地理学报 ›› 2023, Vol. 78 ›› Issue (9): 2128-2146.doi: 10.11821/dlxb202309002
杨华1,2(), 徐勇1,2(
), 周侃1,2, 王丽佳1,2, 徐琳1,2
收稿日期:
2023-04-06
修回日期:
2023-08-20
出版日期:
2023-09-25
发布日期:
2023-09-28
通讯作者:
徐勇(1964-), 男, 陕西榆林人, 博士, 研究员, 博士生导师, 主要从事土地利用与人地关系机理模拟、农业与乡村发展、资源环境承载力评价研究。E-mail: xuy@igsnrr.ac.cn作者简介:
杨华(1995-), 男, 四川达州人, 博士生, 主要从事土地利用与人地关系机理模拟、地域功能类型与区划研究。E-mail: yanghua0678@igsnrr.ac.cn
基金资助:
YANG Hua1,2(), XU Yong1,2(
), ZHOU Kan1,2, WANG Lijia1,2, XU Lin1,2
Received:
2023-04-06
Revised:
2023-08-20
Published:
2023-09-25
Online:
2023-09-28
Supported by:
摘要:
青藏高原是重要的生态安全屏障区,厘清青藏高原建设用地的适宜空间对于协调生态保护与人类活动的关系,促进人口与产业的空间优化布局具有重要意义。基于建设用地适宜性评价模型,通过构建基于模型的建设用地适宜性评价“格局—过程”耦合分析框架,评价了青藏高原全域的建设用地适宜性,使用实际建设用地适应性指数和垂直梯度指数解析了1990—2020年实际建设用地对适宜性评价结果的适应性过程及其内部限制因素,测算了后备适宜建设用地潜力。结果表明:① 青藏高原建设用地适宜、较适宜、一般适宜、欠适宜和不适宜等级面积占比分别为0.13%、4.04%、7.00%、9.34%和79.50%,青藏高原建设用地适宜性以不适宜等级为主;② 1990—2020年青藏高原实际建设用地对适宜性评价结果的平均适应性在80%以上,实际建设用地总体适应建设用地适宜空间的分布特点,但具有显著的空间差异性;③ 1990—2020年青藏高原对适宜性评价结果低适应的实际建设用地以农村居民点、交通运输用地和特殊用地为主,城镇建设用地和其他建设用地的占比快速升高,青南高原、川西高山峡谷区和祁连山区的建设用地受到高程和坡度的双重限制,而藏北高原、冈底斯山区和喜马拉雅山区的主要限制因素是海拔;④ 青藏高原后备适宜建设用地潜力面积为12.41万km2,占土地总面积的4.81%,人均后备适宜建设用地面积为9928 m2/人,柴达木盆地的后备适宜建设用地资源最为丰富。本文的研究结论可为青藏高原生态移民搬迁和生产力的空间布局优化提供决策参考。
杨华, 徐勇, 周侃, 王丽佳, 徐琳. 青藏高原建设用地的适宜性与适应性及后备潜力评价[J]. 地理学报, 2023, 78(9): 2128-2146.
YANG Hua, XU Yong, ZHOU Kan, WANG Lijia, XU Lin. Evaluation of suitability, adaptability, and reserve potential of construction land on the Qinghai-Tibet Plateau[J]. Acta Geographica Sinica, 2023, 78(9): 2128-2146.
