地理学报, 2023, 78(6): 1392-1407 doi: 10.11821/dlxb202306005

人口与城市研究

基于空间计量交互模型的人才流动影响因素研究——以中国“双一流”高校毕业生为例

王强,1,2,3, 崔璨,1,2,3, 劳昕4

1.华东师范大学中国现代城市研究中心,上海 200062

2.华东师范大学中国行政区划研究中心,上海 200062

3.崇明生态研究院,上海 202162

4.中国地质大学(北京)经济管理学院,北京 100083

Talent migration and its influencing factors using spatial econometric interaction model: A case study of China's "double first-class" university graduates

WANG Qiang,1,2,3, CUI Can,1,2,3, LAO Xin4

1. The Center for Modern Chinese City Studies, East China Normal University, Shanghai 200062, China

2. Research Center for China Administrative Division, East China Normal University, Shanghai 200062, China

3. Institute of Eco-Chongming, Shanghai 202162, China

4. School of Economics and Management, China University of Geosciences, Beijing 100083, China

通讯作者: 崔璨(1987-), 女, 安徽合肥人, 博士, 教授, 博士生导师, 中国地理学会会员(S110012580M), 研究方向为城市地理与社会地理。E-mail: ccui@geo.ecnu.edu.cn

收稿日期: 2022-03-17   修回日期: 2023-03-15  

基金资助: 国家自然科学基金项目(42171233)
国家自然科学基金项目(72061137072)
国家自然科学基金项目(42101226)
中央高校基本科研业务费项目(2022ECNU-HLYT008)
中央高校基本科研业务费项目(2022ECNU-XWKXK001)

Received: 2022-03-17   Revised: 2023-03-15  

Fund supported: National Natural Science Foundation of China(42171233)
National Natural Science Foundation of China(72061137072)
National Natural Science Foundation of China(42101226)
Fundamental Research Funds for the Central Universities(2022ECNU-HLYT008)
Fundamental Research Funds for the Central Universities(2022ECNU-XWKXK001)

作者简介 About authors

王强(1990-), 男, 山西朔州人, 博士生, 中国地理学会会员(S110014695M), 研究方向为城市地理与人口地理。E-mail: wqshecnu@163.com

摘要

当前,中国进入由“人口红利”向“人才红利”转变的阶段,人才日益成为知识经济时代国家与区域发展的关键驱动力。高校毕业生作为人才的后备军,已然成为城市“抢人大战”的主要争夺目标。基于2019年中国“双一流”高校《毕业生就业质量报告》数据,运用空间统计分析及空间计量交互模型,剖析“双一流”高校毕业生就业流动格局及其影响因素。研究结果发现:① “一流大学”和“一流学科”高校毕业生就业地选择呈现“东密西疏”的不均衡分布格局,且“一流大学”毕业生就业地区更加集聚。② 经济因素仍是影响“双一流”高校毕业生就业流动的核心因素,但地方品质因素对毕业生就业流动的影响也不容忽视。相对而言,地方品质因素对“一流大学”毕业生就业流动的影响更强。此外,政策因素对两类毕业生就业流动也具有显著的影响。③ 毕业生就业迁移流之间存在显著的网络自相关效应,基于就学地、就业地的网络自相关效应显著为正,基于就学地—就业地的网络自相关效应显著为负,对高校毕业生就业不均衡的分布格局产生一定影响。研究结果揭示了区域人才政策的制定需要实现从单一区域视角向多区域协调视角的转变,对进一步优化区域人才治理具有参考意义。

关键词: 人才流动; 高校毕业生; 空间格局; 影响因素; 空间计量交互模型

Abstract

China has entered the stage of transformation from a "demographic dividend" to a "talent dividend", and talent has increasingly become the key driver of national and regional development in the era of a knowledge economy. As the reserve of talents, university graduates are the main target of the "war for talent" among Chinses cities. Based on the 2019 Graduate Employment Quality Reports of China's "double first-class" universities, adopting the Gini coefficient, spatial autocorrelation, and spatial econometric interaction model, this paper demonstrates the migration pattern of "double first-class" university graduates upon their graduation and investigates its underlying influencing factors. The results reveal that the destination areas of university graduates from "first-class universities" and "first-class disciplines" are highly concentrated in eastern China, with the former showing a higher concentration level. While economic factors still play a vital role in determining the migration of university graduates, the influence of quality of place is also significant, especially for graduates from "first-class universities". In addition, the policy factors also significantly influence the migration pattern of graduates from both types of universities. There are significant network autocorrelation effects among graduates' employment migration flows. The network autocorrelation effects based on places of study and places of employment are significantly positive. These network autocorrection effects reinforce the uneven distribution pattern of university graduates' migration. This study highlights the importance of employing a regional coordination perspective rather than a single-region perspective in terms of the formation and further optimization of regional talent policies.

Keywords: talent migration; university graduates; spatial pattern; influencing factors; spatial econometric interaction model

PDF (3399KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王强, 崔璨, 劳昕. 基于空间计量交互模型的人才流动影响因素研究——以中国“双一流”高校毕业生为例. 地理学报, 2023, 78(6): 1392-1407 doi:10.11821/dlxb202306005

WANG Qiang, CUI Can, LAO Xin. Talent migration and its influencing factors using spatial econometric interaction model: A case study of China's "double first-class" university graduates. Acta Geographica Sinica, 2023, 78(6): 1392-1407 doi:10.11821/dlxb202306005

1 引言

人才作为专业化知识与技术的载体,在提升劳动生产率和推动区域经济增长中扮演着重要的角色。2010年国务院颁布《国家中长期人才发展规划纲要(2010—2020年)》,指出中国要从人力资源大国向人才强国转变[1]。2021年中央人才工作会议中进一步强调“深入实施新时代人才强国战略,加快建设世界重要人才中心和创新高地”[2]。中国共产党“二十大”报告中也强调:“必须坚持科技是第一生产力,人才是第一资源,创新是第一动力,深入实施科教兴国战略、人才强国战略、创新驱动发展战略”。随着近年来中国经济的转型和发展,对人才的需求越来越强烈。聚天下英才而用之,是建设社会主义现代化的关键力量。为了吸引和留住人才,各地方政府自2017年以来纷纷出台人才政策吸引人才流入,广州、上海等一线城市也相继加入,城市“抢人大战”愈演愈烈。“人才”是指在各种社会实践活动中,具有专业知识、特殊技术和能力,对人类进步做出某种较大贡献的人[3]。相对而言,人口的受教育程度能够在一定程度上反映技术、知识和能力,且易于划分,因此学历常作为人才的划分标准,而具有本科及以上学历的人口通常被视为人才群体[4]。受过高等教育的劳动力被认为是国家和地区创新发展的动力源泉,也有助于促进地区经济增长[5]。自1999年中国高校大规模扩招以来,大学生数量快速增长,在校生规模由2001年的560.52万人增长至2020年的2139.71万人 ( 数据来源于2001年和2020年的《中国教育统计年鉴》。),为国家的社会经济发展提供了关键的人才支撑。高校毕业生通过迁移和再流动对区域社会经济发展产生深远影响,不充分流动有碍激发创新创业创造的活力,不合理集聚有可能引发马太效应,“强者愈强、弱者愈弱”,导致区域发展极化[6]。本文旨在通过揭示高学历人才就业流动的分布格局及其影响因素,为制定差异化的人才政策、实现人力资本的合理配置提供启示。

高校毕业生作为高素质人才的重要构成,其就业地的选择承载了知识资本的跨区域流动。因而,高校毕业生跨区域就业流动受到国内外学者的关注。近年来国外学者对高校毕业生就业流动特征与趋势的研究,主要聚焦于其就业流动规模[7]、迁移方向[8-10]及毕业生流动对就学地和就业地经济发展的影响[11]。由于认识到高校毕业生是人力资本的重要承载者,国外众多学者探究了毕业生的就业流动行为,研究发现毕业生倾向于流向经济发展水平较高的地区就业[8-10]。此外,国外学者对影响毕业生就业流动的因素进行了大量的研究,主要有两种观点,第一种观点认为高校毕业生就业流动的主要动机是为了获得更高的工资水平和更好的就业机会[12-15];而另一种观点认为,与一般的劳动力不同,高校毕业生不仅关注就业机会与工资的差异,而且更加关注生活质量与舒适性,倾向于选择提供各种便利设施的城市[12-13,16 -17]。虽然已有大量研究论述了经济因素和地方品质因素对毕业生就业流动的影响,但这两类因素对就业流动影响的重要程度并未达成一致结论[18]

国内学者对高校毕业生就业流动的研究也主要聚焦于迁移模式及其影响因素等方面。关于高校毕业生就业流动模式,诸多研究发现,高校毕业生倾向于流向东南沿海地区就业,一线城市是毕业生首选就业地,而流向中西部欠发达地区的毕业生相对较少[19-22]。然而,最近的一些研究表明,高房价、激烈的就业竞争和低居住满意度导致流向一线城市就业的毕业生逐渐下降,而前往二线城市和其他城市就业的比例增加[23-24]。其次,国内学者从全国或地区层面解释毕业生就业地选择偏好,重点关注院校的布局、地方经济、地理距离等因素的影响[22-26]。诸多研究发现经济发展水平、就业机会、预期工资等区域经济因素[23-24,26 -29],气候环境、生活质量、城市公共服务等非经济因素[24,29 -31]以及个体特征[25,27 -28]是影响中国高校毕业生就业地域选择的主要因素。此外,国内学者逐渐意识到中国特有政策性因素对高校毕业生就业流动的影响[19-20,25]。Cui等[20]和马莉萍等[25]研究发现,中国特有的政策因素(户籍因素和人才政策因素)对毕业生就业流动产生不同程度的激励作用。

已有研究表明,高校毕业生就业流动过程中各就学地、就业地和就学地—就业地迁移流之间存在相互影响、相互制约的关系,即高校毕业生就业迁移流存在网络自相关效应[32]。人口迁移流的网络自相关效应可追溯于两个重要理论:Stouffer的干预机会理论[33]和Fortheringham的竞争目的地理论[34]。这两个理论分别论述了来源于迁出地和迁入地的网络自相关效应[35]。现有研究分析人口迁移影响因素采用的重力模型隐含着一个重要假设,即每一条迁出地—迁入地(Origin-destination, OD)流是相互独立的[36]。而网络自相关效应的存在打破了传统重力模型的独立性假设,造成模型的内生性问题。自此,如何在传统重力模型的基础上考虑迁移流的网络自相关效应成为学界关注的重点[37-38]。LeSage等在传统重力模型的基础上,考虑到空间交互项的重要性,采用空间滞后模型对人口迁移流中的迁出地、迁入地、迁出地—迁入地3种网络自相关效应加以考虑,提出了空间计量交互模型[37-39]。很多学者也应用此模型进行了大量的实证研究[32,41 -43]。蒲英霞等[41]、曾永明等[43]基于多年份人口普查数据,运用空间计量交互模型分析发现中国省际人口迁移流存在显著的网络自相关效应,迁出地和迁入地的网络自相关效应显著为正,迁出地—迁入地的网络自相关效应显著为负。盛玉雪等基于2012年全国高校毕业生调查数据,采用空间计量交互模型,发现高校毕业生就业迁移流具有显著的网络自相关效应,忽略网络自相关效应将导致估计结果不可靠[32]

