地理学报 ›› 2021, Vol. 76 ›› Issue (10): 2585-2604.doi: 10.11821/dlxb202110017
收稿日期:
2020-08-18
修回日期:
2021-07-27
出版日期:
2021-10-25
发布日期:
2021-12-25
作者简介:
丁存振(1988-), 男, 博士, 副教授, 研究方向为农产品市场与政策。E-mail: dingcunzhen2010@163.com
基金资助:
Received:
2020-08-18
Revised:
2021-07-27
Published:
2021-10-25
Online:
2021-12-25
Supported by:
摘要:
玉米市场空间关联是反映玉米市场运行效率的关键指标,价格支持政策的实施及改革对玉米市场空间关联产生重要影响。本文基于中国省际玉米市场价格数据,分析了价格支持政策改革背景下玉米市场空间关联及其时变情况,并运用社会网络分析法刻画了玉米市场空间关联网络特征,最后,通过QAP分析考察了影响玉米市场空间关联的主要因素。研究发现:① 中国玉米市场总体空间关联程度较高,且近年来整体呈上升趋势,玉米临时收储政策的实施并未改变其上升趋势,但导致政策实施省份玉米市场与其他地区玉米市场间关联程度下降。② 玉米市场空间关联呈现多线程、复杂的网络结构形态,网络结构较为紧密、整体关联性强且较为稳定;中东部地区玉米消费量较大的省份在玉米市场空间关联网络中处于中心位置,在网络中扮演着中心行动者角色,而实施玉米支持政策的区域以及西部地区在玉米市场空间关联网络中影响力较小,处于边缘和弱势地位,扮演着边缘行动者角色。③ 地理位置邻接、市场距离、销区市场势力、信息传递效应以及实施临时收储政策是决定和影响玉米市场空间关联的主要因素,其中,销区市场势力及信息传递效应对玉米市场空间关联的影响不断上升。
丁存振. 价格支持政策改革背景下中国玉米市场空间关联[J]. 地理学报, 2021, 76(10): 2585-2604.
DING Cunzhen. Spatial correlation of corn markets under the background of price support policy reform in China[J]. Acta Geographica Sinica, 2021, 76(10): 2585-2604.
表1
玉米市场空间关联网络特征指标
指标 | 公式 | 含义 | |
---|---|---|---|
整体网络 | 网络密度 | | 反映玉米市场空间关联网络的紧密程度,网络密度越大,省际玉米市场之间的联系就越紧密。 |
网络关联度 | | 反映玉米市场空间关联网络的稳健性和脆弱性,关联度越高,网络越稳定。 | |
网络等级度 | | 反映玉米市场空间关联网络的等级结构,等级越高,越多省份在玉米市场关联网络中处于从属和边缘地位。 | |
网络效率 | | 反映玉米市场空间关联网络的效率,效率越低,玉米市场空间关联网络越稳定。 | |
个体网络 | 度数中心度 | | 反映一个地区在玉米市场空间关联网络中的影响力,中心度越大,市场影响力越大。 |
中间中心度 | | 反映一个地区在玉米空间关联网络中的“中介”或“桥梁”作用。 | |
接近中心度 | |
表2
2001—2018年中国玉米市场关联矩阵表
北京 | 天津 | 河北 | 山西 | 内蒙古 | 辽宁 | 吉林 | 黑龙江 | 上海 | 江苏 | 浙江 | 安徽 | 福建 | 江西 | 山东 | 河南 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
北京 | 9.537 | 3.744 | 4.331 | 3.260 | 1.564 | 1.960 | 2.086 | 1.782 | 4.316 | 4.273 | 3.945 | 3.672 | 3.616 | 3.229 | 5.314 | 4.209 | ||||||||||||||
天津 | 3.041 | 9.254 | 4.986 | 3.510 | 2.045 | 2.329 | 1.755 | 2.031 | 4.735 | 4.126 | 4.418 | 3.392 | 4.032 | 3.357 | 5.294 | 4.545 | ||||||||||||||
河北 | 2.934 | 3.996 | 6.969 | 3.704 | 1.887 | 2.452 | 1.776 | 2.061 | 4.810 | 4.307 | 4.974 | 3.855 | 4.840 | 4.121 | 6.339 | 4.878 | ||||||||||||||
山西 | 2.431 | 3.777 | 4.245 | 7.780 | 1.810 | 1.688 | 1.257 | 1.488 | 4.892 | 4.455 | 4.488 | 4.324 | 4.190 | 3.862 | 5.650 | 5.370 | ||||||||||||||
内蒙古 | 2.324 | 3.356 | 3.837 | 4.061 | 9.209 | 3.659 | 2.731 | 3.473 | 3.866 | 3.223 | 3.436 | 3.043 | 3.741 | 3.065 | 3.348 | 3.230 | ||||||||||||||
辽宁 | 2.045 | 3.508 | 4.302 | 2.863 | 3.518 | 10.292 | 4.605 | 4.799 | 3.528 | 2.717 | 4.113 | 2.901 | 4.794 | 2.937 | 3.299 | 3.296 | ||||||||||||||
吉林 | 2.289 | 3.117 | 3.374 | 2.695 | 3.612 | 6.499 | 12.527 | 7.450 | 3.307 | 2.996 | 3.516 | 3.096 | 3.076 | 2.508 | 2.888 | 2.656 | ||||||||||||||
黑龙江 | 2.637 | 3.406 | 4.125 | 2.344 | 3.179 | 6.042 | 5.416 | 11.551 | 3.604 | 3.264 | 4.402 | 3.080 | 4.471 | 2.706 | 3.118 | 2.504 | ||||||||||||||
上海 | 2.508 | 3.140 | 4.514 | 3.814 | 2.063 | 1.683 | 1.287 | 1.947 | 7.719 | 5.453 | 4.861 | 3.527 | 5.838 | 4.367 | 5.936 | 4.422 | ||||||||||||||