表2
青藏高原建设用地适宜性等级面积
区域 | 适宜等级 | 较适宜等级 | 一般适宜等级 | 欠适宜等级 | 不适宜等级 | 总面积 (104 km2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
面积 (104 km2) | 比例 (%) | 面积 (104 km2) | 比例 (%) | 面积 (104 km2) | 比例 (%) | 面积 (104 km2) | 比例 (%) | 面积 (104 km2) | 比例 (%) | ||||||
西藏 | 0.21 | 0.17 | 0.43 | 0.36 | 1.21 | 1.00 | 4.80 | 3.99 | 113.57 | 94.47 | 120.21 | ||||
青海 | 0.10 | 0.14 | 9.36 | 13.47 | 9.79 | 14.09 | 11.29 | 16.24 | 38.95 | 56.06 | 69.48 | ||||
四川 | 0.01 | 0.04 | 0.05 | 0.19 | 1.43 | 5.61 | 2.73 | 10.70 | 21.25 | 83.45 | 25.47 | ||||
甘肃 | 0.00 | 0.04 | 0.36 | 3.81 | 2.71 | 28.99 | 1.68 | 17.95 | 4.60 | 49.20 | 9.35 | ||||
云南 | 0.01 | 0.17 | 0.03 | 0.75 | 0.19 | 5.75 | 0.30 | 8.85 | 2.86 | 84.48 | 3.39 | ||||
新疆 | 0.01 | 0.02 | 0.20 | 0.66 | 2.73 | 9.02 | 3.34 | 11.00 | 24.05 | 79.31 | 30.33 | ||||
青藏高原 | 0.33 | 0.13 | 10.42 | 4.04 | 18.06 | 7.00 | 24.12 | 9.34 | 205.29 | 79.50 | 258.23 |
表3
1990—2020年青藏高原不同适宜性等级中的实际建设用地面积
年份 | 适宜等级 | 较适宜等级 | 一般适宜等级 | 欠适宜等级 | 不适宜等级 | 建设用地 总面积(km²) | 总体适应性(%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
面积 (km²) | 比例 (%) | 面积 (km²) | 比例 (%) | 面积 (km²) | 比例 (%) | 面积 (km²) | 比例 (%) | 面积 (km²) | 比例 (%) | |||||||
1990 | 148.48 | 12.08 | 434.33 | 35.34 | 463.63 | 37.73 | 97.23 | 7.91 | 85.16 | 6.93 | 1228.84 | 85.16 | ||||
2000 | 159.10 | 11.87 | 490.22 | 36.57 | 502.38 | 37.48 | 100.08 | 7.47 | 88.54 | 6.61 | 1340.32 | 85.93 | ||||
2010 | 200.10 | 9.48 | 949.38 | 44.97 | 648.73 | 30.73 | 170.52 | 8.08 | 142.21 | 6.74 | 2110.94 | 85.18 | ||||
2020 | 240.30 | 9.12 | 826.47 | 31.38 | 987.72 | 37.51 | 324.09 | 12.31 | 254.90 | 9.68 | 2633.48 | 78.01 |
表4
1990—2020年青藏高原处于欠适宜和不适宜等级中的实际建设用地面积
年份 | 欠适宜等级 | 不适宜等级 | 建设用地 面积(km²) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
城镇建设用地 | 农村居民点用地 | 其他建设用地 | 城镇建设用地 | 农村居民点用地 | 其他建设用地 | |||||||||
面积 (km²) | 比例 (%) | 面积 (km²) | 比例 (%) | 面积 (km²) | 比例 (%) | 面积 (km²) | 比例 (%) | 面积 (km²) | 比例 (%) | 面积 (km²) | 比例 (%) | |||
1990 | 8.16 | 4.48 | 76.58 | 41.99 | 12.48 | 6.84 | 6.99 | 3.83 | 66.64 | 36.54 | 11.54 | 6.32 | 182.39 | |
2000 | 9.59 | 5.08 | 78.01 | 41.36 | 12.49 | 6.62 | 7.96 | 4.22 | 68.52 | 36.32 | 12.06 | 6.39 | 188.62 | |
2010 | 42.51 | 13.59 | 97.05 | 31.03 | 30.96 | 9.90 | 23.00 | 7.35 | 96.06 | 30.72 | 23.15 | 7.40 | 312.74 | |
2020 | 75.10 | 12.97 | 123.25 | 21.29 | 125.75 | 21.72 | 37.26 | 6.44 | 116.83 | 20.18 | 100.81 | 17.41 | 578.99 |
表5
2020年青藏高原后备适宜建设用地等级面积与人均面积
区域 | 适宜等级 | 较适宜等级 | 一般适宜等级 | 后备适宜建设 用地面积(km²) | 人均后备适宜建设 用地面积(m²/人) | |||||
---|---|---|---|---|---|---|---|---|---|---|
面积(km²) | 比例(%) | 面积(km²) | 比例(%) | 面积(km²) | 比例(%) | |||||
西藏 | 21.92 | 4.72 | 10.07 | 2.17 | 432.52 | 93.11 | 464.50 | 130 | ||
青海 | 1.60 | 0.00 | 57430.37 | 59.86 | 38515.03 | 40.14 | 95947.00 | 17143 | ||