通过文献梳理可知,已有研究仍存在以下不足:① 现有研究大多侧重考察经济因素和非经济因素对于高校毕业生流动的影响,而与国外高校毕业生就业流动不同,中国户籍政策、人才政策使得国内高学历人才就业流动的选择过程更为错综复杂。西方相关理论与研究发现是否适用于中国情境有待进一步研究。为此,本文基于人力资本理论、地方品质理论、创意阶层理论,并结合中国特有的政策性因素,构建了解释中国高校毕业生就业流动的分析框架。② 现有研究多采用重力模型分析高校毕业生流动的影响因素[6],但重力模型无法解释迁移流之间存在的网络自相关效应,即相邻就学地的高校毕业生就业流入地格局呈现相似的特征,而相邻就业地的高校毕业生来源地同样具有一定的关联,为此本文引入空间计量交互模型拓展了高校毕业生就业流动的影响因素研究[37]。③ 现有研究主要采用空间计量交互模型分析流动人口或普通劳动力迁移的网络自相关效应,较少关注高学历人才群体[41-42]。④“双一流”高校作为高层次的高等教育机构,但“一流大学”与“一流学科”高校的教育质量和生源质量存在较大差距,且两类高校毕业生在就业市场中的竞争力也不同[44],因此两类高校毕业生就业流向可能存在明显差异,但现有研究并未对两类高校毕业生就业流动格局及其影响因素是否存在差异进行分析。

为此,本文基于2019年《毕业生就业质量报告》数据,采用基尼系数、集聚度、空间自相关分析、空间计量交互模型等方法,回答以下研究问题:高校毕业生就业流动受到哪些因素的影响?高校毕业生就业迁移流是否存在网络自相关效应?两类高校毕业生流动格局及其影响因素是否存在差异?随着中国经济增长方式的变化,人口数量、劳动力数量、人口结构带来的“人口红利”将逐步转向劳动者素质提高带来的“人才红利”。激发人才活力、破除影响人才流动的体制机制弊端是推动经济社会发展和促进社会公平正义的重要途经。本文发现可为中国人才合理有序流动和区域协调发展提供科学依据与针对性的政策建议。

2 数据来源与研究方法

2.1 数据来源

2019年中国“双一流”高校共137所,其中“一流大学”高校42所,“一流学科”高校95所。受中国历史、经济、社会等因素影响,“双一流”高校空间分布区域差异较大(图1),东部地区“双一流”高校资源较为丰富,拥有83所“一流大学”、61所“一流学科”高校,均高于其他地区的总和。

图1

图1   2019年中国“双一流”高校分布

注:基于自然资源部标准地图服务网站GS(2019)1825号标准地图制作,底图边界无修改。

Fig. 1   Distribution of "double first-class" universities in China in 2019


根据数据可得性及数据质量,数据来源于2019年93所“双一流”高校官网公布的《毕业生就业质量报告》,报告中提供了丰富的毕业生生源地、就业地流向等相关信息,其中31所“一流大学”和62所“一流学科”高校。本文关注进入劳动力市场就业的高校毕业生,不包含继续深造和未就业的毕业生。本文将位于同一省份的高校数据进行汇总,“一流大学”高校分布于21个省份,则以21个省份为就学地,31个省份(暂未包括港澳台)为就业地,形成21×31条OD迁移流;“一流学科”高校分布于29个省份,则以29个省份为就学地,31个省份为就业地,形成29×31条OD流。

本文涉及的统计数据主要来源于统计年鉴以及行业权威数据。其中收入水平、就业机会、自然资源、医疗资源、教育资源数据来源于2019年《中国统计年鉴》;创新创业水平采用北京大学国家发展研究院与龙信数据研究院联合开发的2018年中国区域创新创业指数来表征,该指数利用企业大数据库的数据,包括了中国全部行业、全部规模的企业,特别是覆盖了创新活跃度高的中小微企业、创业期企业;休闲娱乐场所的数据来源于2018年高德地图平台爬取的各省份休闲体育场所、娱乐场所和名胜古迹的POI数据;人才政策数据来源于2018年的中国指数研究院的人才政策吸引力指数 (中指研究院发布的人才政策吸引力指数(https://fdc.fang.com/report/11949.html)。);户籍门槛指数采用的张吉鹏等[45]通过对各地落户文件进行整理,最终量化计算出的落户门槛指数;迁移距离采用2018年的公路里程数据来衡量;高校招生数据来源于2018年93所“双一流”高校官方网站公布的招生计划数据。常住人口数据来源于2015年全国1%人口抽样调查数据和2020年全国人口普查数据。

2.2 研究方法

2.2.1 集聚度

为衡量各省份高校毕业生集聚程度,本文借鉴封志明等提出的人口集聚度计算公式[46],构建“一流大学”和“一流学科”高校毕业生就业地选择集聚度,代表各省份吸引高校毕业生就业的集聚程度。计算公式为:

Ji=pi/pn×100%Ai/An×100%=pi/Aipn/An

式中:Jii省份“一流大学”或“一流学科”高校毕业生就业地选择集聚度;pii省份拥有“一流大学”或“一流学科”高校毕业生人数;pn是全国“一流大学”或“一流学科”高校毕业生总人数;Aii省份的土地面积;An是全国土地面积。

2.2.2 空间计量交互模型

对于高校毕业生流动影响因素的分析,大部分已有研究采用重力模型。此后诸多学者对重力模型进行扩展,加入了反映社会经济的一系列变量,以提高模型的解释能力[37]。重力模型忽视了“双一流”高校毕业生迁移流之间的相互作用,在建模时应该将迁移流的网络自相关效应引入重力模型中[37,39]。本文借鉴LeSage等的研究,将高校毕业生迁移流之间可能存在的3种网络自相关效应定义为:① 就学地的网络自相关效应。高校毕业生从就学地A和周边地区B同时迁入到就业地C时,A→C和B→C的迁移流之间存在网络自相关效应;② 就业地的网络自相关效应。高校毕业生从就学地A同时迁入到就业地C和C周边地区D时,A→C和A→D的迁移流之间存在网络自相关效应;③ 流的网络自相关效应。A→C和B→D的迁移流之间存在网络自相关效应,其中A和B相邻,C和D相邻。

以上3种网络自相关效应可以通过不同的空间权重矩阵来表示,首先基于queen相邻生成基础空间权重矩阵W。若存在孤岛,令其与最近区域相邻,如设定海南省与广东省相邻。就学地网络自相关效应的权重矩阵用Wo表示,Wo = WIn,其中Inn×n的单位矩阵;就业地网络自相关效应的权重矩阵用Wd表示,Wd = InW;迁移流网络自相关效应的权重矩阵用Ww表示,Ww = WW。借鉴LeSage等提出的人口迁移流空间计量交互模型[37-39],构建高校毕业生就业流动的空间计量交互模型,该模型有几种不同的约束形式,这里给出一般化表达式:

y=ρoWoy+ρdWdy+ρwWWy+αln+βoXo+βdXd+γg+ε,    ε~N(0, σ2IN)

式中:y为两类高校毕业生就业迁移流;ρoρdρw为重点关注的网络自相关效应;ln为单位列向量;α为常数项系数;XoXd分别为就学地和就业地的自变量矩阵;βoβd为对应的估计系数;γ为距离向量g的系数;ε为随机扰动项。式(2)选择采用因变量空间滞后形式的空间计量交互模型的统计检验在后面模型分析部分给出。

3 “双一流”高校毕业生就业流动的空间特征

3.1 毕业生就业流动呈现高度集聚的分布格局

借鉴封志明等提出的人口集聚度指标[46],将全国31个省份根据“双一流”高校毕业生就业地选择分布的集中程度划分为密集区(J ≥ 2)、均值区(0.5 < J < 2)和稀疏区(J ≤ 0.5)3个类别,其中密集区进一步分为高密集区(J ≥ 20)、中密集区(10 ≤ J < 20)、低密集区(2 ≤ J < 10);均值区分为均值上区(1 ≤ J < 2)、均值下区(0.5 < J < 1);稀疏区分为相对稀疏区(0.2 < J ≤ 0.5)、绝对稀疏区(0.05 < J ≤ 0.2)和极端稀疏区(J ≤ 0.05)8个级别。

与“一流学科”毕业生就业地分布相比,“一流大学”毕业生就业地更集中(图2)。其中“一流大学”毕业生就业密集区主要分布于京津冀、长三角、珠三角城市群及湖北、山东、河南、重庆等地区,“一流学科”毕业生就业密集区分布于东部沿海地区、长江经济带及河南、山西、陕西、辽宁等地区。三大城市群在人才竞争中已展现出区域一体化的竞争优势。此外,“一流大学”毕业生就业稀疏区广泛分布于西部地区及山西、江西、黑龙江等地区,占据全国71.46%的土地面积,但仅拥有全国11.25%的“一流大学”毕业生;“一流学科”毕业生就业稀疏区分布于西部地区及黑龙江,占全国63.11%的土地面积,仅仅拥有全国8.8%的“一流学科”毕业生。

图2

图2   2019年中国“双一流”高校毕业生就业地选择集聚度

注:基于自然资源部标准地图服务网站GS(2019)1825号标准地图制作,底图边界无修改。

Fig. 2   Agglomeration degree of graduates from China's "double first-class" universities in 2019


3.2 毕业生就业地选择呈现明显不均衡分布特征

本文运用基尼系数分析高校毕业生就业地选择分布是否均衡。2019年“一流大学”和“一流学科”高校毕业生流入各省份就业人数的基尼系数分别为0.531、0.446,参照联合国开发计划署发布的基尼系数等级[47],高校毕业生就业地选择呈现明显不均衡的分布特征,尤其对于“一流大学”毕业生而言,其就业地更加聚集。与此同时,本文计算了人口总体分布的基尼系数,其分别为0.351和0.365,人口总体分布相对均衡。通过比较“双一流”高校毕业生就业地选择的基尼系数和人口总体分布的基尼系数可知,“双一流”高校毕业生就业流动更加向东南沿海地区集聚,这说明高学历人才倾向于向经济发展水平、物质生活条件和工作环境更优的发达地区集聚。

各省份吸引的“一流大学”和“一流学科”高校毕业生就业人数的全局Moran's I指数值分别为0.296和0.214,结果均通过显著性检验(P < 0.001),这说明两类高校毕业生就业地呈现集聚分布模式[6]。进一步运用局部空间自相关分析发现“一流大学”毕业生就业地高—高集聚区集中在长三角城市群及北京、湖北、广东等地区,而“一流学科”毕业生就业地高—高集聚区除了上述地区之外,还包括山东和四川等省份(图3)。这些地区领先的经济发展水平、较高的舒适性、优惠的人才吸引政策,对“双一流”高校毕业生形成了强吸引力。

图3

图3   2019年中国“双一流”高校毕业生就业地局部空间自相关分析

注:基于自然资源部标准地图服务网站GS(2019)1825号标准地图制作,底图边界无修改。

Fig. 3   The local spatial autocorrelation analysis of graduates' place of employment from China's "double first-class" universities in 2019


3.3 毕业生就业流动网络呈现“东密西疏”的分布格局

“双一流”高校毕业生在就学城市就业的比例(即粘滞率)较高,“一流大学”毕业生粘滞率为44.57%,“一流学科”毕业生粘滞率为48.50%,下面重点关注高校毕业生跨省份就业流动网络。图4以OD地图的方式展示了“一流大学”和“一流学科”毕业生由就学地到就业地的空间流动网络,流向线的粗细表示毕业生就业迁移规模。

图4

图4   2019年中国“双一流”高校毕业生流动网络

注:基于自然资源部标准地图服务网站GS(2019)1825号标准地图制作,底图边界无修改。

Fig. 4   The migration pattern of "double first-class" university graduates in China in 2019


总体来看,“一流大学”与“一流学科”毕业生就业流动网络呈现“东密西疏”的分布格局,但其流动路径存在一定差别,全国性流入中心和区域性流入中心均对远距离省份的“一流学科”毕业生吸引力较强。具体来看,广东为全国性毕业生流入中心,但对“一流大学”和“一流学科”毕业生吸引能力有所差别。对于“一流大学”毕业生来说,广东吸引了湖北、湖南、福建等周边省份以及陕西、四川、北京等远距离省份毕业生的流入。对于“一流学科”毕业生来说,广东的吸引范围更广,除了吸引上述省份毕业生流入之外,也吸引了大量广西、江西、海南、江苏、安徽、黑龙江等省份毕业生的流入。

