青藏高原植被产氧量及其对近地表大气氧含量的贡献率
Vegetation oxygen production and its contribution rate to near-surface atmospheric oxygen concentration on the Qinghai-Tibet Plateau
通讯作者:
收稿日期: 2022-07-7 修回日期: 2023-03-1
基金资助: |
|
Received: 2022-07-7 Revised: 2023-03-1
Fund supported: |
|
作者简介 About authors
刘若杨(1999-), 男, 河南南阳人, 硕士生, 主要从事植被与生态遥感研究。E-mail:
青藏高原极端缺氧环境对人畜健康有巨大影响,研究植被对青藏高原大气氧含量的贡献率,有助于厘清青藏高原大气氧含量变化对人畜健康的环境效应。目前关于青藏高原植被对大气氧含量贡献率的研究较少,且缺乏青藏高原植被产氧量对近地表大气氧含量贡献率的时空分布图。本文使用植被净初级生产力时空分布数据计算青藏高原的植被产氧量,并使用大气相对氧含量经验方程和理想气体状态方程计算青藏高原大气绝对氧含量,进而获得植被产氧量对近地表大气氧含量贡献率的时空分布。结果表明,青藏高原植被在2019年的全年总产氧量为1.0353×109 t,其对青藏高原全域近地表大气氧含量贡献率的理论上限值平均为0.2788 %/d,但存在巨大的时空差异(0.00~4.62 %/d):时间上贡献率在年内呈“∧”型的变化特征,一年中贡献率最低值出现在12月,最高值出现在8月中旬;空间上贡献率呈现自东南向西北逐渐降低的分布格局,最低值分布在西北部,最高值分布在东南部。从各植被类型来看,单位面积的贡献率由高到低依次为森林、栽培植被、草原、沼泽湿地和灌丛。从海拔分布来看,单位面积的贡献率总体上呈现随海拔升高而逐渐降低的变化特征。本文首次制作了青藏高原植被产氧量对近地表大气氧含量贡献率的时空分布图,并揭示了青藏高原植被产氧量对近地表大气氧含量贡献率的理论上限值及其时空差异,可为青藏高原近地表大气氧含量变化及其对人畜健康的环境效应研究提供参考。
关键词:
The extremely anoxic environment on the Qinghai-Tibet Plateau has a great impact on human and animal health. Studies of the contribution of vegetation to the atmospheric oxygen concentration on the Qinghai-Tibet Plateau are useful to clarify the environmental effects of changes in atmospheric oxygen concentration on human and animal health. Up to now, however, there are few such studies, and there is no spatio-temporal distribution map of the contribution rate. In this study, the vegetation net primary productivity was used to calculate the vegetation oxygen production on the Qinghai-Tibet Plateau, and the empirical equation of atmospheric relative oxygen concentration and the Ideal-Gas Equation were used to calculate the atmospheric absolute oxygen concentration, and then the ratio of the vegetation oxygen production and atmospheric absolute oxygen concentration was used to obtain the contribution rate. The results showed that the annual total vegetation oxygen production was 1.0353×109 t on the Qinghai-Tibet Plateau in 2019. The theoretical upper limit value of the contribution rate of vegetation oxygen production to near-surface atmospheric oxygen concentration was 0.2788%/d on average over the plateau in 2019, but there were great differences across time and space (0.00 %/d to 4.62 %/d). In terms of temporal distribution, the change of contribution rate during the year is like a "∧" shape, the lowest value of the contribution rate in a year appeared during December through February of the next year, and the maximum value appeared in mid-August. In terms of spatial distribution, the contribution rate gradually decreased from southeast to northwest, with the lowest value in the northwest and the highest value in the southeast. From the perspective of vegetation types, the contribution rate per unit area from high to low was forest, cultivated vegetation, grassland, swamp wetland and shrub. From the perspective of altitude, the contribution rate per unit area gradually decreased with the increase of altitude. The spatial and temporal distribution map of the contribution rate was constructed in this paper, and the theoretical upper limit value of the contribution rate of vegetation oxygen production to atmospheric oxygen concentration on the plateau and its spatio-temporal variations were revealed. The results of this study can provide a reference for the studies on the changes of near-surface atmospheric oxygen concentration and its environmental effects on human and livestock on the Qinghai-Tibet Plateau.