四川 | 0.17 | 0.01 | 1.77 | 0.09 | 1863.58 | 99.90 | 1865.52 | 925 | ||
甘肃 | 2.25 | 0.02 | 2290.03 | 19.57 | 9412.40 | 80.42 | 11704.69 | 18593 | ||
云南 | 0.15 | 0.79 | 0.61 | 3.25 | 17.94 | 95.96 | 18.69 | 39 | ||
新疆 | 12.68 | 0.09 | 643.72 | 4.55 | 13487.06 | 95.36 | 14143.46 | 69146 | ||
青藏高原 | 38.77 | 0.03 | 60376.56 | 48.63 | 63728.53 | 51.33 | 124143.86 | 9928 |
[1] |
Chen F H, Dong G H, Zhang D J, et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science, 2015, 347(6219): 248-250.
doi: 10.1126/science.1259172 pmid: 25593179 |
[2] |
Yang C, Liu H Z, Li Q Q, et al. Human expansion into Asian highlands in the 21st century and its effects. Nature Communications, 2022, 13(1): 4955. DOI: 10.1038/s41467-022-32648-8.
pmid: 36002452 |
[3] |
Li S C, Zhang Y L, Wang Z F, et al. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions. Ecosystem Services, 2018, 30: 276-286.
doi: 10.1016/j.ecoser.2017.10.003 |
[4] | Villafuerte F C, Corante N. Chronic mountain sickness: Clinical aspects, etiology, management, and treatment. High Altitude Medicine & Biology, 2016, 17(2): 61-69. |
[5] |
Bhatnagar A. Environmental determinants of Cardiovascular disease. Circulation Research, 2017, 121(2): 162-180.
doi: 10.1161/CIRCRESAHA.117.306458 pmid: 28684622 |
[6] |
Mallet R T, Burtscher J, Richalet J P, et al. Impact of high altitude on Cardiovascular health: Current perspectives. Vascular Health and Risk Management, 2021, 17: 317-335.
doi: 10.2147/VHRM.S294121 pmid: 34135590 |
[7] |
Zhou M G, Wang H D, Zeng X Y, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 2019, 394(10204): 1145-1158.
doi: 10.1016/S0140-6736(19)30427-1 |
[8] | Zhou Kan, Wang Chuansheng. Spatial-temporal pattern of poverty-stricken areas and its differential policies for poverty alleviation in China. Bulletin of Chinese Academy of Sciences, 2016, 31(1): 101-111. |
[周侃, 王传胜. 中国贫困地区时空格局与差别化脱贫政策研究. 中国科学院院刊, 2016, 31(1): 101-111.] | |
[9] |
Fang Chuanglin. Special thinking and green development path of urbanization in Qinghai-Tibet Plateau. Acta Geographica Sinica, 2022, 77(8): 1907-1919.
doi: 10.11821/dlxb202208005 |
[方创琳. 青藏高原城镇化发展的特殊思路与绿色发展路径. 地理学报, 2022, 77(8): 1907-1919.]
doi: 10.11821/dlxb202208005 |
|
[10] | Food and Agriculture Organization of the United Nations. A Framework for Land Evaluation. Rome: FAO Soils bulletin 32, 1976. |
[11] |
Collins M G, Steiner F R, Rushman M J. Land-use suitability analysis in the United States: Historical development and promising technological achievements. Environmental Management, 2001, 28(5): 611-621.
pmid: 11568842 |
[12] |
Malczewski J. GIS-based land-use suitability analysis: A critical overview. Progress in Planning, 2004, 62(1): 3-65.