而北京、上海、浙江等地为区域性毕业生流入中心,同样对“一流大学”和“一流学科”高校毕业生辐射能力存在一定差异。对于“一流大学”毕业生来说,北京主要吸引京津冀城市群及辽宁的毕业生,上海主要吸引长三角城市群的毕业生。对于“一流学科”毕业生来说,北京主要吸引京津冀城市群及黑龙江和江苏的毕业生,上海和浙江则主要吸引长三角城市群及湖北的毕业生。

4 “双一流”高校毕业生就业流动的影响因素

4.1 变量选取

模型的被解释变量为毕业生由就学地i到就业地j的迁移人数,为了规避反向因果关系带来的内生性问题,将模型中解释变量数据滞后一期[48]。如图5所示,基于劳动力迁移理论、人力资本理论、创意阶层理论和地方品质理论[4-7,20],本文将高校毕业生就业流动影响因素分成4类:经济因素、地方品质因素、政策因素和其他因素。

图5

图5   “双一流”高校毕业生就业流动的影响因素分析框架

Fig. 5   The analysis framework for influencing factors of employment migration of "double first-class" university graduates


(1)经济因素:为测度区域经济发展水平的影响,选择两个广泛使用的指标在岗职工工资和失业率[19,27]。工资水平越高往往预示着收入水平越高,预计就学地较高的工资水平会减少人才流出,就业地则会吸引人才流入;而失业率反映了毕业生找到工作的概率,其对人才流动的作用效果则相反。此外,本文以创新创业指数来测度区域创新创业水平,对于受过高等教育的毕业生而言,具有较高创新创业水平的地区更具吸引力[9],因此就学地创新创业指数越高,人才流出越少;就业地则相反。

(2)地方品质因素:已有研究表明[4,8,19,27,49 -50],气候、医疗、教育、文化等方面的地方品质因素能够反映居住地的生活质量,而地区宜居性越来越成为人才定居的重要考量因素。因此,本文选取休闲娱乐场所数量、年均气温、中学生师比和万人医生数等变量表征地方品质因素。预计地方品质越好,对人才的吸引力越强,越有助于就学地留住人才,也有助于就业地吸引人才流入。

(3)政策性因素:由于户籍政策是一项与资源配置和利益分配密切相关的政策,尤其北京、上海等省份的户籍政策与就业、住房、医疗、子女教育等重要事项密切相关,户籍政策改革对人口流动具有显著影响[51]。因此,本文引入户籍门槛指数分析其对高校毕业生就业流动的影响情况。王一凡等研究发现,人才吸引政策对毕业生流动具有显著激励作用[19]。为此,本文纳入人才政策吸引力指数分析其对毕业生就业流动的影响程度。

(4)其他因素:随着迁移距离的增加,流动成本相应增加,进而降低流动规模[4,19]。因此,本文将从就学地到就业地的迁移距离变量引入模型。另外,高校生源来源的构成也会影响毕业生的就业流动格局。一般来说高校毕业生更有意愿返回生源地所在省份就业[26],因此,就学地省份在某省份的招生人数,与高校毕业生返回该省份就业的人数具有强相关性。为此,本文将高等教育招生情况纳入模型。

4.2 模型结果分析

通过计算就学地、就业地和就学地—就业地的“一流大学”和“一流学科”毕业生数量或迁移人数的全局Moran's I值可知,两类高校毕业生在就学地、就业地和就学地—就业地均存在显著的空间依赖性(前文中仅列出了就业地的全局Moran's I值),可见,应该构建空间回归模型来分析毕业生流动的影响因素。基于Lagrange Multiplier(LM)检验来选择空间回归模型,结果显示LM-lag、LM-error及Robust LM-lag均显著,而Robust LM-error不显著,即存在显著的因变量空间滞后效应,而误差项空间滞后效应不显著(表1),因此应选用因变量空间滞后模型(Spatial Lag Model, SLM)形式的空间计量交互模型进行分析,如公式(2)所示。而且,空间计量交互模型的AIC值低于重力模型,空间计量交互模型的R2值高于重力模型(表2),表明空间计量交互模型的拟合优度高于重力模型。此外,传统重力模型的残差Moran's I显著为正,说明存在显著的空间自相关性;而空间计量交互模型的残差Moran's I不显著,说明空间计量交互模型在加入空间滞后项之后,能够有效地过滤掉残差中的空间自相关性,再次表明选取空间计量交互模型进行高校毕业生就业流动影响因素的分析更合适。

表1   空间计量模型的选择检验

Tab. 1  Identification test of spatial econometric model

“一流大学”“一流学科”
检验方法LM统计量PLM统计量P
LM-lag62.9220.00061.2730.000
LM-error87.0820.00178.0730.001
Robust LM-lag25.8250.00022.7320.000
Robust LM-error0.6610.9120.7310.572

新窗口打开| 下载CSV


表2   模型结果分析

Tab. 2  Model results analysis

变量具体指标重力模型空间计量交互模型
“一流大学”“一流学科”“一流大学”“一流学科”
经济因素就学地省份在岗职工工资水平-0.343**-0.438**-0.281**-0.363**
就业地省份在岗职工工资水平0.438**0.526**0.363**0.452**
就学地省份失业率0.247*0.313**0.173*0.201**
就业地省份失业率-0.212-0.174*-0.103*-0.121*
就学地省份创新创业指数-0.052**-0.047**-0.021**-0.031**
就业地省份创新创业指数0.043**0.063**0.011**0.021**
地方品质因素就学地省份休闲娱乐场所数量-0.108**-0.078**-0.083**-0.056**
就业地省份休闲娱乐场所数量0.219**0.109**0.129**0.093**
就学地省份平均气温-0.112-0.083-0.051-0.043
就业地省份平均气温0.127**0.086**0.067**0.036**
就学地省份万人医生数-0.074-0.047-0.031-0.024
就业地省份万人医生数0.138*0.0840.058*0.028*
就学地省份中学生师比0.0680.0770.0490.027
就业地省份中学生师比-0.107*-0.064**-0.067*-0.031**
政策因素就学地省份人才政策吸引力指数-0.043*-0.077*-0.023*-0.047*
就业地省份人才政策吸引力指数0.047*0.086*0.031*0.065*
就学地省份户籍门槛指数-0.073-0.122*-0.032*-0.082*
就业地省份户籍门槛指数0.065**0.143**0.052**0.122**
其他因素就学地省份在就业地省份的招生人数0.152**0.272**0.132**0.154**
就学地省份到就业地省份的公路里程-0.211**-0.293**-0.141**-0.153**
常数项-2.424-2.513-2.634-2.712
ρo0.344***0.274***
ρd0.278***0.238***
ρw-0.241***-0.211***
Log-likelihood-2142.32-2462.32642.82862.32
AIC1673.311871.241339.721521.40
修正R20.6730.6010.7810.768
残差的Moran's I0.278***0.234***0.0010.005

注:***p<0.01,**p<0.05,*p<0.1。

新窗口打开| 下载CSV


表2可知,空间计量交互模型的结果表明,3种网络自相关效应(ρoρdρw)均显著不为0,说明重力模型中关于迁移流之间相互独立的假设(ρo d w =0)并不成立。其中,就学地和就业地的网络自相关效应系数ρoρd均显著为正,说明就学地之间和就业地之间均存在正向的网络自相关效应,即从同一就学地出发的高校毕业生迁移流,在某就业地及其周边地区集聚,而抵达同一就业地的迁移流,也会在某就学地及其周边地区集聚。例如,就学地湖北的6678名“一流大学”毕业生流入就业地广东工作,同时就学地湖南的4439名“一流大学”毕业生也流入就业地广东工作(占广东省总迁入流的比例分别为18.09%、11.99%),即存在就学地网络自相关效应。同样,就学地四川的954名“一流大学”毕业生流入就业地上海工作,同时就学地四川的787名“一流大学”毕业生流入就业地浙江工作(占四川省总迁出流的比例分别为9.05%、7.47%),即存在就业地网络自相关效应(“一流学科”毕业生就学地和就业地的网络自相关效应类似,不再举例赘述)。蒲英霞等的研究发现,中国省际人口迁移存在正向的迁出地和迁入地的网络自相关效应,反映了人口迁移的空间效仿行为[41]。类似地,“一流大学”和“一流学科”毕业生就业流动也存在空间效仿行为。

就学地—就业地的网络自相关效应系数ρw显著为负,说明从某一就学地到某一就业地的高校毕业生就业流动,会在一定程度上抑制该就学地周边的毕业生流入到该就业地周边。例如,就学地湖北有1977名“一流大学”毕业生流入就业地上海工作,而就学地湖北周边的河南仅有500名“一流大学”毕业生流入就业地上海周边的江苏工作(“一流学科”毕业生就学地—就业地的网络自相关效应类似,不再举例赘述)。可能的原因是就学地和就业地网络自相关效应的存在,使得高校毕业生倾向于来自相邻的就学地或迁入到相邻的就业地,导致从就学地周边流向就业地周边的高校毕业生相对减少。类似地,基于流的网络自相关效应可以理解为空间竞争行为,即从某就学地到某就业地的高校毕业生就业流动,会降低该就学地周边的高校毕业生向该就业地周边迁移的可能性[41]

对比重力模型和空间计量交互模型各因素系数可知,空间计量交互模型的系数均小于重力模型。可见,若忽视网络自相关效应会高估各因素对高校毕业生就业流动的影响。

(1)经济因素。“一流大学”毕业生就业流动受到经济因素的影响弱于“一流学科”毕业生。其中,工资水平作为衡量区域经济发展及吸引力的重要指标,工资水平对“一流大学”和“一流学科”毕业生就业流动的影响符合预期。工资水平的提高,将会提高就学地对本地毕业生的粘滞作用,也对就业地吸引毕业生的流入产生显著“拉力”作用,说明高校毕业生倾向于选择收入水平较高的省份就业。相对而言,“一流学科”毕业生就业流动受到工资水平的影响更大。失业率对两类高校毕业生就业流动的影响也符合预期,且对“一流学科”毕业生就业流动的影响更显著。失业率的增加,将会减弱就业地对毕业生的吸引力,也会加速就学地毕业生的流出。此外,“双一流”高校毕业生具有较强的创新能力,各省份较高的创新创业水平可以为毕业生工作成长提供更多的资金与技术支持,所以创新创业水平越高,将抑制就学地本地高校毕业生的流失,也有助于促进毕业生流入就业地工作。同样,创新创业水平对“一流学科”毕业生就业流动的影响较大。

(2)地方品质因素对高校毕业生就业流动的影响不容忽视[20,29],但这种影响主要体现在对就业地迁入流的“拉力”作用。休闲娱乐场所越多、居住气候越宜人(即平均气温越高)、基础教育质量越好(即中学生师比越低)、医疗资源越好的省份往往能够吸引较多“一流大学”和“一流学科”毕业生的流入,但对“一流大学”毕业生就业流动的影响更大。而地方品质因素对就学地的影响程度有限,仅就学地休闲娱乐场所对高校毕业生的流动产生显著影响,就学地休闲娱乐场所越多,越容易吸引高校毕业生留在就学地工作,而非发生就业流动。