Keywords:
本文引用格式
刘若杨, 史培军, 唐海萍, 王静爱, 赵涔良, 朱文泉.
LIU Ruoyang, SHI Peijun, TANG Haiping, WANG Jing'ai, ZHAO Cenliang, ZHU Wenquan.
1 引言
青藏高原是世界上海拔最高的高原,空气稀薄,缺氧问题严重。青藏高原平均海拔在4000 m以上[5],随着海拔高度的增加,大气气压有规律地降低,虽然大气中仍含有约20.93%的氧气,但由于空间中气体分子的浓度大幅降低,氧气分子的浓度(即氧气的绝对含量)也随之降低,因此在青藏高原每次呼吸中的氧分子数少于低海拔地区[6]。例如,在海拔4000 m的地方,每一次呼吸的空气中所含的氧分子数目只有在海平面上同一次呼吸的60%[7]。整体来看,青藏高原平均氧含量浓度为5.77±0.625 mol/m3,仅为海平面氧含量浓度的65%[8];局部来看,其时空分布也具有一定的差异:夏季氧含量浓度比冬季氧含量浓度高[9],南部、东部边缘以及柴达木盆地南部氧含量浓度较高(大约相当于海平面氧含量浓度的70%~80%),而高原腹地氧含量浓度较低(大都低于海平面氧含量浓度的65%)[8]。缺氧容易引发多种疾病[10⇓-12],并使得工作人员作业能力下降[13-14],这给青藏高原地区人口和经济发展带来风险。因此在全球大气氧气含量下降的背景下[3],非常有必要系统地揭示青藏高原地表大气氧含量时空分布的影响因素。
植物作为大气氧气的重要来源,与大气氧含量密切相关。在光照、气温、水分等条件适宜的环境下,植物能够通过光合作用,吸收CO2并释放氧气,同时生成有机物,即:
植被产生的氧气能够直接影响大气中氧气的绝对含量,研究植被对青藏高原大气氧含量的贡献率,有助于厘清青藏高原大气氧含量变化的驱动因素及其对人畜健康的环境效应。然而,当前有关青藏高原植被对大气氧含量贡献率的研究非常少,目前仅发现史培军等[9]开展了青藏高原植被对氧含量贡献率的相关研究。他们于2018—2020年间使用便携式测氧仪测得青藏高原多条公路沿线地区487个采样点的相对氧含量数据,然后以氧含量为解释变量,以海拔、气温和植被覆盖度为回归因子建立多元线性回归模型,并分解出这3个回归因子分别对R2贡献的比例作为其对大气氧含量的贡献,发现这3个回归因子的相对贡献率分别为47%、32%和3%。但是该方法分解出植被所贡献的R2并不能将植被这一因子完全剥离出来,计算出的植被对大气氧含量的贡献率表征的也是植被与其他因子对比而言的相对重要性的大小。要想完全剥离出植被这一因子,需要计算出植被生产氧气的绝对量,进而计算其对大气氧含量的贡献。然而,截止到目前,还未发现有学者绘制出了青藏高原植被对大气氧含量贡献率的时空分布图。
本文旨在揭示青藏高原植被产氧量对大气氧含量的贡献率及其时空分布,为此,一方面需要基于NPP推算出青藏高原的植被产氧量,另一方面还需摸清青藏高原大气本底的绝对氧含量,最后才能基于植被产氧量与大气本底绝对氧含量二者的比值来计算青藏高原植被产氧量对大气氧含量的贡献率及其时空分布,从而为青藏高原地表大气氧含量变化及其对人畜环境健康效应研究提供参考。
2 数据与方法
2.1 研究区概况
青藏高原位于亚洲中南部(图1),平均海拔在4000 m以上。自东向西,青藏高原海拔逐渐升高、温度降低、降水递减。东南部水热条件较好,植被覆盖以森林为主,中西部植被覆盖以草原、沼泽湿地和高山植被(指森林线或灌丛带以上到常年积雪带下限之间的、由适应冰雪与耐寒植物组成的植被,主要是垫状植被和地衣)为主,西北部无人区寒旱少雨,植被覆盖以高山植被为主。
图1
图1
研究区及通量站点分布
注:植被类型根据张慧等[18]研究结果整理;高山植被是指森林线或灌丛带以上到常年积雪带下限之间,由适应冰雪与耐寒植物组成的植被,主要是垫状植被和地衣。
Fig. 1
Study area and the spatial distribution of flux sites
2.2 数据来源
本文使用的主要数据为青藏高原植被净初级生产力(NPP)数据,辅助数据为青藏高原植被净光合作用(Net Photosynthesis, PSN)数据、高程数据、气象再分析资料数据和植被类型数据。NPP、PSN和高程数据均从GEE(Google Earth Engine)平台下载得到,所有数据均使用ArcGIS软件转换至Albers圆锥等面积投影。