doi: 10.1016/j.progress.2003.09.002 |
[13] |
Akpoti K, Kabo-Bah A T, Zwart S J. Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis. Agricultural Systems, 2019, 173: 172-208.
doi: 10.1016/j.agsy.2019.02.013 |
[14] |
Liu R Z, Zhang K, Zhang Z J, et al. Land-use suitability analysis for urban development in Beijing. Journal of Environmental Management, 2014, 145: 170-179.
doi: 10.1016/j.jenvman.2014.06.020 pmid: 25036557 |
[15] |
Zhang X R, Fang C L, Wang Z B, et al. Urban construction land suitability evaluation based on improved multi-criteria evaluation based on GIS (MCE-GIS): Case of New Hefei City, China. Chinese Geographical Science, 2013, 23(6): 740-753.
doi: 10.1007/s11769-013-0609-6 |
[16] |
Romano G, Dal Sasso P, Trisorio Liuzzi G, et al. Multi-criteria decision analysis for land suitability mapping in a rural area of southern Italy. Land Use Policy, 2015, 48: 131-143.
doi: 10.1016/j.landusepol.2015.05.013 |
[17] |
Zhang Haipeng, He Renwei, Liu Yunwei, et al. Land suitability evaluation and reconstruction of settlements in the pastoral area of Tibetan Plateau: A case study of Nagqu county in northern Tibet. Journal of Natural Resources, 2020, 35(3): 698-712.
doi: 10.31497/zrzyxb.20200315 |
[张海朋, 何仁伟, 刘运伟, 等. 青藏高原高寒牧区聚落用地适宜性评价及其重构: 以藏北那曲县为例. 自然资源学报, 2020, 35(3): 698-712.]
doi: 10.31497/zrzyxb.20200315 |
|
[18] |
Amirshenava S, Osanloo M. Mined land suitability assessment: A semi-quantitative approach based on a new classification of post-mining land uses. International Journal of Mining, Reclamation and Environment, 2021, 35(10): 743-763.
doi: 10.1080/17480930.2021.1949864 |
[19] | Gouareh A, Settou B, Settou N. A new geographical information system approach based on best worst method and analytic hierarchy process for site suitability and technical potential evaluation for large-scale CSP on-grid plant: An application for Algeria territory. Energy Conversion and Management, 2021, 235: 113963. DOI: 10.1016/j.enconman.2021.113963. |
[20] |
Ayodele T R, Ogunjuyigbe A S O, Odigie O, et al. A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria. Applied Energy, 2018, 228: 1853-1869.
doi: 10.1016/j.apenergy.2018.07.051 |
[21] |
Malczewski J. GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 2006, 20(7): 703-726.
doi: 10.1080/13658810600661508 |
[22] |
Greene R, Devillers R, Luther J E, et al. GIS-based multiple-criteria decision analysis. Geography Compass, 2011, 5(6): 412-432.
doi: 10.1111/j.1749-8198.2011.00431.x |
[23] | Ustaoglu E, Aydınoglu A C. Suitability evaluation of urban construction land in Pendik district of Istanbul, Turkey. Land Use Policy, 2020, 99: 104783. DOI: 10.1016/j.landusepol.2020.104783. |
[24] |
Malczewski J. Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. International Journal of Applied Earth Observation and Geoinformation, 2006, 8(4): 270-277.
doi: 10.1016/j.jag.2006.01.003 |
[25] |
Steiner F, McSherry L, Cohen J. Land suitability analysis for the upper Gila River watershed. Landscape and Urban Planning, 2000, 50(4): 199-214.