江苏 | 3.229 | 3.043 | 3.865 | 3.958 | 1.630 | 1.440 | 1.187 | 1.503 | 5.746 | 8.638 | 5.751 | 4.721 | 4.493 | 3.942 | 7.253 | 5.549 | ||||||||||||||
浙江 | 2.626 | 2.971 | 4.144 | 3.096 | 2.121 | 2.360 | 1.255 | 2.123 | 5.393 | 5.111 | 7.884 | 4.097 | 5.749 | 4.650 | 6.279 | 4.114 | ||||||||||||||
安徽 | 2.990 | 3.817 | 4.127 | 4.503 | 1.842 | 2.076 | 1.873 | 1.823 | 3.931 | 4.988 | 4.533 | 8.433 | 3.863 | 3.702 | 5.278 | 5.385 | ||||||||||||||
福建 | 2.814 | 2.997 | 4.628 | 2.981 | 2.036 | 2.481 | 1.326 | 2.341 | 5.944 | 5.118 | 5.500 | 3.456 | 8.259 | 4.286 | 5.886 | 4.149 | ||||||||||||||
江西 | 2.557 | 2.729 | 3.806 | 3.777 | 1.525 | 1.643 | 1.214 | 1.798 | 4.438 | 4.572 | 5.777 | 4.188 | 5.109 | 8.227 | 5.210 | 4.113 | ||||||||||||||
山东 | 3.232 | 3.626 | 5.190 | 3.723 | 1.629 | 1.528 | 1.095 | 1.457 | 5.333 | 6.090 | 5.734 | 4.139 | 4.565 | 4.104 | 9.063 | 5.672 | ||||||||||||||
河南 | 3.021 | 3.399 | 4.821 | 4.465 | 1.555 | 1.516 | 1.524 | 1.379 | 5.072 | 5.430 | 5.179 | 4.847 | 4.083 | 3.743 | 7.190 | 7.909 | ||||||||||||||
湖北 | 2.545 | 2.660 | 3.924 | 4.067 | 1.626 | 1.688 | 1.254 | 1.636 | 4.780 | 4.564 | 5.283 | 4.450 | 4.339 | 4.348 | 6.075 | 4.849 | ||||||||||||||
湖南 | 2.580 | 2.373 | 4.047 | 3.701 | 1.950 | 1.581 | 1.194 | 1.886 | 4.884 | 4.847 | 5.371 | 4.407 | 5.446 | 5.226 | 5.408 | 3.969 | ||||||||||||||
广东 | 2.732 | 2.482 | 4.118 | 3.453 | 1.637 | 2.216 | 1.135 | 1.585 | 4.954 | 4.076 | 5.761 | 3.872 | 6.269 | 5.430 | 4.943 | 3.578 | ||||||||||||||
广西 | 2.590 | 2.222 | 3.894 | 3.141 | 1.762 | 1.980 | 1.251 | 1.368 | 4.421 | 3.748 | 4.612 | 3.567 | 5.027 | 4.642 | 4.888 | 3.759 | ||||||||||||||
海南 | 2.645 | 2.613 | 3.570 | 3.093 | 2.427 | 2.737 | 2.043 | 2.177 | 4.022 | 3.953 | 4.762 | 3.773 | 5.397 | 4.804 | 4.117 | 3.473 | ||||||||||||||
重庆 | 2.855 | 2.785 | 3.378 | 3.711 | 1.859 | 2.127 | 1.428 | 1.515 | 3.513 | 3.298 | 3.468 | 3.876 | 3.497 | 3.668 | 4.079 | 3.322 | ||||||||||||||
四川 | 3.073 | 2.997 | 4.041 | 3.077 | 2.405 | 2.423 | 1.778 | 1.821 | 3.388 | 2.987 | 3.154 | 2.975 | 3.879 | 3.990 | 3.797 | 3.775 | ||||||||||||||
贵州 | 1.827 | 1.910 | 2.680 | 3.630 | 1.928 | 2.153 | 1.806 | 1.936 | 3.759 | 2.845 | 3.012 | 3.776 | 3.303 | 2.798 | 3.833 | 3.093 | ||||||||||||||
云南 | 2.277 | 2.304 | 2.420 | 2.446 | 1.903 | 2.339 | 2.205 | 2.243 | 2.892 | 2.640 | 2.737 | 3.213 | 3.326 | 3.425 | 2.527 | 2.777 | ||||||||||||||
陕西 | 2.416 | 3.139 | 3.960 | 4.197 | 1.687 | 1.666 | 1.378 | 1.485 | 4.016 | 4.069 | 4.168 | 3.077 | 3.548 | 4.027 | 5.363 | 4.890 | ||||||||||||||
甘肃 | 2.235 | 2.762 | 3.739 | 3.580 | 2.237 | 2.043 | 1.563 | 2.060 | 3.572 | 2.918 | 3.897 | 3.070 | 3.417 | 4.135 | 4.402 | 3.947 | ||||||||||||||
青海 | 2.961 | 3.119 | 3.244 | 3.240 | 2.570 | 2.559 | 2.375 | 2.270 | 3.444 | 3.470 | 4.011 | 2.962 | 3.546 | 3.509 | 3.615 | 3.007 | ||||||||||||||
宁夏 | 2.670 | 2.761 | 3.573 | 3.489 | 2.431 | 2.737 | 1.768 | 2.440 | 3.606 | 3.538 | 4.065 | 2.661 | 3.810 | 3.143 | 4.292 | 3.813 | ||||||||||||||