NPP数据来源于2019年MOD17A3HGF v061数据产品,其空间分辨率为500 m,时间分辨率为1 a。本文利用NPP数据来计算植被产氧量。
PSN数据来源于2019年MOD17A2H v006数据产品,其空间分辨率为500 m,时间分辨率为8 d(每8 d的PSN累积值生成一期数据)。由于MOD17A3H的NPP值是年内每日植被PSN数据的碳累积量与该年份植被总生长呼吸碳消耗量的差值,因此本文采用PSN数据将年NPP累积值分配到天尺度(具体的分配方法详见下文第2.3.2节),从而可以利用天尺度的NPP来计算植被日产氧量。
高程数据来源于MERIT DEM数据产品[19],其空间分辨率为90 m。该数据用于计算青藏高原近地表大气中氧气的相对含量,并用于统计不同海拔高度的植被产氧量及植被对大气氧含量的贡献率。
气象再分析资料来源于2019年ERA5-Land数据产品,该数据下载自ECMWF网站(
此外,为了检验本文植被日产氧量计算方法的合理性,本文还用到了青藏高原3个通量站点的逐日碳通量观测数据和气象数据。3个通量站点分别是当雄通量站(91°05′E、30°51′N、4286 m)、海北湿地通量站(101°19′E、37°37′N、3202 m)和海北灌丛通量站(101°20′E、37°40′N、3205 m),其数据覆盖年份分别为:当雄通量站为2004—2010年、海北湿地通量站为2004—2009年、海北灌丛通量站为2003—2010年,其数据均从国家科技资源共享服务平台的国家生态科学数据中心(
2.3 研究方法
本文的技术路线如图2所示。分别计算青藏高原2019年每日的近地表大气氧含量及每日的植被产氧量,然后计算每日植被的产氧量在近地表大气氧气中的占比,即为植被产氧量对大气氧含量的贡献率。
图2
2.3.1 近地表大气氧气绝对含量计算
式中:P为每日大气气压的平均状态(Pa);V为气体所在空间的体积(m3),每个栅格的大小为11500 m× 11500 m,栅格体积为11500 m× 11500 m× 2 m;n为距地表2 m高度范围内大气的气体分子数(mol);R为摩尔气体常数,取值 8.31 J/(mol∙K);T为每日气温的平均状态(K);n与V的比值即为近地表大气气体分子的绝对含量(mol/m3)。
式中:y为大气氧气相对含量(%);x为海拔高度(m)。
2.3.2 植被日产氧量计算
植被日产氧量是在每日NPP值的基础上,利用光合—呼吸过程的碳氧平衡原理进行换算所得[16-17]。本文利用能够表征NPP年内变化的PSN作为权重,将年NPP累积值分配至天尺度。为此,本文使用每期(8 d间隔)PSN的质量控制图层对PSN原始数据进行筛选,并对筛选后PSN数据存在的缺失值进行了时间插补(采用前后两期数据相同位置PSN值的平均值替代),然后将8 d的PSN累积值平均到每天以获取每日PSN,以每日PSN占全年PSN的比例作为权重将全年NPP累积值分配到每天,计算出每日NPP值。依据净初级生产力与净产氧量在物质的量上始终保持1∶1的比例关系,可由每日NPP值计算出每日植被产氧量(绝对含量,用单位体积气体的物质的量表示,以mol/m3为单位)。
为了确保本文植被日产氧量计算方法的合理性,本文利用青藏高原3个通量站点的逐日碳通量观测数据对本文计算方法开展了对比评估。先将各站点逐日GEE数据按PSN数据的8 d间隔进行汇总合成,使二者的时间间隔一致,然后将植物生长季期间(5—9月)8 d合成的站点GEE观测数据与采用本文方法计算的相应时间的NPP遥感估算数据开展相关分析,发现二者的相关系数为0.8350(p < 0.01, n = 357),这说明本文计算的遥感逐日NPP数据与通量站观测的GEE数据有很好的时空一致性。对站点上的逐日NPP数据和本文方法计算的相应时间的NPP遥感估算数据按照相同步骤开展分析,发现二者相关系数为0.8202(p < 0.01, n = 357),RMSE = 1.0056 gC/(m2∙d),这说明本文计算的遥感逐日NPP数据与基于通量站观测数据计算的NPP数据同样有很好的时空一致性且数值吻合度较高。由于植被NPP与植被净产氧量存在明确的对应关系(即在物质的量上始终保持1∶1的比例关系),因此本文基于逐日的遥感植被NPP值计算得到的植被日产氧量较为可靠。