doi: 10.1016/S0169-2046(00)00093-1 |
[26] | Luan C X, Liu R Z, Peng S C. Land-use suitability assessment for urban development using a GIS-based soft computing approach: A case study of Ili Valley, China. Ecological Indicators, 2021, 123: 107333. DOI: 10.1016/j.ecolind.2020.107333. |
[27] | Bamrungkhul S, Tanaka T. The assessment of land suitability for urban development in the anticipated rapid urbanization area from the Belt and Road Initiative: A case study of Nong Khai City, Thailand. Sustainable Cities and Society, 2022, 83: 103988. DOI: 10.1016/j.scs.2022.103988. |
[28] | Saxena A, Jat M K. Land suitability and urban growth modeling: Development of SLEUTH-suitability. Computers, Environment and Urban Systems, 2020, 81: 101475. DOI: 10.1016/j.compenvurbsys.2020.101475. |
[29] |
Kang Z Q, Wang S, Xu L, et al. Suitability assessment of urban land use in Dalian, China using PNN and GIS. Natural Hazards, 2021, 106: 913-936.
doi: 10.1007/s11069-020-04500-z |
[30] |
Nguyen T T, Verdoodt A, Van Y T, et al. Design of a GIS and multi-criteria based land evaluation procedure for sustainable land-use planning at the regional level. Agriculture, Ecosystems & Environment, 2015, 200: 1-11.
doi: 10.1016/j.agee.2014.10.015 |
[31] |
Fu Bojie. The integrated studies of geography: Coupling of patterns and processes. Acta Geographica Sinica, 2014, 69(8): 1052-1059.
doi: 10.11821/dlxb201408002 |
[傅伯杰. 地理学综合研究的途径与方法: 格局与过程耦合. 地理学报, 2014, 69(8): 1052-1059.]
doi: 10.11821/dlxb201408002 |
|
[32] | Fan Jie. Post-Lushan Earthquake Restoration and Reconstruction:Resource Environment Carrying Capacity Evaluation. Beijing: Science Press, 2014. |
[樊杰. 芦山地震灾后恢复重建资源环境承载能力评价. 北京: 科学出版社, 2014.] | |
[33] | Fan Jie. Post-Yushu Earthquake Restoration and Reconstruction:Resource Environment Carrying Capacity Evaluation. Beijing: Science Press, 2010. |
[樊杰. 玉树地震灾后恢复重建资源环境承载能力评价. 北京: 科学出版社, 2010.] | |
[34] | Fan Jie. State Planning for Post-Wenchuan Earthquake Restoration and Reconstruction:Resource Environment Carrying Capacity Evaluation. Beijing: Science Press, 2009. |
[樊杰. 国家汶川地震灾后重建规划资源环境承载能力评价. 北京: 科学出版社, 2009.] | |
[35] | Fan Jie. Assessment Guidelines for Resource and Environmental Carrying Capacity and Territorial Development Suitability. Beijing: Science Press, 2019. |
[樊杰. 资源环境承载能力和国土空间开发适宜性评价方法指南. 北京: 科学出版社, 2019.] | |
[36] | Fan Jie. Technical Regulation for Major Function Zoning. Beijing: Science Press, 2019. |
[樊杰. 主体功能区划技术规程. 北京: 科学出版社, 2019.] | |
[37] |
Xu Yong, Wang Lijia, Yang Hua. Evaluation method and empirical application of human activity suitability of land resources in Qinghai-Tibet Plateau. Acta Geographica Sinica, 2022, 77(7): 1615-1633.
doi: 10.11821/dlxb202207004 |
[徐勇, 王丽佳, 杨华. 青藏高原土地资源人类活动适宜性评价方法及实证应用. 地理学报, 2022, 77(7): 1615-1633.]
doi: 10.11821/dlxb202207004 |
|
[38] |
Jin Gui, Wang Zhanqi, Li Weisong, et al. Suitable evaluation on cultivated land based on Fuzzy weights of evidence method in the Yarlung Zangbo River, Nyangqu River and Lhasa River region, Tibet. Journal of Natural Resources, 2014, 29(7): 1246-1256.
doi: 10.11849/zrzyxb.2014.07.015 |
[金贵, 王占岐, 李伟松, 等. 模糊证据权法在西藏一江两河流域耕地适宜性评价中的应用. 自然资源学报, 2014, 29(7): 1246-1256.]