新疆 | 2.691 | 3.119 | 4.257 | 2.762 | 2.787 | 2.105 | 2.645 | 2.497 | 3.644 | 3.236 | 2.562 | 2.975 | 3.103 | 2.708 | 3.644 | 3.108 | ||||||||||||||
To | 76.777 | 87.874 | 115.138 | 100.346 | 61.229 | 69.710 | 54.208 | 64.373 | 123.807 | 116.312 | 127.490 | 104.992 | 124.368 | 110.432 | 139.264 | 115.451 | ||||||||||||||
Total | 86.313 | 97.128 | 122.108 | 108.126 | 70.439 | 80.003 | 66.736 | 75.924 | 131.526 | 124.950 | 135.374 | 113.425 | 132.627 | 118.659 | 148.327 | 123.360 | ||||||||||||||
Net | -13.687 | -2.872 | 22.108 | 8.126 | -29.561 | -19.997 | -33.264 | -24.076 | 31.526 | 24.950 | 35.374 | 13.425 | 32.627 | 18.659 | 48.327 | 23.360 | ||||||||||||||
湖北 | 湖南 | 广东 | 广西 | 海南 | 重庆 | 四川 | 贵州 | 云南 | 陕西 | 甘肃 | 青海 | 宁夏 | 新疆 | From | ||||||||||||||||
北京 | 3.770 | 3.322 | 3.937 | 3.100 | 2.543 | 2.791 | 3.073 | 1.667 | 2.347 | 3.247 | 1.974 | 1.830 | 3.129 | 2.431 | 90.463 | |||||||||||||||
天津 | 4.254 | 3.184 | 3.431 | 2.413 | 2.007 | 3.109 | 2.337 | 2.168 | 2.083 | 3.995 | 2.197 | 1.914 | 2.263 | 1.794 | 90.746 | |||||||||||||||
河北 | 4.107 | 3.829 | 4.039 | 2.784 | 2.655 | 2.265 | 2.212 | 1.728 | 1.619 | 3.283 | 1.915 | 1.413 | 2.052 | 2.194 | 93.031 | |||||||||||||||
山西 | 4.639 | 3.284 | 3.518 | 2.612 | 3.047 | 2.340 | 1.839 | 2.062 | 2.270 | 4.106 | 2.360 | 1.637 | 2.513 | 2.066 | 92.220 | |||||||||||||||
内蒙古 | 3.332 | 2.887 | 3.564 | 2.656 | 2.819 | 2.576 | 3.001 | 1.760 | 2.383 | 3.291 | 3.247 | 2.762 | 3.446 | 2.674 | 90.791 | |||||||||||||||
辽宁 | 3.048 | 2.271 | 3.623 | 3.198 | 3.183 | 2.111 | 2.518 | 1.764 | 2.714 | 2.431 | 2.049 | 2.512 | 2.993 | 2.069 | 89.708 | |||||||||||||||
吉林 | 2.216 | 2.338 | 2.414 | 2.310 | 2.322 | 1.828 | 2.319 | 3.347 | 2.972 | 1.859 | 2.208 | 3.188 | 2.441 | 2.630 | 87.473 | |||||||||||||||
黑龙江 | 2.690 | 2.727 | 3.635 | 2.335 | 2.810 | 1.500 | 2.509 | 3.044 | 2.030 | 1.980 | 2.048 | 2.179 | 2.948 | 1.718 | 88.449 | |||||||||||||||
上海 | 4.850 | 4.105 | 4.812 | 2.948 | 2.892 | 1.913 | 2.289 | 1.637 | 1.610 | 2.814 | 1.592 | 1.546 | 2.038 | 1.875 | 92.281 | |||||||||||||||
江苏 | 4.587 | 3.727 | 3.873 | 2.763 | 2.185 | 1.934 | 1.996 | 1.387 | 1.854 | 3.164 | 1.410 | 1.459 | 1.834 | 1.877 | 91.362 | |||||||||||||||
浙江 | 4.046 | 4.620 | 4.980 | 3.366 | 2.905 | 1.993 | 2.079 | 1.225 | 1.717 | 2.580 | 1.462 | 1.528 | 2.006 | 1.521 | 92.116 | |||||||||||||||
安徽 | 4.176 | 3.114 | 4.118 | 3.083 | 2.306 | 2.199 | 1.950 | 1.989 | 2.568 | 3.314 | 1.678 | 1.802 | 2.056 | 2.483 | 91.567 | |||||||||||||||
福建 | 3.800 | 4.330 | 5.487 | 3.398 | 3.294 | 1.550 | 2.058 | 1.205 | 1.563 | 2.562 | 1.411 | 1.408 | 2.375 | 1.356 | 91.741 | |||||||||||||||
江西 | 4.211 | 4.907 | 5.067 | 3.743 | 4.057 | 2.245 | 2.473 | 1.451 | 1.802 | 2.657 | 1.926 | 1.328 | 1.788 | 1.661 | 91.773 | |||||||||||||||
山东 | 4.722 | 3.964 | 3.704 | 2.919 | 2.189 | 2.108 | 1.931 | 1.398 | 1.589 | 2.983 | 1.474 | 1.245 | 1.914 | 1.679 | 90.937 | |||||||||||||||
河南 | 4.493 | 3.622 | 3.342 | 2.627 | 2.540 | 1.912 | 2.516 | 1.422 | 1.562 | 3.675 | 1.569 | 1.502 | 2.103 | 1.983 | 92.091 | |||||||||||||||