2.3.3 植被产氧量对近地表大气氧含量的贡献率计算
贡献率的计算方法见式(3):
式中:R为每日植被产氧量对近地表大气氧含量的贡献率(%);n(veO2)为每日的植被产氧量(mol/m3);n(bO2)为每日的大气氧气绝对含量(mol/m3)。依此计算方法可知,本文中的贡献率指的是单日植被产氧量在大气氧气中的占比,其对应的时间尺度为日。
2.3.4 统计分析
将一年中每日的贡献率空间分布数据按时间顺序叠加,得到贡献率的时空数据立方体。将数据立方体分别与高程数据、植被类型数据在空间维上叠加并进行分区统计,即可获得贡献率按海拔高度、植被类型的分布情况。同理,植被产氧量也是按此方法进行分区统计,例如对森林类型植被产氧量的统计,具体做法是将与森林类型像元相同位置的植被产氧量数据进行加和,从而统计得到森林类型的产氧量总量。
3 研究结果
3.1 青藏高原近地表大气氧气绝对含量
图3
图3
2019年青藏高原距地
Fig. 3
Annual average value of absolute concentration of the atmospheric oxygen within the range of 2 meters above the land surface on the Qinghai-Tibet Plateau in 2019
3.2 青藏高原植被产氧量
2019年青藏高原植被产氧量呈现自东南向西北递减的分布格局(图4)。东南部水热条件较好,植被覆盖以森林为主,植被产氧量较高;中西部植被覆盖以草原和高山植被为主,植被产氧量较低;西北区域多为冰雪覆盖区或裸土区,植被产氧量几乎为0。青藏高原全域植被在2019年的年总产氧量为3.2353×1013 mol(即1.0353×109 t)。植被日产氧量最高值为0.1845 mol/(m3∙d),平均值为0.0158 mol/(m3∙d)。仅有小部分区域的植被日产氧量高于0.05 mol/(m3∙d),这部分区域面积占青藏高原总面积的6.32%,主要分布在青藏高原南部、东南部边缘地区。
图4
图4
青藏高原2019年植被日产氧量年均值
Fig. 4
Annual average value of daily vegetation oxygen production on the Qinghai-Tibet Plateau in 2019
2019年青藏高原单位面积植被产氧量按植被类型从高到低依次为森林、栽培植被、沼泽湿地、草原、灌丛和高山植被(图5)。全年植被产氧主要来源于草原和森林,这两种植被类型的产氧量占所有植被总产氧量的92.63%,其中草原因其面积最大,总产氧量最高,占所有植被总产氧量的52.55%。各植被类型全年总产氧量由高到低依次为:草原、森林、沼泽湿地、栽培植被、灌丛和高山植被。
图5
图5
青藏高原2019年不同植被类型全年总产氧量
Fig. 5
Total vegetation oxygen production of different vegetation types on the Qinghai-Tibet Plateau in 2019
青藏高原植被全年产氧量主要集中在海拔3000~5000 m的区域(图6),这些区域的植被产氧量为7.270×108 t,占整个青藏高原植被总产氧量的70.20%;海拔0~3000 m区域的植被产氧量为2.550×108 t,占整个青藏高原植被总产氧量的24.60%;海拔5000 m以上区域的植被产氧量为0.539×108 t,占整个青藏高原植被总产氧量的5.20%。
图6
图6
2019年青藏高原不同海拔植被全年总产氧量
注:6000 m以上区域植被全年产氧量仅占总产氧量的0.004%,因此未在图中显示。
Fig. 6
Total vegetation oxygen production at different altitudes on the Qinghai-Tibet Plateau in 2019
3.3 青藏高原植被产氧量对近地表大气氧含量的贡献率
3.3.1 总体概况