(3)本文重点关注政策因素对高校毕业生就业流动的影响。政策因素对“一流学科”毕业生就业流动的影响强于“一流大学”毕业生。其中,人才政策对高校毕业生就业流动的影响符合预期。人才政策出台力度越大,即人才吸引力指数越大,越容易吸引高校毕业生。对于就学地而言,人才吸引力指数越大,高校毕业生越倾向于留在就学地求职,减少本地高学历人才的流失。对于就业地来说,人才吸引力指数越大,有助于吸引高校毕业生的流入,这也正好解释了杭州、西安、成都、武汉等二线城市纷纷出台人才政策的缘故。户籍门槛指数的高低反映了各省份对高校毕业生的吸引力的强弱[45],户籍门槛指数越高,说明该省份对毕业生求职具有强烈的吸引力。相对来说,就业地的户籍政策的影响更显著,户籍门槛指数越高,越容易吸引高校毕业生流入就业地工作。

(4)迁移距离对高校毕业生就业流动产生显著负向影响,这与已有研究结论一致[19-20]。迁移距离对“一流学科”毕业生就业流动的影响更大,而具有更高人力资本的“一流大学”毕业生对距离相对不敏感。究其原因,由于具有更高人力资本水平的人才,在劳动力市场的地位和议价能力更强,同时抵御迁移成本和融入风险的能力也更强,致使更高人力资本水平的“一流大学”毕业生对迁移距离相对不敏感。在考虑网络自相关效应后,迁移距离对毕业生就业迁移流的负向影响减弱,与已有研究结论相似[32,41]。另外,本文发现就学地的生源构成对毕业生流向有着重要影响,就学地省份在某省份的招生人数越多,毕业生从就学地回流至该省份工作的人数也就越多。这说明大学生的两阶段迁移(从生源地到就学地的就学迁移和从就学地到就业地的就业流动)紧密关联。模型结果发现,“一流大学”毕业生与“一流学科”毕业生相比,高等教育招生制度对“一流学科”毕业生就业流动的影响更大,可能的原因是由于“一流大学”毕业生在就业市场中更具竞争力,不受限于返回生源地省份就业。

4.3 稳健性检验

本文采用替换样本量对原始模型回归结果的稳健性进行检验。首先,本文将93所“双一流”高校所在省份中包含“双一流”高校数量最多的江苏剔除,再次进行回归分析,模型系数与表2中的回归结果较为一致,表明原始模型回归结果较为稳健。其次,将“一流学科”毕业生迁移流中与“一流大学”毕业生迁移流不一致的OD流剔除,保留与“一流大学”毕业生相同的21×31条OD迁移流,再次运行模型。结果显示,大多数变量的系数与原始模型基本一致,也说明原始模型结果较为稳健。

5 结论与讨论

本文基于2019年“双一流”高校《毕业生就业质量报告》数据,采用空间统计方法对两类高校毕业生就业流动格局进行对比分析,并运用空间计量交互模型剖析其影响因素的差异性。本文的研究贡献在于:现有研究主要采用空间计量交互模型对普通劳动力或流动人口的网络自相关效应进行了分析,但较少关注高学历人才群体[39-40]。为此,本文通过引入空间计量交互模型,揭示了“双一流”高校毕业生就业迁移流存在的网络自相关效应,并对比了“一流大学”和“一流学科”高校毕业生就业流动格局及影响因素存在的差异性。主要结论如下:

(1)与人口总体分布格局相比,“双一流”高校毕业生就业地选择呈现高度集聚且不均衡的分布格局。两类高校毕业生就业密集区均集中在长三角、北京、湖北、广东等地区,但山东、四川等省份也吸引了较多“一流学科”毕业生就业;两类高校毕业生就业流动网络总体呈现“东密西疏”的分布格局,但其流动路径存在一定差别,无论是全国性流入中心的广东,还是区域性流入中心的北京、上海、浙江等省份,主要以吸引邻近省份“一流大学”和“一流学科”毕业生的流入为主,但同时这些地区也对远距离省份的“一流学科”毕业生产生较强吸引力。

(2)本文对“双一流”高校毕业生就业流动的研究发现,与中国的流动人口以工作为导向的迁移模式不同[52],“双一流”高校毕业生就业流动不仅受到经济因素的影响,也会受到地方品质因素的影响,但经济因素仍是影响“双一流”高校毕业生就业选择的核心因素。另外,政策因素及高等教育招生制度因素对毕业生就业流动也发挥着重要的作用。本文通过对“一流大学”和“一流学科”毕业生就业流动的对比分析,揭示了不同人力资本受不同类型因素影响的程度存在差异。具有更高人力资本的“一流大学”毕业生更加受到地方品质因素的影响,而经济因素、高等教育招生制度因素和政策因素则对人力资本相对较低的“一流学科”毕业生的影响更强。这说明越是要吸引高层次人才,越是要注重地方品质的营造。而目前的人才政策多以短期经济激励为主,例如住房补贴,创业补贴等。随着高学历人才对生活品质的要求提高,应该更加注重提升教育、医疗等公共服务质量,创造包容创新的软环境。

(3)“一流大学”和“一流学科”毕业生就业迁移流之间存在显著的网络自相关效应,基于就学地、就业地的网络自相关效应显著为正,基于就学地—就业地的网络自相关效应显著为负,表明就学地之间和就业地之间均存在正的溢出效应,而就学地周边与就业地周边之间存在负的溢出效应。而且,通过比较传统重力模型和空间计量交互模型研究结果发现,若忽视网络自相关效应会高估各因素对高校毕业生就业流动的影响。区域迁移流之间的网络自相关效应很大程度是由于影响因素的空间自相关性造成的[41]。一般而言,人才受到经济因素和地方品质因素的共同作用,而普通劳动力主要受经济因素驱动[49,53]。因此,人才在区域间的迁移会因为经济发展水平和地方品质因素的空间溢出,而与周边地区间人才迁移产生关联。此外,人才也会对地区产生更强的知识溢出效应,这种外部性对于本地和周围地区的创新和经济发展会产生直接的促进作用[54]。知识溢出也会导致本地和周围地区高学历人才迁移流产生关联。故人才迁移网络的自相关效应相对更强。

在中国高学历人才就业集聚的背景下,本文的发现对于制定区域协调发展的人才政策具有启示意义:① 由于毕业生就业迁移流之间存在网络自相关效应,单个省份毕业生流入与流出的变化,将影响迁移网络中其他省份毕业生的就业流动变化,从而影响整个迁移网络系统。因此,人才政策的制定需要实现从单一省份视角向区域协调视角的转变。为了避免造成区域内部“人才争夺”竞争过度,不同省份之间应发挥比较优势,区域内部省份之间应制定协同的人才政策,加强区域内部省份的合作与联合驱动作用,方能在人才竞争中具有优势。② 随着中国进入高质量发展阶段,高校毕业生对地方品质因素的重视程度逐渐增强,尤其对“一流大学”毕业生而言,完善的公共服务、丰富的休闲娱乐设施以及舒适的自然环境将构成未来城市吸引人才的重要因素。③ 高校毕业生作为经历高等教育的群体,其就学城市与就业城市存在高度重叠,即就学城市的粘滞率较高,因此对于人才流动的引导和政策着力点,应往前推移至高等教育资源的空间配置和名额分配政策上。将高校作为人才流动体系中的重要一环,统筹布局,将地方高等院校培养模式和区域发展战略进行协调,在促进地区高质量发展的过程中逐步提高人才吸引力。

本文仍存在以下不足之处:① 限于数据可得性,本文仅从省级尺度对高校毕业生的流动格局进行了分析,缺乏基于城市尺度的精细化研究,之后可探索获取更为完备的数据集,对地级市或县域尺度高校毕业生流动格局进行刻画,同时丰富人才研究的主体,可以尝试比较不同专业类型或职业类型人才群体流动格局及影响因素的异质性。②《毕业生就业质量报告》数据无法提供完整的毕业生生源地信息,因此本文聚焦于毕业生从高校所在地到工作地的就业流动,相对忽视了生源地的影响。未来的研究,我们将进一步拓展数据来源,希望能够追踪高校毕业生从生源地到高校所在地、再到工作地的完整迁移路径,加深对人才迁移的深入理解。③ 本文仅对2019年中国“双一流”高校毕业生就业流动格局及影响因素进行了分析,缺乏基于多期数据的实证研究。未来可探索通过多期的微观调查数据或借助大数据平台,追踪长时段高校毕业生流动的演变格局,有助于深入了解人才流动格局对经济发展的塑造作用,为知识经济时代区域实现更高质量发展提供实证依据。④ 本文对人才群体的研究只考虑以学校层级和学历层级为标准定义的人才,与劳动力市场需求匹配存在一定的不吻合,未来的研究可以考虑基于学历、学校、专业等多维度来定义人才,加深对相关领域的研究。

参考文献

The State Council.

National Outline for the Planning and Development of Medium-and Long-term Talents (2010-2020)

.http://www.gov.cn/jrzg/2010-06/06/content_1621777.htm.

URL     [本文引用: 1]

[ 国务院.

国家中长期人才发展规划纲要(2010—2020年)

.http://www.gov.cn/jrzg/2010-06/06/content_1621777.htm. ]

URL     [本文引用: 1]

Deeply implement the strategy of strengthening the country with talents in the new era, and accelerate the construction of an important talent center and innovation highland in the world

.People's Daily, 2021-09-29(1).

[本文引用: 1]

[

深入实施新时代人才强国战略加快建设世界重要人才中心和创新高地

人民日报, 2021-09-29(1).]

[本文引用: 1]

Ye Zhonghai. Introduction to Talent Studies. Changsha: Hunan People's Press, 1986.

[本文引用: 1]

[ 叶忠海. 人才学概论. 长沙: 湖南人民出版社, 1986.]

[本文引用: 1]

Gu Hengyu, Shen Tiyan.

Spatial evolution characteristics and driving forces of Chinese highly educated talents

Acta Geographica Sinica, 2021, 76(2): 326-340.

DOI:10.11821/dlxb202102006      [本文引用: 4]

Talents are the core driving force for regional innovation and development, and they are also the key to urban competition in the future. Based on the data of the sixth population census and the national 1% population sampling survey in 2015, this paper uses the concentration index (CI), Gini index (GI) and several related spatial analysis methods to examine the spatial patterns of highly educated talents across China and the drivers behind these patterns from 2010 to 2015. The results are as follows: (1) Talents show highly concentrated and unbalanced spatial distribution patterns at the city level over the five years, but the trend of concentration and imbalance has gradually eased. Results from standard deviation ellipse (SDE) indicate that the distribution direction of highly educated people is "NE-SW". Furthermore, there is a significant spatial spillover effect in the distribution of talents, with three major urban agglomerations of China as the highlands. (2) Economic opportunities are the dominant drivers for the distribution of highly educated talents in China. Among them, wages are the core driver, and gross GDP and industrial structure of each city also exert a significant impact. (3) After controlling the impacts of economic opportunities, local quality variables represented by basic public services (e.g., education and medical care), transportation accessibility and urban consumption facilities play an important role in the distribution of highly educated talents. (4) There are significant differences between the driving factors for talents in urban agglomerations and non-urban agglomerations: economic opportunities are the main driving force for the distribution of talents in both urban agglomerations and non-urban agglomerations, while local qualities including education, consumption, transportation and natural environment have a more significant impact on the distribution of talents in urban agglomerations. This study provides references for the formulation of urban and regional talent policies and regional development policies.

[ 古恒宇, 沈体雁.

中国高学历人才的空间演化特征及驱动因素

地理学报, 2021, 76(2): 326-340.]