湖北 | 6.858 | 3.846 | 4.036 | 3.646 | 2.903 | 2.314 | 2.740 | 1.827 | 2.160 | 3.516 | 1.961 | 1.886 | 2.451 | 1.769 | 93.142 | |||||||||||||||
湖南 | 4.074 | 7.049 | 5.148 | 4.174 | 3.291 | 2.305 | 2.534 | 1.492 | 1.591 | 2.477 | 1.904 | 1.543 | 1.998 | 1.552 | 92.951 | |||||||||||||||
广东 | 4.122 | 4.598 | 8.398 | 3.531 | 3.674 | 2.103 | 2.521 | 1.359 | 1.777 | 3.198 | 1.673 | 1.291 | 2.081 | 1.435 | 91.602 | |||||||||||||||
广西 | 4.255 | 5.328 | 4.751 | 9.489 | 3.543 | 2.295 | 2.619 | 2.163 | 2.035 | 2.441 | 2.325 | 1.456 | 2.223 | 2.204 | 90.511 | |||||||||||||||
海南 | 3.474 | 3.857 | 5.159 | 3.712 | 8.815 | 1.919 | 2.426 | 1.777 | 2.735 | 2.933 | 1.661 | 1.859 | 2.126 | 1.942 | 91.185 | |||||||||||||||
重庆 | 4.179 | 3.676 | 4.175 | 4.458 | 2.741 | 8.849 | 3.874 | 3.067 | 3.982 | 3.576 | 2.416 | 2.121 | 2.509 | 1.995 | 91.151 | |||||||||||||||
四川 | 4.283 | 3.203 | 4.569 | 3.803 | 3.257 | 4.164 | 9.389 | 2.069 | 2.736 | 3.181 | 2.547 | 2.488 | 2.119 | 2.633 | 90.611 | |||||||||||||||
贵州 | 4.704 | 4.179 | 3.310 | 4.556 | 2.039 | 3.020 | 2.758 | 12.227 | 5.266 | 3.128 | 3.732 | 2.098 | 2.612 | 2.085 | 87.773 | |||||||||||||||
云南 | 3.137 | 2.862 | 4.109 | 4.197 | 2.947 | 3.374 | 2.741 | 5.623 | 15.304 | 3.063 | 3.494 | 1.984 | 3.103 | 2.387 | 84.696 | |||||||||||||||
陕西 | 4.877 | 2.881 | 3.930 | 2.464 | 3.159 | 2.782 | 2.295 | 2.270 | 3.091 | 10.189 | 2.492 | 1.509 | 2.852 | 2.123 | 89.811 | |||||||||||||||
甘肃 | 4.565 | 2.964 | 3.547 | 3.656 | 2.977 | 3.106 | 3.013 | 2.906 | 3.218 | 3.640 | 8.762 | 1.779 | 4.189 | 2.102 | 91.238 | |||||||||||||||
青海 | 3.322 | 3.247 | 3.377 | 2.867 | 2.723 | 2.723 | 3.407 | 2.730 | 2.299 | 2.390 | 3.301 | 13.111 | 2.506 | 2.092 | 86.889 | |||||||||||||||
宁夏 | 3.886 | 3.160 | 3.407 | 3.156 | 2.970 | 2.576 | 2.634 | 2.651 | 3.329 | 3.813 | 3.570 | 2.038 | 9.639 | 2.374 | 90.361 | |||||||||||||||
新疆 | 3.849 | 2.874 | 2.958 | 2.476 | 2.694 | 2.399 | 2.763 | 3.183 | 3.201 | 3.980 | 3.007 | 2.291 | 2.333 | 14.150 | 85.850 | |||||||||||||||
To | 115.666 | 102.903 | 116.020 | 92.948 | 82.672 | 69.452 | 73.424 | 62.374 | 70.104 | 89.277 | 64.601 | 53.596 | 71.004 | 58.705 | 2714.519 | |||||||||||||||
Total | 122.524 | 109.953 | 124.419 | 102.437 | 91.487 | 78.301 | 82.814 | 74.600 | 85.407 | 99.466 | 73.363 | 66.708 | 80.643 | 72.855 | TCI | |||||||||||||||
Net | 22.524 | 9.953 | 24.419 | 2.437 | -8.513 | -21.699 | --17.186 | -25.400 | -14.593 | -0.534 | -26.637 | -33.292 | -19.357 | -27.145 | 90.484% |
表3
不同时期实施玉米支持政策省份玉米市场关联系数
序列 | 临储前 | 临储期 | 补贴期 | |
---|---|---|---|---|
To | 内蒙古 | 3.6499 | 1.5745 | 1.2454 |
辽宁 | 2.9899 | 1.9732 | 2.4172 | |
吉林 | 2.0623 | 1.8667 | 1.2086 | |
黑龙江 | 2.4139 | 2.1409 | 1.7972 | |
From | 内蒙古 | 2.8356 | 3.0609 | 3.1822 |
辽宁 | 2.9434 | 2.9787 | 3.0879 | |
吉林 | 3.0207 | 2.8483 | 2.9736 | |
黑龙江 | 2.9293 | 2.9761 | 2.8914 | |
Net | 内蒙古 | 0.8143 | -1.4864 | -1.9368 |
辽宁 | 0.0465 | -1.0056 | -0.6707 | |