doi: 10.11849/zrzyxb.2014.07.015 |
|
[39] | Yao M L, Shao D G, Lv C H, et al. Evaluation of arable land suitability based on the suitability function: A case study of the Qinghai-Tibet Plateau. Science of the Total Environment, 2021, 787: 147414. DOI: 10.1016/j.scitotenv.2021.147414. |
[40] | Liu J H, Xin Z B, Huang Y Z, et al. Climate suitability assessment on the Qinghai-Tibet Plateau. Science of the Total Environment, 2022, 816: 151653. DOI: 10.1016/j.scitotenv.2021.151653. |
[41] | Wu Zhiqiang, Li Dehua. Principles of Urban Planning. 4th ed. Beijing: China Architecture & Building Press, 2010. |
[吴志强, 李德华. 城市规划原理. 4版. 北京: 中国建筑工业出版社, 2010.] | |
[42] |
Xu Yong, Zhao Shen, Fan Jie. Urban planning construction land standard and its revision of climate and topography in China. Acta Geographica Sinica, 2020, 75(1): 194-208.
doi: 10.11821/dlxb202001014 |
[徐勇, 赵燊, 樊杰. 中国城市规划建设用地标准及气候和地形地貌修订. 地理学报, 2020, 75(1): 194-208.]
doi: 10.11821/dlxb202001014 |
|
[43] |
Barry P W, Pollard A J. Altitude illness. BMJ-British Medical Journal, 2003, 326(7395): 915-919.
pmid: 12714473 |
[44] | Leon-Velarde F, Maggiorini M, Reeves J T, et al. Consensus statement on chronic and subacute high altitude diseases. High Altitude Medicine & Biology, 2005, 6(2): 147-157. |
[45] | Bärtsch P, Saltin B. General introduction to altitude adaptation and mountain sickness. Scandinavian Journal of Medicine & Science in Sports, 2008, 18 (Suppl.1): 1-10. |
[46] | West J B. Highest permanent human habitation. High Altitude Medicine & Biology, 2002, 3(4): 401-407. |
[47] |
Xu Y, Tang Q, Fan J, et al. Assessing construction land potential and its spatial pattern in China. Landscape and Urban Planning, 2011, 103(2): 207-216.
doi: 10.1016/j.landurbplan.2011.07.013 |
[48] |
Yang Hua, Xu Yong, Wang Lijia. Evaluation method and empirical application of construction land suitability and arable land suitability in alpine-gorge region of Qinghai-Tibet Plateau: A case study of Nyingchi city. Journal of Natural Resources, 2023, 38(5): 1283-1299.
doi: 10.31497/zrzyxb.20230511 |
[杨华, 徐勇, 王丽佳. 青藏高原高山峡谷区建设用地和耕地适宜性评价方法及应用: 以林芝市为例. 自然资源学报, 2023, 38(5): 1283-1299.]
doi: 10.31497/zrzyxb.20230511 |
|
[49] |
Zhou Liang, Dang Xuewei, Zhou Chenghu, et al. Evolution characteristics of slope spectrum and slope-climbing effects of built-up land in China. Acta Geographica Sinica, 2021, 76(7): 1747-1762.
doi: 10.11821/dlxb202107013 |
[周亮, 党雪薇, 周成虎, 等. 中国建设用地的坡谱演化规律与爬坡影响. 地理学报, 2021, 76(7): 1747-1762.]
doi: 10.11821/dlxb202107013 |
|
[50] |
Peng Qiuzhi, Ma Shaohua, Deng Qihui, et al. Relationship between construction land and slope in rapidly expanding mountain cities: A case study in Guiyang, China. Journal of Natural Resources, 2022, 37(7): 1865-1875.
doi: 10.31497/zrzyxb.20220714 |
[彭秋志, 马少华, 邓启辉, 等. 山地城市建设用地增长的坡度梯度效应: 以贵阳市为例. 自然资源学报, 2022, 37(7): 1865-1875.]
doi: 10.31497/zrzyxb.20220714 |
|
[51] |
Dang L J, Xu Y, Tang Q. The pattern of available construction land along the Xijiang River in Guangxi, China. Land Use Policy, 2015, 42: 102-112.