DOI:10.11821/dlxb202102006      [本文引用: 4]

人才是推动地区创新发展的核心动力,也是未来城市竞争的关键。基于第六次全国人口普查和2015年全国1%人口抽样调查数据,运用集聚度、基尼系数等空间统计分析以及负二项回归模型方法,对2010—2015年中国城市高学历人才的空间演化特征及驱动因素展开研究。结果发现:① 人才呈现出高度集中且不平衡的空间分布格局,但不平衡的趋势有所缓解,分布方向为“东北—西南”走向。人才分布的空间溢出效应显著,城市群是人才集聚的高地。② 经济机会是影响中国高学历人才集聚的主导力量,其中工资是核心驱动因素,地区的发展水平、产业结构同样产生显著影响。③ 控制经济机会的影响后,以教育和医疗等基础公共服务、交通可达性和城市消费设施为核心的地方品质变量在高学历人才的空间集聚过程中发挥重要作用。④ 城市群与非城市群人才驱动因素存在显著差异:经济机会是城市群和非城市群人才集聚的主要驱动力;教育、消费、交通以及自然环境等地方品质变量对城市群人才集聚的影响更为显著。本研究为城市和区域人才政策和区域发展政策的制定提供借鉴与参考。

Florida R.

The economic geography of talent

Annals of the Association of American Geographers, 2002, 92(4): 743-755.

DOI:10.1111/1467-8306.00314      URL     [本文引用: 2]

Zhao Jingjing, Sheng Yuxue, Jiang Cheng.

Regional disparity, job choosing and human capital mobility: An empirical research of China graduates job survey

Population and Development, 2016, 22(1): 28-37.

[本文引用: 4]

[ 赵晶晶, 盛玉雪, 蒋承.

区域差距、就业选择与人力资本流动: 基于高校毕业生的实证研究

人口与发展, 2016, 22(1): 28-37.]

[本文引用: 4]

Hoare A, Corver M.

The regional geography of new young graduate labour in the UK

Regional Studies, 2010, 44(4): 477-494.

DOI:10.1080/00343400902736543      URL     [本文引用: 2]

Faggian A, McCann P.

Human capital, graduate migration, and innovation in British regions

Cambridge Journal of Economics, 2009, 33(2): 317-333.

DOI:10.1093/cje/ben042      URL     [本文引用: 3]

Di Cintio M, Grassi E.

Internal migration and wages of Italian university graduates

Papers in Regional Science, 2013, 92(1): 119-140.

DOI:10.1111/j.1435-5957.2011.00397.x      [本文引用: 3]

In this paper, we estimate wage gains due to geographic mobility of Italian university graduates three years after graduation. By means of a matching procedure we quantify wage premia associated with the choice of studying far from home, moving after graduation and moving back home after graduation. We find evidence of large heterogeneity in the returns to different migration patterns. The results show large gains for those who move after graduation and smaller gains for those who migrate to study. Conversely, those who choose to go back home after having studied in regions different from that of origin suffer small losses. Our findings are robust to a finer definition of mobility and to the subsample of individuals originating from the South.

Tang A Z R, Rowe F, Corcoran J, et al.

Where are the overseas graduates staying on? Overseas graduate migration and rural attachment in Australia

Applied Geography, 2014, 53: 66-76.

DOI:10.1016/j.apgeog.2014.06.004      URL     [本文引用: 2]

Faggian A, Rajbhandari I, Dotzel K R.

The interregional migration of human capital and its regional consequences: A review

Regional Studies, 2017, 51(1): 128-143.

DOI:10.1080/00343404.2016.1263388      URL     [本文引用: 1]

Jin Y H, Mjelde J W, Litzenberg K K.

Economic analysis of job-related attributes in undergraduate students' initial job selection

Education Economics, 2014, 22(3): 305-327.

DOI:10.1080/09645292.2011.620849      URL     [本文引用: 2]

Kotavaara N, Kotavaara O, Rusanen J, et al.

University graduate migration in Finland

Geoforum, 2018, 96: 97-107.

DOI:10.1016/j.geoforum.2018.07.010      URL     [本文引用: 2]

Greenwood M J.

The geographic mobility of college graduates

The Journal of Human Resources, 1973, 8(4): 506-515.

DOI:10.2307/144860      URL     [本文引用: 1]

Faggian A, McCann P, Sheppard S.

An analysis of ethnic differences in UK graduate migration behaviour

The Annals of Regional Science, 2006, 40(2): 461-471.

DOI:10.1007/s00168-006-0061-y      URL     [本文引用: 1]

Glaeser E L, Gottlieb J D.

Urban resurgence and the consumer city

Urban Studies, 2006, 43(8): 1275-1299.

DOI:10.1080/00420980600775683      URL     [本文引用: 1]

Cities make it easier for humans to interact, and one of the main advantages of dense, urban areas is that they facilitate social interactions. This paper provides evidence for the US suggesting that the resurgence of big cities in the 1990s is due, in part, to the increased demand for these interactions and due to the reduction in big city crime, which had made it difficult for urban residents to enjoy these social amenities. However, while density is correlated with consumer amenities, we show that it is not correlated with social capital and that there is no evidence that sprawl has hurt civic engagement.

Shinnar R S, Giacomin O, Janssen F.

Entrepreneurial perceptions and intentions: The role of gender and culture

Entrepreneurship Theory and Practice, 2012, 36(3): 465-493.

DOI:10.1111/j.1540-6520.2012.00509.x      URL     [本文引用: 1]

This paper examines how culture and gender shape entrepreneurial perceptions and intentions within Hofstede's cultural dimensions framework and gender role theory. We test whether gender differences exist in the way university students in three nations perceive barriers to entrepreneurship and whether gender has a moderating effect on the relationship between perceived barriers and entrepreneurial intentions across nations. Findings indicate significant gender differences in barrier perceptions. However, this gap is not consistent across cultures. Also, a moderating effect of gender on the relationship between barriers and entrepreneurial intentions is identified. Implications for research and practice are discussed.

Wright R, Ellis M.

Where science, technology, engineering, and mathematics (STEM) graduates move: Human capital, employment patterns, and interstate migration in the United States

Population, Space and Place, 2019, 25(4): e2224. DOI: 10.1002/psp.2224.

URL     [本文引用: 1]

Wang Yifan, Cui Can, Wang Qiang, et al.

Migration of human capital in the context of vying for talent competition: A case study of China's "first-class" university graduates

Geographical Research, 2021, 40(3): 743-761.

DOI:10.11821/dlyj020200437      [本文引用: 7]

Human capital is the key driver of urban innovation and development. In 2017, the "vying for talent" competition was initiated by some second-tier cities, since then cities have been competing each other fiercely for recruiting and retaining talent. This paper focuses on China′s "first-class" university graduates, who are regarded as the main target of the "vying for talent" competition and an important carrier of human capital. Based on 2018 Graduate Employment Reports, this paper demonstrates the spatial mobility of graduates using Cartogram. In addition, an evaluation system for assessing talent policy is constructed through analyses of the talent policies issued by different cities. With a directional migration model, the determinants of graduate mobility are explored. The results reveal that there are significant regional disparities in retention rates, with the geographical patterns of the Y-shaped low-value areas in the northeastern, northwestern, and central regions, and the U-shaped high-value areas covering east coast to southwest. Graduates have been accumulating spatially, and the T-shaped cluster along east coast and the Yangtze River Economic Belt has formed. The spatial patterns of "neighborhood interaction" and "long-distance unidirectional flow" are presented between the city of university and the city of employment. Moreover, the differences in city attractiveness are remarkable. First-tier cities are preferred by graduates, even though limited talent policies have been implemented there. Some second-tier cities have issued talent policies to make up for the lack of attractiveness in economy and amenities. The findings suggest that economic factors, such as income level and technological innovation, as well as amenities including natural and cultural environment, educational resources, and public transportation are positively associated with the volume of graduates inflow. It has been found that a higher ratio of house price to income has squeezed out university graduates. With regard to talent policies, only relaxed hukou policy has a strong effect on attracting graduates, whereas the effects of housing and employment policies are relatively limited. However, it needs to be noted that talent policies may take a longer time to show effects, which requires follow-up investigation. In addition, heterogeneity at the individual level in terms of place of origin, major, etc. should be explored in the future studies.

[ 王一凡, 崔璨, 王强, .

“人才争夺战”背景下人才流动的空间特征及影响因素: 以中国“一流大学”毕业生为例

地理研究, 2021, 40(3): 743-761.]

DOI:10.11821/dlyj020200437      [本文引用: 7]

自2017年以来,“人才争夺战”如火如荼,城市步入以人才为核心要素的高维竞争阶段。作为人才争夺战的主要目标和人力资本的重要承载者,本文聚焦中国“一流大学”毕业生,基于2018年《毕业生就业质量报告》,运用Cartogram地图呈现了毕业生的空间流动特征,并梳理政府人才政策文件构建了人才政策评价指标体系,运用有向迁移模型剖析毕业生流动的影响因素。结果表明:① 就学地存在粘滞性,但区域差异显著,毕业生向一线城市集聚。② 城市吸引力水平分异明显,部分城市通过发布人才政策以补充地方经济、舒适性吸引力的不足。③ 经济维度要素与城市舒适性均能有效吸引毕业生流入,较高房价收入比会引发“挤出效应”。人才政策中,落户政策对毕业生流入起激励作用。

Cui C, Wang Y F, Wang Q.

The interregional migration of human capital: The case of "First-Class" university graduates in China

Applied Spatial Analysis and Policy, 2022, 15(2): 397-419.

DOI:10.1007/s12061-021-09401-7      [本文引用: 6]

Human capital has been acknowledged as a key driver for innovation, thereby promoting regional economic development in the knowledge era. University graduates from China’s “first-class” universities—the top 42 universities, included in the “double first-class” initiative, are considered highly educated human capital. Their migration patterns will exert profound impacts on regional development in China, however, little is known about the migration of these elite university graduates and its underlying driving forces. Using data from the 2018 Graduate Employment Reports, this study reveals that the uneven distribution of “first-class” universities and regional differentials largely shaped the migration of graduates from the university to work. Graduates were found aggregating in eastern first-tier cities, even though appealing talent-orientated policies aimed at attracting human capital had been launched in recent years by second-tier cities. Employing negative binomial models, this study investigates how the characteristics of the city of university and destinations affect the intensity of flows of graduates between them. The results showed that both jobs and urban amenities in the university city and destination city exert impacts on the inflow volume of graduates; whereas talent attraction policies introduced by many second-tier cities are found not to exert positive effects on attracting “first-class” university graduates presently. The trend of human capital migration worth a follow-up investigation, particularly given ongoing policy dynamics, and would shed light on the regional development disparities in China.

Nie Jingxin, Liu Helin.

Spatial pattern and the resulting characteristics of talent flows in China

Scientia Geographica Sinica, 2018, 38(12): 1979-1987.

DOI:10.13249/j.cnki.sgs.2018.12.005      [本文引用: 1]

By looking into the enrollment and employment data of graduates from universities directly administered by China Ministry of Education and with the method of index evaluation and hot-cold spot analysis, this article analyzed the graduates’ regional flowing patterns of two flowing stages of enrolled in the university and employed after graduation, and the resulting spatial distribution at the provincial level. The study found that the flow of talent from the university to study in different stages, can more clearly reveal the characteristics of the geographical space for talents. The local spatial viscosity in different regions dominates the flow of talent, and geopolitical and income factors in subsequent plays a role of regional adjustment. In the two stages, the flow of talent has significant spatial viscous characteristics. The geographical pattern of the flow includes “local-leapfrog” mode, “local-semi adherent” mode and “local-adherent” mode. Under the influence of different factors, the enrollment stage is dominated by “local-(semi) adherent” mode due to the adherence to the geo-social relations, while the employment stage is dominated by “local-leapfrog” type, which is adhered to the multiple possibilities of regional employment opportunities and benefits. From the perspective of the provincial pattern formed by talent flow, however, the spatial distribution of talents at the level of provincial level is more flat, while the phase of employment flow is more polarized in the longitudinal distribution. The “arch” pattern along the southeastern coast and the Yangtze River is characterized in both two stages, and the Yangtze River Delta region belongs to the hot spot of talent. However, because of the lack of provincial integration and linkage, the centralization of talent is not significant enough in the central and western regions, which highlight the important effect of the dominant area’s viscosity in the formation of the high ground of talent. It is suggested that different cities should bring into full play the role of local glutinosity to enhance the work of introducing university intelligence, from the two stages of talent generation and with the help of the strength of the urban agglomeration.