吉林 | -0.9584 | -0.9816 | -1.7650 | |
黑龙江 | -0.5154 | -0.8353 | -1.0943 |
表4
中国玉米市场空间关联的个体网络特征
地区 | 关联省份 | 点出度 | 点入度 | 度数中心度 | 接近中心度 | 中间中心度 |
---|---|---|---|---|---|---|
北京 | 16 | 2 | 16 | 55.172 | 69.048 | 0.045 |
天津 | 18 | 11 | 14 | 62.069 | 72.500 | 0.575 |
河北 | 27 | 27 | 14 | 93.103 | 93.548 | 3.698 |
山西 | 22 | 20 | 14 | 75.862 | 80.556 | 0.824 |
内蒙古 | 17 | 3 | 16 | 58.621 | 70.732 | 0.886 |
辽宁 | 13 | 3 | 13 | 44.828 | 64.444 | 0.500 |
吉林 | 8 | 2 | 8 | 27.586 | 58.000 | 0.290 |
黑龙江 | 10 | 3 | 10 | 34.483 | 60.417 | 0.164 |
上海 | 28 | 28 | 13 | 96.552 | 96.667 | 4.118 |
江苏 | 23 | 23 | 14 | 79.310 | 82.857 | 1.744 |
浙江 | 26 | 26 | 12 | 89.655 | 90.625 | 2.762 |
安徽 | 20 | 19 | 13 | 68.966 | 76.316 | 0.736 |
福建 | 27 | 27 | 13 | 93.103 | 93.548 | 2.915 |
江西 | 23 | 23 | 14 | 79.310 | 82.857 | 1.145 |
山东 | 26 | 26 | 14 | 89.655 | 90.625 | 2.361 |
河南 | 23 | 23 | 14 | 79.310 | 82.857 | 0.985 |
湖北 | 26 | 26 | 14 | 89.655 | 90.625 | 2.392 |
湖南 | 21 | 20 | 14 | 72.414 | 78.378 | 0.783 |
广东 | 27 | 27 | 15 | 93.103 | 93.548 | 2.915 |
广西 | 21 | 14 | 14 | 72.414 | 78.378 | 1.141 |
海南 | 16 | 8 | 13 | 55.172 | 69.048 | 0.229 |
重庆 | 17 | 2 | 17 | 58.621 | 70.732 | 0.347 |
四川 | 14 | 2 | 14 | 48.276 | 67.442 | 0.144 |
贵州 | 14 | 3 | 12 | 48.276 | 65.909 | 1.180 |
云南 | 12 | 5 | 9 | 41.379 | 61.702 | 0.402 |
陕西 | 21 | 16 | 13 | 72.414 | 80.556 | 1.410 |
甘肃 | 17 | 5 | 14 | 58.621 | 70.732 | 0.583 |
青海 | 14 | 1 | 13 | 48.276 | 65.909 | 0.522 |
宁夏 | 18 | 3 | 16 | 62.069 | 72.500 | 0.493 |
新疆 | 8 | 0 | 8 | 27.586 | 58.000 | 0.163 |
平均值 | 19.100 | 13.267 | 13.267 | 65.862 | 76.302 | 1.215 |
表8
QAP回归结果
阶段 | 变量 | 非标准化系数 | 标准化系数 | 显著性水平 | 概率1 | 概率2 |
---|---|---|---|---|---|---|
临储前 | 截距 | 3.293 | 0.000 | - | - | - |
市场邻接 | 0.548 | 0.166 | 0.000 | 0.000 | 1.000 | |
市场距离 | 0.000 | -0.184 | 0.010 | 0.990 | 0.010 | |
产区势力 | 0.000 | -0.015 | 0.390 | 0.610 | 0.390 | |
销区势力 | 0.000 | 0.130 | 0.045 | 0.045 | 0.955 | |
信息效应 | 0.805 | 0.147 | 0.030 | 0.030 | 0.970 | |
市场化程度 | -0.015 | -0.018 | 0.365 | 0.635 | 0.365 | |
临储期 | 截距 | 3.702 | 0.000 | - | - | - |
临储政策 | -0.354 | -0.079 | 0.082 | 0.919 | 0.082 | |
市场邻接 | 1.067 | 0.189 | 0.000 | 0.000 | 1.000 | |
市场距离 | -0.001 | -0.330 | 0.000 | 1.000 | 0.000 | |
产区势力 | -0.001 | -0.081 | 0.220 | 0.781 | 0.220 | |
销区势力 | 0.001 | 0.161 | 0.030 | 0.030 | 0.971 | |
信息效应 | 1.543 | 0.170 | 0.066 | 0.066 | 0.935 | |
市场化程度 | 0.013 | 0.009 | 0.445 | 0.445 | 0.555 | |
补贴期 | 截距 | 3.781 | 0.000 | - | - | - |
补贴政策 | -0.487 | -0.102 | 0.165 | 0.835 | 0.165 | |
市场邻接 | 1.030 | 0.172 | 0.000 | 0.000 | 1.000 | |
市场距离 | -0.001 | -0.326 | 0.000 | 1.000 | 0.000 | |
产区势力 | 0.000 | 0.068 | 0.293 | 0.293 | 0.708 | |
销区势力 | 0.001 | 0.186 | 0.015 | 0.015 | 0.985 | |
信息效应 | 0.787 | 0.190 | 0.070 | 0.070 | 0.931 | |
市场化程度 | -0.051 | -0.034 | 0.319 | 0.681 | 0.319 |
[1] | Pu Mingzhe, Zhong Yu. China's market-oriented grain procurement and storage system reform: New risks and countermeasures. Issues in Agricultural Economy, 2019, 40(7):10-18. |