doi: 10.1016/j.landusepol.2014.07.010 |
[52] | Xu Xiaoren, Xu Yong. Potential of available construction land in the Yangtze River Economic Belt. Resources and Environment in the Yangtze Basin, 2016, 25(12): 1789-1796. |
[徐小任, 徐勇. 长江经济带后备适宜建设用地潜力. 长江流域资源与环境, 2016, 25(12): 1789-1796.] | |
[53] |
Xu Xiaoren, Wang Liang, Xu Yong, et al. Evaluation of reserve available land resources based on three types of territorial space: A case study of Jiexiu city in Shanxi province. Progress in Geography, 2021, 40(2): 272-282.
doi: 10.18306/dlkxjz.2021.02.008 |
[徐小任, 王梁, 徐勇, 等. 基于“三类”空间的后备可利用土地资源评价研究: 以山西省介休市为例. 地理科学进展, 2021, 40(2): 272-282.]
doi: 10.18306/dlkxjz.2021.02.008 |
|
[54] | Technical Committee ISO/TC 20. Standard Atmosphere: ISO 2533: 1975. Geneva: International Organization for Standardization, 1975. |
[55] |
Liu Jiyuan, Kuang Wenhui, Zhang Zengxiang, et al. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geographica Sinica, 2014, 69(1): 3-14.
doi: 10.11821/dlxb201401001 |
[刘纪远, 匡文慧, 张增祥, 等. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局. 地理学报, 2014, 69(1): 3-14.] | |
[56] | Xu Xinliang, Liu Jiyuan, Zhang Shuwen, et al. Remote sensing monitoring data of land use in China. Data Registration and Publishing System of the Resource and Environmental Science Data Center of the Chinese Academy of Sciences (http://www.resdc.cn/DOI). DOI: 10.12078/2018070201. |
[徐新良, 刘纪远, 张树文, 等. 中国多时期土地利用遥感监测数据集(CNLUCC). 中国科学院资源环境科学数据注册与出版系统(http://www.resdc.cn/DOI). DOI: 10.12078/2018070201.] | |
[57] | Office of the Leading Group of the State Council for the Seventh National Population Census. Tabulation on 2020 China Population Census by County. Beijing: China Statistics Press, 2022. |
[国务院第七次全国人口普查领导小组办公室. 中国人口普查分县资料2020. 北京: 中国统计出版社, 2022.] | |
[58] | Zhang Yili, Li Bingyuan, Zheng Du. Datasets of the boundary and area of the Tibetan Plateau. Acta Geographica Sinica, 2014, 69(Suppl.1): 65-68. |
[张镱锂, 李炳元, 郑度. 《论青藏高原范围与面积》一文数据的发表: 青藏高原范围界线与面积地理信息系统数据. 地理学报, 2014, 69(增刊1): 65-68.] | |
[59] | General Office of the State Council of the People's Republic of China. Major Function Oriented Zoning of China. http://www.gov.cn/zwgk/2011-06/08/content_1879180.htm, 2022-06-08/2023-03-23. |
[国务院. 全国主体功能区规划. http://www.gov.cn/zwgk/2011-06/08/content_1879180.htm, 2022-06-08/2023-03-23.] | |