[ 聂晶鑫, 刘合林.

中国人才流动的地域模式及空间分布格局研究

地理科学, 2018, 38(12): 1979-1987.]

DOI:10.13249/j.cnki.sgs.2018.12.005      [本文引用: 1]

依据教育部直属高校2015届本科毕业生生源与就业数据,采用指标评价与冷热点分析方法,分析升读大学与本科就业两个流动阶段的人才流动地域模式及省域空间分布格局。研究表明:① 人才流动具有明显的本地空间粘滞性特征,地域模式包括“本地-跃迁”型、“本地-半依附”型和“本地-依附”型。② 省际层面形成沿东南沿海与长江沿岸分布的“弓形”格局,显示了优势区域的整体粘滞性对人才高地形成的意义。研究指出,把握关键节点、依托城市群来发挥粘滞作用有助于城市推进引智工作。

Zhong Yuqi, Wang Qiang, Cui Can, et al.

Migration pattern of human capital and its influential factors: A case study of university graduates in Nanjing city

Scientia Geographica Sinica, 2021, 41(6): 960-970.

DOI:10.13249/j.cnki.sgs.2021.06.005      [本文引用: 2]

In the era of knowledge economy, talent are acknowledged as a key driver for innovation, and thereby determine the vitality and competitiveness of regional economy. The competition of attracting talent initiated by some second-tier cities is increasingly heating up. The central government has repeatedly stressed the importance of reasonable, fair, smooth and orderly mobility of talent to facilitate economic transformation. Against this background, based on the “Graduate Employment Quality Report” and first-hand questionnaire survey data of university graduates from Nanjing, this study adopted chord diagram and map visualization to depict the previous and subsequent migration patterns of university graduates. Furthermore, multinominal logistic regressions were employed to explore the factors underlying graduates’ migration choice. The results show that the the number of people flowing into Nanjing for higher education decreases with the increase in distance. Nearly 84% of the graduates originally come from the eastern and central regions. After graduation, their subsequent migration shows further concentration to the east. Using a measurement of regional circulation, the overall migration path of graduates presents an “east-west asymmetric U-shaped” pattern, with the Yangtze River Delta region constituting the core area for graduates to flow to. The economic development level of the destination of graduates’ subsequent migration is obviously higher than that of their domicile, and the destination is often in close proximity to their domicile. At the individual level, the rank of the university, discipline, social netweok, and graduates’ evaluation on job opportunities all have significant influence on graduates’ migration decisions.

[ 钟雨齐, 王强, 崔璨, .

人力资本的空间迁移模式与影响因素分析: 以南京市高校毕业生为例

地理科学, 2021, 41(6): 960-970.]

DOI:10.13249/j.cnki.sgs.2021.06.005      [本文引用: 2]

知识经济时代人才是决定区域经济竞争力的重要资源,各地政府发起的人才争夺战日益白热化,中央政府也一再强调应当引导合理、公正、畅通、有序的人才社会性流动。基于南京市高校《毕业生就业质量报告》和一手问卷调查数据,进行毕业生择校迁移与择业迁移模式并采用多项逻辑斯蒂回归模型探究其影响因素研究。研究表明:① 南京市高校毕业生中近84%来自东部和中部地区,而择业迁移进一步向东集聚。② 毕业生整体迁移路径呈“东西非对称U型”格局,长三角城市群构成毕业生流动的核心区域;就业地经济发展水平明显高于生源地且往往与生源地邻近。③ 个体的教育背景、家庭和社会网络和对就业机会的评估都会显著影响毕业生的流动类型选择。

Chen J, Hu M Z, Lin Z G.

Does housing unaffordability crowd out elites in Chinese superstar cities?

Journal of Housing Economics, 2019, 45: 101571. DOI: 10.1016/j.jhe.2018.03.003.

URL     [本文引用: 3]

Lin X B, Ren T, Wu H, et al.

Housing price, talent movement, and innovation output: Evidence from Chinese cities

Review of Development Economics, 2021, 25(1): 76-103.

DOI:10.1111/rode.v25.1      URL     [本文引用: 4]

Ma Liping, Yue Changjun, Min Weifang.

Regional distribution of colleges and regional flow of college students

Research in Educational Development, 2009, 29(23): 31-36.

[本文引用: 4]

[ 马莉萍, 岳昌君, 闵维方.

高等院校布局与大学生区域流动

教育发展研究, 2009, 29(23): 31-36.]

[本文引用: 4]

Qian H F.

Talent, creativity and regional economic performance: The case of China

The Annals of Regional Science, 2010, 45(1): 133-156.

DOI:10.1007/s00168-008-0282-3      URL     [本文引用: 3]

Pan Kunfeng.

The influence and mechanism of university enrollment plan on the migration of young people in China

Educational Science Research, 2017(12): 89-92.

[本文引用: 4]

[ 潘昆峰.

大学招生计划对我国青年人口迁移的影响及作用机制

教育科学研究, 2017(12): 89-92.]

[本文引用: 4]

Ma Liping, Pan Kunfeng.

Stay or migrate? An empirical study on the relationship between work place, university place and birth place

Tsinghua Journal of Education, 2013, 34(5): 118-124.

[本文引用: 2]

[ 马莉萍, 潘昆峰.

留还是流? 高校毕业生就业地选择与生源地、院校地关系的实证研究

清华大学教育研究, 2013, 34(5): 118-124.]

[本文引用: 2]

Liu Y, Shen J F, Xu W, et al.

From school to university to work: Migration of highly educated youths in China

The Annals of Regional Science, 2017, 59(3): 651-676.

DOI:10.1007/s00168-016-0753-x      URL     [本文引用: 3]

Zheng S Q, Zhang X N, Sun W Z, et al.

Air pollution and elite college graduates' job location choice: Evidence from China

The Annals of Regional Science, 2019, 63(2): 295-316.

DOI:10.1007/s00168-019-00939-6      [本文引用: 1]

He Z Y, Zhai G F, Asami Y, et al.

Migration intentions and their determinants: Comparison of college students in China and Japan

Asian and Pacific Migration Journal, 2016, 25(1): 62-84.

DOI:10.1177/0117196815621203      URL     [本文引用: 1]

Maintaining a young, well-educated labor force is an important strategy for regional economic development and social vitality. Based on a comparative study of China and Japan, this article aims to elicit 1) the factors that affect college students’ employment migration preference; and 2) the differences between migration preferences of students from the two countries and the possible explanations for such differences. With the use of survey data from approximately 2,000 college students in the two countries, this study identifies region of origin as a key determinant of employment migration choice in both countries. The region of origin functions as a critical point differentiating primary and secondary labor markets for individuals, whereas the first-tier region in each country is a popular work destination. A one-way bottom-up migration from lower-ranking to higher-ranking regions is revealed in our regional hierarchy model. Findings suggest that Chinese students were oriented to employment opportunities and economic well-being while Japanese students were more inclined to consider personal lifestyle and local amenities. The findings imply that reducing regional disparities in economic development and income levels in China and enhancing urban service facilities in Japan may encourage college graduates to remain in their home regions.

Sheng Yuxue, Zhao Jingjing, Jiang Cheng.

Research on the spatial correlation of interprovincial employment flow of college graduates in China

Peking University Education Review, 2018, 16(1): 159-178, 192.

[本文引用: 4]

[ 盛玉雪, 赵晶晶, 蒋承.

我国高校毕业生跨省就业流动的空间相关性研究

北京大学教育评论, 2018, 16(1): 159-178, 192.]

[本文引用: 4]

Stouffer S A.

Intervening opportunities: A theory relating mobility and distance

American Sociological Review, 1940, 5(6): 845-867.

DOI:10.2307/2084520      URL     [本文引用: 1]

Fotheringham A S.

A new set of spatial-interaction models: The theory of competing destinations

Environment and Planning A: Economy and Space, 1983, 15(1): 15-36.

DOI:10.1177/0308518X8301500103      URL     [本文引用: 1]

Members of the family of spatial-interaction models commonly referred to as gravity models are shown to be misspecified. One result of this misspecification is the occurrence of an undesirable ‘spatial-structure effect’ in estimated distance-decay parameters and this effect is examined in detail. An alternative set of spatial-interaction models is formulated from which more accurate predictions of interactions and more accurate parameter estimates can be obtained. These new interaction models are termed competing destinations models, and estimated distance-decay parameters obtained in their calibration are shown to have a purely behavioural interpretation. The implications of gravity-model misspecification are discussed.

Chun Y W.

Modeling network autocorrelation within migration flows by eigenvector spatial filtering

Journal of Geographical Systems, 2008, 10(4): 317-344.

DOI:10.1007/s10109-008-0068-2      URL     [本文引用: 1]

Gu Hengyu, Shen Tiyan.

Spatio-temporal evolution mechanism of China's internal skilled migration

Acta Geographica Sinica, 2022, 77(10): 2457-2473.

DOI:10.11821/dlxb202210004      [本文引用: 1]

The migration of skilled individuals has become an important issue in promoting new-type urbanization in China and a key factor affecting China's regional innovation output and high-quality development. Considering the issues of zero inflation and network autocorrelation in skilled migration data, this paper combines the eigenvector space filtering (ESF) technique and the "two-stage" hurdle model into a comprehensive united framework to construct a longitudinal spatial hurdle gravity model. It then has been employed in the case study exploring the spatiotemporal patterns and influencing factors of interprovincial skilled migration in China during 2000-2015. The results are listed as follows: First, from 2000 to 2015, the mobility proportion of the skilled migration increased first and then decreased. The agglomeration pattern of skilled migration maintains the imbalance of its spatial distribution. With the elapse of time, the migration of skilled presents a dispersing trend and drives the decline of its spatial distribution and agglomeration. Talent migration presents a persistent and significant network autocorrelation, and its distribution presents a persistent and significant spatial autocorrelation. Second, China's interprovincial skilled migration during 2000-2015 was driven by gravity factors (population scales at origin and destination, distance), regional economic and scientific and technological development (average wage, spending on science & technology and education), natural amenities (average temperature difference, air quality), urban amenities (public health and education services, urban greening), and other factors (social networks, the cost of living, and population density). Third, the migration of skilled people can be regarded as a "two-stage" process, where factors affecting its migration probability and migration scale are different. Such differences are mostly reflected in factors of amenities versus economy. Fourth, the impact of economic growth, investment in science and education, natural amenities, and basic public services on skilled migration has increased over time, while the impact of wages and urban greening has weakened over time. The conclusion of this paper provides policy references for regional talent management and the balance of regional development.

[ 古恒宇, 沈体雁.

中国省际高技能人才迁移的时空演化机制

地理学报, 2022, 77(10): 2457-2473.]