[ 普蓂喆, 钟钰. 市场化导向下的中国粮食收储制度改革: 新风险及应对举措. 农业经济问题, 2019, 40(7):10-18.] | |
[2] | Xu Zhigang, Xi Yinsheng, Zhang Shihuang. Analysis on the implementation, mechanisms and effects of 2008/2009 national corn provisional reserve policy. Issues in Agricultural Economy, 2010, 31(3):16-23, 110. |
[ 徐志刚, 习银生, 张世煌. 2008/2009年度国家玉米临时收储政策实施状况分析. 农业经济问题, 2010, 31(3):16-23, 110.] | |
[3] | Gu Lili, Guo Qinghai. The analysis on reform effect of corn purchase policy. Issues in Agricultural Economy, 2017, 38(7):72-79. |
[ 顾莉丽, 郭庆海. 玉米收储政策改革及其效应分析. 农业经济问题, 2017, 38(7):72-79.] | |
[4] | Ruan Rongping, Liu Shuang, Zheng Fengtian. Does the reform of corn purchasing and storage policy lead to a reduction in corn production? An analysis based on a difference-in-differences technique. Chinese Rural Economy, 2020(1):86-107. |
[ 阮荣平, 刘爽, 郑风田. 新一轮收储制度改革导致玉米减产了吗: 基于DID模型的分析. 中国农村经济, 2020(1):86-107.] | |
[5] | Qian Jiarong, Zhao Zhijun. The mechanism and impact of price support policy on grain prices in China. Journal of Agrotechnical Economics, 2019(8):89-98. |
[ 钱加荣, 赵芝俊. 价格支持政策对粮食价格的影响机制及效应分析. 农业技术经济, 2019(8):89-98.] | |
[6] | Ding Cunzhen, Zheng Yan, Research on the influence of price support policy on the relationship between futures market and spot market of agricultural products. Journal of Huazhong Agricultural University (Social Sciences Edition), 2020(3):100-109, 173-174. |
[ 丁存振, 郑燕 价格支持政策对粮食价格的影响机制及效应分析. 农业技术经济, 2020(3):100-109, 173-174.] | |
[7] |
Kouyaté C, von Cramon-Taubadel S. Distance and border effects on price transmission: A meta-analysis. Journal of Agricultural Economics, 2016, 67(2):255-271.
doi: 10.1111/jage.2016.67.issue-2 |
[8] |
Durborow S L, Kim S W, Henneberry S R, et al. Spatial price dynamics in the US vegetable sector. Agribusiness, 2020, 36(1):59-78.
doi: 10.1002/agr.v36.1 |
[9] |
Goodwin B K, Piggott N E. Spatial market integration in the presence of threshold effects. American Journal of Agricultural Economics, 2001, 83(2):302-317.
doi: 10.1111/ajae.v83.2 |
[10] | Lele U J. Market integration: A study of sorghum prices in western India. American Journal of Agricultural Economics, 1967, 49(1):147-159. |
[11] | Thakur D S. Food grain marketing efficiency: A case study of Gujarat. Indian Journal of Agricultural Economics, 1974, 29:61-65. |
[12] |
Timmer M M. Indonesia's ascent on the technology ladder: Capital stock and total factor productivity in Indonesian manufacturing. Bulletin of Indonesian Economic Studies, 1999, 35(1):75-97.
doi: 10.1080/00074919912331337497 |
[13] |
González-Rivera G, Helfand S M. The extent, pattern, and degree of market integration: A multivariate approach for the Brazilian rice market. American Journal of Agricultural Economics, 2001, 83(3):576-592.
doi: 10.1111/ajae.v83.3 |
[14] |
Fałkowski J. Price transmission and market power in a transition context: Evidence from the Polish fluid milk sector. Post-Communist Economies, 2010, 22(4):513-529.