[60] | Xinhua News Agency. Several Opinions on Establishing a National Territorial Spatial Planning System and Supervising Its Implementation of the General Office of the Communist Party of China Central Committee and General Office of the State Council of the People's Republic of China. http://www.gov.cn/zhengce/2019-05/23/content_5394187.htm, 2019-05-23/2023-03-23. |
[新华社. 中共中央国务院关于建立国土空间规划体系并监督实施的若干意见. http://www.gov.cn/zhengce/2019-05/23/content_5394187.htm, 2019-05-23/2023-03-23.] | |
[61] | Xinhua News Agency. The migration of life across half a century: Tibet's ecological migration in extremely high-altitude to solve the problem of coexistence between human and nature. http://www.xinhuanet.com/politics/2020-03/17/c_1125726595.htm, 2020-03-17/2023-03-23. |
[新华社. 跨越半个世纪的生命迁徙: 西藏极高海拔生态搬迁破解人与自然共生难题. http://www.xinhuanet.com/politics/2020-03/17/c_1125726595.htm, 2020-03-17/2023-03-23.] |
[1] | 唐道斌, 杨坤美, 曾兰华, 刘向军, 辛存林, 徐砚田. 1.5 ka以来青藏高原东北部风沙活动增强的时空差异[J]. 地理学报, 2023, 78(9): 2284-2298. |
[2] | 汤秋鸿, 徐锡蒙, 贺莉, 彭守璋, 胡亚伟, 靳晓辉, 樊玉苗, 祝欣荣, 邓浩鑫, 杨淋, 王志慧. 黄河中游生态水文模型及洪旱灾害风险评估[J]. 地理学报, 2023, 78(7): 1666-1676. |
[3] | 罗贤, 李运刚, 季漩, 何大明. 中国国际河流水文地理研究进展[J]. 地理学报, 2023, 78(7): 1703-1717. |
[4] | 刘庆芳, 杨定, 杨振山, 宋金平, 陈东军. 青藏高原国家公园群人文生态系统耦合协调评价及障碍因子识别[J]. 地理学报, 2023, 78(5): 1119-1135. |
[5] | 刘若杨, 史培军, 唐海萍, 王静爱, 赵涔良, 朱文泉. 青藏高原植被产氧量及其对近地表大气氧含量的贡献率[J]. 地理学报, 2023, 78(5): 1136-1152. |
[6] | 王皓言, 杨晹, 周伯睿, 李凯, 廖梦娜, 倪健. 长期人类活动对浙江全新世植被的影响[J]. 地理学报, 2023, 78(5): 1153-1175. |
[7] | 高铭君, 李育, 张占森, 周雪如, 李海烨, 段俊杰, 薛雅欣. 祁连山周边内流区湖泊沉积物与人类活动研究[J]. 地理学报, 2023, 78(5): 1192-1212. |
[8] | 张丹枫, 王先彦, 张瀚之, 刘全玉, 王社江, 鹿化煜. 汉江上游早—中更新世河流地貌演化促进南秦岭山间盆地古人类扩散[J]. 地理学报, 2023, 78(5): 1213-1232. |
[9] | 王欠鑫, 曹巍, 黄麟. 青藏高原生态系统功能稳定性演化特征及分区[J]. 地理学报, 2023, 78(5): 1104-1118. |
[10] | 沈麒凯, 刘修国, 周欣, 张正加, 陈启浩. 2002—2020年青藏高原近地表土壤日冻融循环时空变化模式[J]. 地理学报, 2023, 78(3): 587-603. |
[11] | 史培军, 胡小康, 陈彦强, 张慧, 杨合仪, 胡金鹏, 杨雯倩, 贾伟, 马伟东, 姜璐, 张钢锋, 蒲小燕, 郝力壮, 王静爱, 朱文泉, 马永贵, 唐海萍, 陈志. 青藏高原地表大气氧含量空间格局及自然地带“三维分异”的新认识[J]. 地理学报, 2023, 78(3): 532-547. |
[12] | 马炳鑫, 和彩霞, 靖娟利, 王永锋, 刘兵, 何宏昌. 1982—2019年中国西南地区植被变化归因研究[J]. 地理学报, 2023, 78(3): 714-728. |
[13] | 刘悦, 刘欢欢, 陈印, 刚成诚. 2000—2018年中国植被光学厚度时空动态特征及驱动因素[J]. 地理学报, 2023, 78(3): 729-745. |
[14] | 叶随, 席建超. 青藏高原区旅游廊道识别与评价[J]. 地理学报, 2023, 78(10): 2630-2644. |
[15] | 潘锋, 何大明, 曹杰, 陆颖. 夏季怒江流域水汽输送多支特征及对降水影响[J]. 地理学报, 2023, 78(1): 87-100. |