DOI:10.11821/dlxb202210004      [本文引用: 1]

高技能人才迁移是推进新型城镇化建设的重要议题,也是影响地区创新产出和高质量发展的关键要素。针对人才迁移数据中蕴含的零膨胀和网络自相关特性,本文将特征向量空间滤波(ESF)技术和&#x0201c;两阶段&#x0201d;Hurdle模型结合,构建空间Hurdle引力模型,结合2000&#x02014;2015年中国省际高技能人才迁移面板数据,研究人才迁移的时空演化格局和驱动机制。研究结论显示:① 2000&#x02014;2015年人才迁移的跨省迁移比例先升后降;人才迁移表征出集聚格局,维系了其空间分布的不均衡性;随时间推移,人才迁移格局呈现分散趋势,人才空间分布集聚性下降;人才迁移和空间分布均呈现出持续显著的网络与空间自相关性特征。② 引力因素(人口规模、空间距离)、地区经济和科技发展水平(工资、科教投入)、自然舒适度(平均温差、空气质量)、城市舒适度(医疗及教育公共服务、城市绿化)以及其他因素(社会网络、生活成本、人口密度)共同驱动了跨世纪以来中国省际人才迁移过程。③ 人才迁移可被看作一个&#x0201c;两阶段&#x0201d;过程,影响其迁移概率和迁移规模的因素呈现一定差异。④ 经济增速、科教投入、自然舒适度和基础公共服务对人才迁移的影响随时间增强,而工资和城市绿化的影响随时间减弱。本文的研究结论为地区人才治理及实现地区均衡发展提供政策参考。

Lesage J P, Pace R K.

Spatial econometric modeling of origin-destination flows

Journal of Regional Science, 2008, 48(5): 941-967.

DOI:10.1111/jors.2008.48.issue-5      URL     [本文引用: 6]

Lesage J P, Thomas-Agnan C.

Interpreting spatial econometric origin-destination flow models

Journal of Regional Science, 2015, 55(2): 188-208.

DOI:10.1111/jors.12114      URL     [本文引用: 3]

Lesage J P, Parent O.

Bayesian model averaging for spatial econometric models

Geographical Analysis, 2007, 39(3): 241-267.

DOI:10.1111/gean.2007.39.issue-3      URL     [本文引用: 4]

Griffith D A, Jones K G.

Explorations into the relationship between spatial structure and spatial interaction

Environment and Planning A: Economy and Space, 1980, 12(2): 187-201.

DOI:10.1068/a120187      URL     [本文引用: 1]

This paper explores the relationship between spatial structure and spatial interaction at the intraurban level. To examine this relationship an experimental framework is designed based on the application of a doubly constrained entropy-type gravity model to journey-to-work data for twenty-four Canadian urban areas. The study demonstrates that distance-decay exponents are strongly influenced by geographic structure and the geometry of origins and destinations. As such, both the influence of map pattern and the friction of distance should be explicitly incorporated into spatial interaction models. The paper also explores the impact of city size and the nature of the economic base of the urban area upon distance-decay exponents.

Pu Yingxia, Han Hongling, Ge Ying, et al.

Multilateral mechanism analysis of interprovincial migration flows in China

Acta Geographica Sinica, 2016, 71(2): 205-216.

DOI:10.11821/dlxb201602003      [本文引用: 7]

Population migration flows between different regions are related to not only the origin- and destination-specific characteristics, but also to the migration flows to and from neighborhoods. Intuitively, changes in the characteristics of a single region will impact both inflows and outflows to and from other regions. In order to explore the spatial interaction mechanism driving the increasing population migration in China, this paper builds the spatial OD model of interprovincial migration flows based on the sixth national population census data and related social-economic data. The findings are as follows: (1) Migration flows show significant autocorrelation effects among origin and destination regions, which means that the migration behavior of migrants in some region is influenced by that of migrants in other places. The positive effects indicate the outflows from an origin or the inflows to a destination tend to cluster in a similar way. Simultaneously, the negative effects suggest the flows from the neighborhood of an origin to the neighborhood of a destination tend to disperse in a dissimilar way. (2) Multilateral effects of the regional economic and social factors through the spatial network system lead to the clustering migration flows across interrelated regions. Distance decay effect plays the most influential force in shaping the patterns of migration flows among all the factors and the negative spillover effect further aggravates the friction of distance. As for destinations, the influence of wage level and migration stocks is beyond that of GDP and the positive spillover effects of these factors enhance the attraction of neighborhood regions. The spillover effects of unemployment rate and college enrollment of higher education are significantly negative while the effect of population in a destination is not significant. As for origins, population and migration stocks lead to positive spillover effects on the neighborhoods while the effects of other factors are negative. (3) Changes in the regional characteristics will potentially lead to a series of events to the whole migration system, and the flows to and from the center of oscillation and its neighborhoods vibrate greatly compared with other regions. The simulation results of 5% GDP increase in Jiangsu province indicate that the outflows to other regions decrease while the inflows from all others increase to some different extent. Comparatively, the influence on the flows to and from the regions neighboring Jiangsu is significant while that of remote regions is much less, which cannot be explained by the traditional gravity model.

[ 蒲英霞, 韩洪凌, 葛莹, .

中国省际人口迁移的多边效应机制分析

地理学报, 2016, 71(2): 205-216.]

DOI:10.11821/dlxb201602003      [本文引用: 7]

区际人口迁移不仅与迁出地和目的地的要素特征以及距离有关,而且还受到周边迁移流的影响.基于网络自相关理论,利用"六普"省际人口迁移数据和相关统计资料,在重力模型的基础上考虑迁移流之间可能存在的几种空间依赖形式,构建中国省际迁移流的空间OD模型,初步揭示区域经济社会等因素及其空间溢出效应对省际人口迁移的影响,并就区域要素变化对整个省际人口迁移系统产生的"连锁反应"进行了模拟.结果表明:① 中国省际迁移流之间存在显著的网络自相关效应.目的地和迁出地的自相关效应皆为正,导致迁入和迁出流的空间效仿行为;迁出地和目的地周边则出现负的自相关效应,导致迁移流的空间竞争行为;② 区域经济社会等因素通过网络空间关系对周边地区产生的多边溢出效应导致迁移流在空间上集聚.其中,距离衰减效应位居各要素之首,其溢出效应进一步加剧距离的摩擦作用;对目的地而言,区域工资水平和迁移存量超过GDP的影响并产生正的溢出效应,促进周边地区吸引更多的外来人口;对迁出地而言,人口规模和迁移存量产生正的溢出效应,推动周边地区人口外迁;③ 区域要素变化潜在地对整个省际人口迁移系统产生一系列"连锁反应",震荡中心及其周边区域的迁移流波动较大.江苏省GDP增长5%的模拟结果表明,江苏迁往全国其他省份的人口数量都有不同程度地减少,而其他省份入迁人口均有所增加.相对而言,江苏周边省份的迁入或迁出流受到的波动较大,偏远省份波及较小,这是传统的重力模型所无法解释的.

Lao X, Gu H Y, Gao Q A, et al.

Unraveling the geography of intercity flows of migrants' hukou conversion intentions: A spatial econometric origin-destination flow analysis

Journal of Urban Planning and Development, 2022, 148(4): 5022032. DOI: 10.1061/(ASCE)UP.1943-5444.0000875.

URL     [本文引用: 2]

Zeng Yongming.

Geographical effects and driving mechanism of inter-provincial migration in China: Are men and women different?

Population Research, 2017, 41(5): 40-51.

[本文引用: 2]

Using the spatial OD model<span>,<span>this study analyzes the migration flows among <span>31 <span>provinces <span>in China by exploring geographical effects<span>,<span>driving mechanism<span>,<span>and gender differences based on the inter-provincial migration data of the <span>6<span>th <span>Population Census<span>. <span>Inter-provincial migration exhibit significant <span>spatial dependence<span>,<span>in which the origin and destination separate spatial autocorrelation promotes migration<span>, <span>whereas the origin-destination joint spatial autocorrelation hinders migration<span>. <span>In general<span>, <span>the <span>&ldquo;<span>push<span>&rdquo;<span>from origin is weaker than the <span>&ldquo;<span>pull<span>&rdquo;<span>from destination in Chinese inter-provincial migration<span>.<br><span>There are significant gender differences in the driving mechanism<span>. <span>Impact of driving factors on female <span>migration is stronger than that for male migration<span>. <span>Unemployment risk and employment discrimination <span>are more evident in female migration<span>. <span>Males are more strongly influenced by spatial dependence than<br><span>females in the choice of migration destination<span>, <span>which could be explained by the gender differences of <span>endowment and social environment<span>.</span></span></span></span></span></span></span><br></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span>

[ 曾永明.

中国省际人口迁移的地缘效应与驱动机制:男女有别吗?

人口研究, 2017, 41(5): 40-51.]

[本文引用: 2]

文章基于空间OD模型和&ldquo;六普&rdquo; 人口省际迁移流数据, 研究中国人口省际迁移流的地缘效应、 驱动机制与男女差异。文章得出的主要结论: ( 1) 中国人口迁移流内含显著的空间依赖,其中迁出、 迁入地独立的空间自相关效应促进人口迁移, 而迁出地-迁入地交互的空间自相关效应阻碍人口迁移。( 2) 总体上,中国人口省际迁移流受迁出地推力作用弱于迁入地的拉力作用, 表明人口迁移更多是出于对迁入地的&ldquo;美好预期&rdquo; ,而非对迁出地的&ldquo;过度抱怨&rdquo;。( 3) 人口迁移流的驱动机制有显著的性别差异: 女性迁移流受驱动因子的影响强于男性,女性的失业风险、 就业歧视更为明显; 男性在人口迁移的空间选择上受空间依赖的影响强于女性,这与性别禀赋和社会环境有关。

Ma Liping, Bu Shangcong, Ye Xiaoyang.

The impact of college entrance examination reform on admissions quality of the "double first-class" construction universities: Evidence from admissions data from Zhejiang (2014-2020)

China Higher Education Research, 2021(1): 32-39.

[本文引用: 1]

[ 马莉萍, 卜尚聪, 叶晓阳.

新高考改革对“双一流”建设高校生源质量的影响: 基于2014—2020年浙江省录取数据的实证研究

中国高教研究, 2021(1): 32-39.]

[本文引用: 1]

Zhang Jipeng, Lu Chong.

A quantitative analysis on the reform of household registration in Chinese cities

China Economic Quarterly, 2019, 18(4): 1509-1530.

[本文引用: 2]

[ 张吉鹏, 卢冲.

户籍制度改革与城市落户门槛的量化分析

经济学(季刊), 2019, 18(4): 1509-1530.]

[本文引用: 2]

Feng Zhiming, Yang Yanzhao, You Zhen, et al.

Research on the suitability of population distribution at the county level in China

Acta Geographica Sinica, 2014, 69(6): 723-737.

DOI:10.11821/dlxb201406001      [本文引用: 2]

The relationship between population distribution and resources, environment, social and economic development has attracted much attention for a long time. This paper set up an index system and some models for the assessment of the coordination between population and resources, environment, social and economic development. Then it used the index system and models to evaluate this coordination quantitatively at the county level. Based on this, the suitability and restriction of population distribution at the county level was graded and classified respectively, and its spatial and temporal patterns as well as regional characteristics were also revealed quantitatively. The results showed that: (1) population distribution was generally coordinated with human settlements environment in more than 3/5 of counties in China in 2010, which meant that population distribution was highly consistent with the natural suitability of human settlements environment at the county level; (2) population growth was merely not restricted by water and land resources in about half of counties in China in 2010, indicating that population distribution had medium coordination with the suitability of water and land resources; (3) population distribution was generally coordinated with social and economic development in more than 3/5 of counties in China in 2010, suggesting that population distribution was highly consistent with social and economic development; (4) the suitability degree of population distribution was larger than 60 in about 3/5 of counties in China in 2010, which showed that the relationship between population, resources, environment and development was coordinated or relatively coordinated; (5) as for the coordination between population, resources, environment and development at the county level, the eastern region was the best, the central region ranked second and the western region was the worst; (6) the suitability degree of population distribution at the county level could be identified into four grades, including basic coordination, relative coordination, under coordination and urgent need for coordination and 10 restricted classes.

[ 封志明, 杨艳昭, 游珍, .