doi: 10.1080/14631377.2010.518477 |
[15] |
Kuiper W E, Lansink A G J M O. Asymmetric price transmission in food supply chains: Impulse response analysis by local projections applied to US broiler and pork prices. Agribusiness, 2013, 29(3):325-343.
doi: 10.1002/agr.v29.3 |
[16] | Ding Shouhai. The effect of world grain price-fluctuation on China's grain price. Economic Science, 2009(2):60-71. |
[ 丁守海. 国际粮价波动对我国粮价的影响分析. 经济科学, 2009(2):60-71.] | |
[17] | Luo Feng, Niu Baojun. The pass-through effect of fluctuation of international agricultural products on domestic agricultural products: An empirical study based on VAR model. Journal of International Trade, 2009(6):16-22. |
[ 罗锋, 牛宝俊. 国际农产品价格波动对国内农产品价格的传递效应: 基于VAR模型的实证研究. 国际贸易问题, 2009(6):16-22.] | |
[18] | Wu Laping. Research on the integration degree of wheat, corn and pig purchasing market in China. China Rural Survey, 1999(4):25-31, 40. |
[ 武拉平. 我国小麦、玉米和生猪收购市场整合程度研究. 中国农村观察, 1999(4):25-31, 40.] | |
[19] | Yu Wen, Huang Jikun. China's grain market reform from the perspective of rice market integration. Economic Research Journal, 1998, 33(3):50-57. |
[ 喻闻, 黄季焜. 从大米市场整合程度看我国粮食市场改革. 经济研究, 1998, 33(3):50-57.] | |
[20] |
Balcombe K, Bailey A, Brooks J. Threshold effects in price transmission: The case of Brazilian wheat, maize, and soya prices. American Journal of Agricultural Economics, 2007, 89(2):308-323.
doi: 10.1111/ajae.v89.2 |
[21] |
Ganneval S. Spatial price transmission on agricultural commodity markets under different volatility regimes. Economic Modelling, 2016, 52:173-185.
doi: 10.1016/j.econmod.2014.11.027 |
[22] | Quan Shiwen, Zeng Yinchu, Mao Xuefeng. Can transportation cost explain transaction cost in spatial integration? Evidences from China's local wheat and maize markets. China Rural Survey, 2015(1):15-29, 93. |
[ 全世文, 曾寅初, 毛学峰. 运输成本可以解释空间市场整合中的交易成本吗? 来自中国小麦和玉米市场的证据. 中国农村观察, 2015(1):15-29, 93.] | |
[23] | Ma Shuzhong, Qu Yi. Market integration and trade costs: New evidence from spatial price transmission on China's grain markets. Issues in Agricultural Economy, 2017, 38(5):72-82, 112. |
[ 马述忠, 屈艺. 市场整合与贸易成本: 基于中国粮食市场空间价格传导的新证据. 农业经济问题, 2017, 38(5):72-82, 112.] | |
[24] | Zheng Yan, Ding Cunzhen. Study on the dynamic transmission effect of international agricultural prices on domestic agricultural products prices. Journal of International Trade, 2019(8):47-64. |
[ 郑燕, 丁存振. 国际农产品价格对国内农产品价格动态传递效应研究. 国际贸易问题, 2019(8):47-64.] | |
[25] | Listorti G, Esposti R. Horizontal price transmission in agricultural markets: Fundamental concepts and open empirical issues. Bio-based and Applied Economics, 2012, 1(1):81-108. |
[26] |
Hamulczuk M, Makarchuk O, Sica E. Searching for market integration: Evidence from Ukrainian and European Union rapeseed markets. Land Use Policy, 2019, 87:104078. DOI: 10.1016/j.landusepol.2019.104078.
doi: 10.1016/j.landusepol.2019.104078 |
[27] | Marshall A. Principles of Economics. London: Macmillan, 1890. |
[28] | Fackler P L, Goodwin B K. Spatial price analysis. Handbook of Agricultural Economics, 2001, 1:971-1024. |
[29] |
Badiane O, Shively G E. Spatial integration, transport costs, and the response of local prices to policy changes in Ghana. Journal of Development Economics, 1998, 56(2):411-431.
doi: 10.1016/S0304-3878(98)00072-8 |
[30] | Aker J C. Information from markets near and far: Mobile phones and agricultural markets in Niger. American Economic Journal: Applied Economics, 2010, 2(3):46-59. |
[31] |
Miljkovic D. The law of one price in international trade: A critical review. Applied Economic Perspectives and Policy, 1999, 21(1):126-139.
doi: 10.2307/1349976 |
[32] |
Graubner M, Koller I, Salhofer K, et al. Cooperative versus non-cooperative spatial competition for milk. European Review of Agricultural Economics, 2011, 38(1):99-118.
doi: 10.1093/erae/jbq054 |
[33] |
Rezitis A N, Stavropoulos K S. Price volatility and rational expectations in a sectoral framework commodity model: A multivariate GARCH approach. Agricultural Economics, 2011, 42(3):419-435.
doi: 10.1111/j.1574-0862.2010.00521.x |
[34] |
Santeramo F G, Cioffi A. The entry price threshold in EU agriculture: Deterrent or barrier? Journal of Policy Modeling, 2012, 34(5):691-704.
