, 江东, 林刚. 黑土保护与粮食安全背景下齐齐哈尔市国土空间优化调控路径[J]. 地理学报, 2022, 77(7): 1662-1680. |
[9] | 孙三百, 张青萍, 李冉, 张可云. 中国地区收入与净财富不平等的演变路径识别[J]. 地理学报, 2022, 77(6): 1411-1429. |
[10] | 刘云刚, 王韬. 中国政治地理学研究进展评述[J]. 地理学报, 2022, 77(6): 1506-1517. |
[11] | 王强, 周侃, 林键. 中国城乡家庭能源平等变化特征分析[J]. 地理学报, 2022, 77(2): 457-473. |
[12] | 赵逸才, 王开泳, 华林甫, 王甫园. 清代县级行政区划调整的时空变动与演化机理[J]. 地理学报, 2022, 77(12): 2972-2990. |
[13] | 龚胜生, 李孜沫, 谢海超, 王晓伟, 张涛, 石国宁, 陈发虎. 中国3000年疫灾流行的时空特征及其影响因素[J]. 地理学报, 2021, 76(8): 1976-1996. |
[14] | 尼格娜热·阿曼太, 丁建丽, 葛翔宇, 包青岭. 1960—2017年艾比湖流域实际蒸散量与气象要素的变化特征[J]. 地理学报, 2021, 76(5): 1177-1192. |
[15] | 宋伟轩, 黄琴诗, 谷跃, 何格. 宁杭城市多时空尺度居住空间分异与比较[J]. 地理学报, 2021, 76(10): 2458-2476. |