基于分县尺度的中国人口分布适宜度研究

地理学报, 2014, 69(6): 723-737.]

DOI:10.11821/dlxb201406001      [本文引用: 2]

以人口空间分布及其与资源环境和社会经济协调性评价为核心,提出了一整套人口与资源环境和经济社会发展协调水平评价的指标体系与模型方法;以分县为基本单元,定量评价了2010 年中国人口与资源环境和社会经济发展的协调性和协调程度;根据人口分布适宜度高低和限制性差别,划分了中国分县人口分布适宜等级和限制类型,定量揭示了中国不同地区人口与资源环境和社会经济协调发展的时空格局和地域特征。研究表明:① 2010 年中国有3/5 以上的县(市、区) 人口分布与人居环境基本适宜,中国分县人口分布与人居环境自然适宜性保持了高度一致性;② 2010 年中国有1/2 以上的县(市、区) 人口发展基本不受水土资源约束,分县人口分布与水土资源适宜性处于中等水平;③ 2010 年中国有超3/5 的县(市、区) 人口与社会经济发展基本协调,人口分布的社会经济协调性良好;④ 2010 年中国近3/5 的县(市、区) 人口分布适宜度在60 以上,人口资源环境与发展处于基本协调或相对协调状态;⑤2010 年中国分县人口资源环境与发展的协调程度东部优于中部、中部优于西部;⑥ 2010 年中国分县人口分布适宜度可划分为人口资源环境与发展基本协调、相对协调、有待协调和亟待协调4个适宜等级与10 个限制类型。

Druckman A, Jackson T.

Measuring resource inequalities: The concepts and methodology for an area-based Gini coefficient

Ecological Economics, 2008, 65(2): 242-252.

DOI:10.1016/j.ecolecon.2007.12.013      URL     [本文引用: 1]

Gu H Y, Jie Y Y, Li Z T, et al.

What drives migrants to settle in Chinese cities: A panel data analysis

Applied Spatial Analysis and Policy, 2021, 14(2): 297-314.

DOI:10.1007/s12061-020-09358-z      [本文引用: 1]

Liu Ye, Wang Ruoyu, Xue Desheng, et al.

The spatial pattern and determinants of skilled laborers and lessskilled laborers in China: Evidence from 2000 and 2010 censuses

Geographical Research, 2019, 38(8): 1949-1964.

[本文引用: 2]

[ 刘晔, 王若宇, 薛德升, .

中国高技能劳动力与一般劳动力的空间分布格局及其影响因素

地理研究, 2019, 38(8): 1949-1964.]

DOI:10.11821/dlyj020180391      [本文引用: 2]

基于2000和2010年全国人口普查分县数据和地级行政单元数据,采用不均衡指数和空间自相关分析等方法,刻画中国高技能劳动力和一般劳动力的空间分布格局及其变化,并采用空间滞后模型,识别高技能劳动力与一般劳动力空间分布的决定因素及其变化。结果表明:① 两类劳动力总体的空间特征均为东南密集,西北稀疏;② 2000—2010年,高技能劳动力在空间分布上呈集中化的趋势,而一般劳动力呈分散化的趋势;③ 十年间高技能劳动力集聚区虹吸作用加强,其分布越发集中于沿海特大城市群,而一般劳动力集聚区回波作用加强,其分布越发均衡;④ 空间回归分析结果表明,职工平均工资、是否直辖市或省会、每万人在校高校学生、是否沿海城市、常住人口数和空间溢出效应在十年中一直都是决定高技能劳动力和一般劳动力空间分布的主要因素,而失业率、中学生师比、二氧化硫排放量和绿地率在2010年也成为影响两类劳动力空间分布的主要因素。对比两类劳动力的模型结果可得,高技能劳动力的空间分布受行政因素、高校因素和地区生活舒适度的影响更大,而一般劳动力的空间分布受劳动力市场因素的影响更大。

Yang Kaizhong.

The new logic of Bejing-Tianjin-Hebei coordinated development: Local quality-driven development

Economy and Management, 2019, 33(1): 1-3.

[本文引用: 1]

[ 杨开忠.

京津冀协同发展的新逻辑:地方品质驱动型发展

经济与管理, 2019, 33(1): 1-3.]

[本文引用: 1]

Sun Wenkai, Bai Chongen, Xie Peichu.

The effect on rural labor mobility from registration system reform in China

Economic Research Journal, 2011(1): 28-41.

[本文引用: 1]

[ 孙文凯, 白重恩, 谢沛初.

户籍制度改革对中国农村劳动力流动的影响

经济研究, 2011(1): 28-41.]

[本文引用: 1]

Liu Tao, Qi Yuanjing, Cao Guangzhong.

China's floating population in the 21st century: Uneven landscape, influencing factors, and effects on urbanization

Acta Geographica Sinica, 2015, 70(4): 567-581.

DOI:10.11821/dlxb201504005      [本文引用: 1]

China has witnessed unprecedented urbanization over the past decades. The rapid expansion of urban population has been dominated by the floating population from rural areas, of which the spatiotemporal patterns, driving forces, and multidimensional effects have been scrutinized and evaluated by voluminous empirical studies. However, the urban and economic development mode has been reshaped by the globalization and marketization processes and the socioeconomic space has been restructured as a consequence. How has the spatial pattern of floating population evolved against these backdrops? How has the evolution been driven by the interaction of state and market forces? What have been the contribution of population mobility to the urbanization of origin and destination regions and the evolution of China's urban system? The latest national censuses conducted in 2000 and 2010 offer the opportunity to systematically answer these questions. Analysis based on the county-level data comes to conclusions as follows. (1) The spatial pattern of floating population remained stable over the first decade of the 21st century. Three coastal mega-city regions, namely the Yangtze River Delta, the Pearl River Delta, and the Beijing-Tianjin-Hebei Region, were major concentration areas. As the emergence and rapid development of other coastal mega-city regions, the coastal concentration area of floating population tended to geographically united as a whole, whereas the spatial distribution within each region variegated significantly. (2) Floating population gradually moved into provincial capitals and other big cities in interior regions and its distribution center of gravity moved northward around 110 km during the study period. (3) Compared with extensively investigated inter-provincial migrants, intra-provincial migrants had higher intention and ability to permanently live in cities they worked in and thus might become the main force of China's urbanization in the coming decades. (4) The spatial pattern of floating population was shaped jointly by the state and market forces in transitional China. While the impacts of state forces have been surpassed by market forces in the country as a whole, they are still important in shaping the development space of central and western China. (5) The massive mobility of population contributed a large proportion to the increase of urbanization levels of both origin and destination regions and reshaped China's urban system in terms of its hierarchical organization and spatial structure.

[ 刘涛, 齐元静, 曹广忠.

中国流动人口空间格局演变机制及城镇化效应: 基于2000和2010年人口普查分县数据的分析

地理学报, 2015, 70(4): 567-581.]

DOI:10.11821/dlxb201504005      [本文引用: 1]

基于2000和2010年全国人口普查分县数据,对中国流动人口空间格局的演变特征、形成机制及其城镇化效应进行了系统分析。研究发现,流动人口分布的空间格局具有较强的稳定性,长三角、珠三角和京津冀等沿海城市群仍然是其主要集中地,且沿海集中区有连绵化的趋势,但在城市群内部的空间分布模式差异显著。流动人口向内陆地区的省会等特大城市集中趋势明显,其分布重心出现了明显的北移。省内县际的流动人口规模已接近于省际流动,且有更高的意愿和更强的能力永久居留城镇,省内县际的永久性迁移将成为未来中国人口城镇化的主导模式。中国流动人口迁入地的选择受到政府和市场双重力量的影响,后者的影响力更强。远距离流入东部地区的人口在务工之外,对享受城市生活也开始有所考虑;而中西部地区政府力量在引导人口流动中仍起到重要作用。大规模的人口流动对流出地和流入地的城镇化水平提高均有显著贡献,同时在很大程度上重构了中国城镇体系的等级规模结构和空间布局模式。

Gu Hengyu, Shen Tiyan.

Evolution patterns of China's interprovincial migration networks between 1995 and 2015: Based on labour heterogeneity

Geographical Research, 2021, 40(6): 1823-1839.

DOI:10.11821/dlyj020200507      [本文引用: 1]

With the loosing of the household registration (hukou) system, China has witnessed massive volumes of interregional migration. Among all kinds of migration, skilled migration and less-skilled migration present differential spatial patterns and network characteristics over time and may exert distinguished impacts on regional development and innovation. However, due to limited data availability, prior studies only adopted cross-sectional data analysis and examined the patterns of skilled and less-skilled migrations before 2005, whereas few have been done on related topics after 2005. Drawing on previous studies, the present paper uses micro-level datasets from population censuses and sample surveys to assess the spatial evolution patterns of China's skilled and less-skilled internal migrations between 1995 and 2015. Besides, several complex network analysis methods have been employed, together with the network visualization technique. The results of the paper are listed as follows. First, there were spatial clustering and uneven patterns in both skilled and less-skilled internal migrations over the 20 years of 1995-2015, where migration flows containing a large percentage of skilled and less-skilled migrants originated from inland western and central regions to the eastern coastal areas of China. However, the degree of spatial unevenness in the migration patterns has been slightly weakened. In addition, the average migration distance of skilled migration was farther than that of less-skilled migration in the same period. Second, both of the two migration networks have presented a “small-world” property over the 20 years. In comparison, the intensity and connection degree of less-skilled migration networks have prevailed over that of the skilled migration networks. Third, results from the community detection have revealed that both skilled and less-skilled migrations exhibited a network structure where Beijing, Shanghai, and Guangdong served as the core nodes. Skilled migration presented a more stable network structure during the 20 years, while less-skilled migrations showed a persistently changing pattern. Fourth, the paper suggested that regional economic disparity, path dependence effect, the heterogeneity of different labour forces in the job market, and the differences in labour market demand for different labour forces were underpinning factors shaping the spatial evolution pattern and network structure of the two types of migration from 1995 to 2015.

[ 古恒宇, 沈体雁.

1995—2015年中国省际人口迁移网络的演化特征: 基于异质性劳动力视角

地理研究, 2021, 40(6): 1823-1839.]

DOI:10.11821/dlyj020200507      [本文引用: 1]

自户籍制度放宽以来,中国经历了大规模的人口迁移。其中,异质性劳动力(高技能劳动力、普通劳动力)在迁移过程中表征出不同的空间格局和网络组织特征,对地区经济发展产生各异的影响。本研究基于人口普查和抽样调查微观抽样数据,使用复杂网络理论对1995—2015年中国异质性劳动力迁移的时空格局和网络演化展开分析,并分析了格局背后的可能成因。研究发现:① 省际高技能和普通劳动力迁移均呈现出持续高度不平衡的空间集聚特征,承载大量人口的迁移流主要由中国中西部地区指向东部沿海地区,但这种空间不平衡特征呈现出一定的减弱趋势。高技能劳动力的平均迁移距离比普通劳动力更长;② 两类劳动力迁移网络中均呈现明显的“小世界”特性,但普通劳动力迁移网络的迁移强度和关联程度均高于高技能劳动力迁移网络;③ 两类劳动力迁移网络均呈现出以北京、上海、广东为主要核心节点的网络结构。高技能劳动力网络结构呈现相对稳定的特征,而普通劳动力网络结构则呈现出变化的趋势;④ 地区经济差异、路径依赖效应、异质性劳动力在就业市场上的差异性以及劳动力市场对异质性劳动力需求的差异是导致两类劳动力迁移格局差异性的重要成因。

Zhang Ji. Local quality and economic geography[D]. Beijing: Peking University, 2019.

[本文引用: 1]

[ 张骥. 地方品质与经济地理[D]. 北京: 北京大学, 2019.]

[本文引用: 1]

/