doi: 10.1016/j.jpolmod.2012.02.001 |
[35] |
Moser C, Barrett C, Minten B. Spatial integration at multiple scales: Rice markets in Madagascar. Agricultural Economics, 2009, 40(3):281-294.
doi: 10.1111/agec.2009.40.issue-3 |
[36] |
Baquedano F G, Liefert W M. Market integration and price transmission in consumer markets of developing countries. Food Policy, 2014, 44:103-114.
doi: 10.1016/j.foodpol.2013.11.001 |
[37] |
Diebold F X, Yilmaz K. Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 2009, 119(534):158-171.
doi: 10.1111/j.1468-0297.2008.02208.x |
[38] |
Diebold F X, Yilmaz K. Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 2012, 28(1):57-66.
doi: 10.1016/j.ijforecast.2011.02.006 |
[39] |
Diebold F X, Yılmaz K. On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 2014, 182(1):119-134.
doi: 10.1016/j.jeconom.2014.04.012 |
[40] |
Ren Mengyao, Xiao Zuopeng, Wang Jixian. Spatial pattern of intercity less-than-truckload logistics networks in China. Acta Geographica Sinica, 2020, 75(4):820-832.
doi: 10.11821/dlxb202004011 |
[ 任梦瑶, 肖作鹏, 王缉宪. 中国城际专线物流网络空间格局. 地理学报, 2020, 75(4):820-832.] | |
[41] | Li Jing, Chen Shu, Wan Guanghua, et al. Study on the spatial correlation and explanation of regional economic growth in China: Based on analytic network process. Economic Research Journal, 2014, 49(11):4-16. |
[ 李敬, 陈澍, 万广华, 等. 中国区域经济增长的空间关联及其解释: 基于网络分析方法. 经济研究, 2014, 49(11):4-16.] | |
[42] | Scott J P. Social Network Analysis: A Handbook. London: Sage Publication, 2017. |
[43] | Liu Huajun, Peng Ying, Jia Wenxing, et al. Price information overflow, spatial market integration and regional economic disparity. Economic Science, 2018(3):49-60. |
[ 刘华军, 彭莹, 贾文星, 等. 价格信息溢出、空间市场一体化与地区经济差距. 经济科学, 2018(3):49-60.] | |
[44] | Fan Gang, Wang Xiaolu, Ma Guangrong. Contribution of marketization to China's economic growth. Economic Research Journal, 2011, 46(9):4-16. |
[ 樊纲, 王小鲁, 马光荣. 中国市场化进程对经济增长的贡献. 经济研究, 2011, 46(9):4-16.] |
[1] | 蔡兴冉, 李忠勤, 张慧, 徐春海. 中国天山冰川变化脆弱性研究[J]. 地理学报, 2021, 76(9): 2253-2268. |
[2] | 宋昌耀, 李涛, 李国平. 地理距离对中国民营企业银行贷款的影响[J]. 地理学报, 2021, 76(8): 1835-1847. |
[3] | 赵梓渝, 王士君, 陈肖飞. 模块化生产下中国汽车产业集群空间组织重构——以一汽-大众为例[J]. 地理学报, 2021, 76(8): 1848-1864. |
[4] | 邓楚雄, 赵浩, 谢炳庚, 李忠武, 李科. 土地资源错配对中国城市工业绿色全要素生产率的影响[J]. 地理学报, 2021, 76(8): 1865-1881. |
[5] | 王哲, 郑法川. 中国近代城市体系的位序规模特征——基于1936年《中华民国邮政舆图》的分析[J]. 地理学报, 2021, 76(8): 1910-1923. |
[6] | 姜磊, 陈星宇, 朱竑. 中国城市养老院的空间分布特征及其分异成因[J]. 地理学报, 2021, 76(8): 1951-1964. |
[7] | 龚胜生, 李孜沫, 谢海超, 王晓伟, 张涛, 石国宁, 陈发虎. 中国3000年疫灾流行的时空特征及其影响因素[J]. 地理学报, 2021, 76(8): 1976-1996. |
[8] | 贺灿飞, 王文宇, 郭琪. 中国工业地理学的传承发展与转型[J]. 地理学报, 2021, 76(8): 1815-1834. |
[9] | 黄珏, 李正茂, 张珂, 江涛. 基于GEE的中国湖泊浮游植物生物量时空动态分析[J]. 地理学报, 2021, 76(7): 1693-1707. |
[10] | 周亮, 党雪薇, 周成虎, 王波, 魏伟. 中国建设用地的坡谱演化规律与爬坡影响[J]. 地理学报, 2021, 76(7): 1747-1762. |
[11] | 魏石梅, 潘竟虎. 中国地级及以上城市网络结构韧性测度[J]. 地理学报, 2021, 76(6): 1394-1407. |
[12] | 杨忍, 潘瑜鑫. 中国县域乡村脆弱性空间特征与形成机制及对策[J]. 地理学报, 2021, 76(6): 1438-1454. |
[13] | 殷江滨, 李尚谦, 姜磊, 程哲, 黄晓燕, 路改改. 中国连片特困地区非农就业增长的时空特征与驱动因素[J]. 地理学报, 2021, 76(6): 1471-1488. |
[14] | 胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162. |
[15] | 黄晓东, 马海涛, 苗长虹. 基于创新企业的中国城市网络联系特征[J]. 地理学报, 2021, 76(4): 835-852. |