2019年青藏高原全年植被产氧量对近地表大气氧含量贡献率的时空平均值为0.2788 %/d(95%置信区间为0.2786~0.2790 %/d),但贡献率的时空差异巨大。2019年全域在全年的贡献率最低值为0.00 %/d、最高值为4.62 %/d(去除离群异常值)。贡献率在年内变化幅度的空间差异也较大,空间上贡献率年较差最低为0.00 %/d、最高则可达4.57 %/d(去除离群异常值)。
3.3.2 空间变化
2019年青藏高原全年植被产氧量对近地表大气氧含量的贡献率呈现自东南向西北逐渐降低的分布格局(图7)。贡献率的最小值出现在西北部(年均值为0.00 %/d),最大值出现在东南部(年均值为2.75 %/d)。仅小部分区域的贡献率年均值高于0.60 %/d,这部分区域面积占青藏高原总面积的16.19%,主要分布在青藏高原东南部。
图7
图7
青藏高原2019年全年植被产氧量对近地表大气氧含量的贡献率年均值
Fig. 7
Annual average value of contribution rate of vegetation oxygen production to near-surface atmospheric oxygen concentration on the Qinghai-Tibet Plateau in 2019
2019年青藏高原全年单位面积植被产氧量对近地表大气氧含量的贡献率按植被类型由高到低依次为森林、栽培植被、草原、沼泽湿地、灌丛和高山植被(图8)。单位面积贡献率最高的植被类型为森林(时空平均值为1.04 %/d),最低的植被类型为高山植被(时空平均值为0.11 %/d)。
图8
图8
2019年青藏高原单位面积不同植被类型产氧量对近地表大气氧含量的贡献率年均值
注:图中圆圈代表该组数据的平均值,箱盒上边缘线、中线和下边缘线分别代表该组数据的75%分位、50%分位和25%分位,最上端和最下端的横线为最大值和最小值,在其范围之外的为异常值。
Fig. 8
Annual average value of contribution rate of oxygen production of different vegetation types per unit area to near-surface atmospheric oxygen concentration on the Qinghai-Tibet Plateau in 2019
2019年青藏高原全年单位面积植被产氧量对近地表大气氧含量的贡献率整体上随海拔高度的上升呈现逐渐降低的特征(图9)。但是在海拔2500~3500 m,有44.22%的区域地表覆盖为非植被,因此其单位面积植被产氧量对近地表大气氧含量的贡献率较临近海拔明显降低。
图9
图9
青藏高原2019年单位面积不同海拔高度植被产氧量对近地表大气氧含量的贡献率年均值
Fig. 9
Annual average value of contribution rate of vegetation oxygen production per unit area at different altitudes to near-surface atmospheric oxygen concentration on the Qinghai-Tibet Plateau in 2019
3.3.3 时间变化
2019年青藏高原植被产氧量对近地表大气氧含量的贡献率在年内呈“∧”型的变化特征(图10)。其中,贡献率最低值出现在12月(空间平均值为0.0146 %/d),较高值集中在6—9月,最大值出现在8月中旬(空间平均值为0.9799 %/d)。在变化速率上,1—5月贡献率缓慢增长,6月起增长明显加快,在8月到达峰值后贡献率又迅速下降,10—12月贡献率缓慢下降至年初的水平。
图10
图10
2019年青藏高原植被产氧量对近地表大气氧气贡献率的时间变化
Fig. 10
Temporal variation of contribution rate of vegetation oxygen production to near-surface atmospheric oxygen concentration on the Qinghai-Tibet Plateau in 2019
青藏高原植被产氧量对近地表大气氧含量贡献率的变化有明显的季节特征(图11)。在第1季度(1—3月),绝大部分区域植物尚未萌发,植被产氧的贡献率几乎为0,仅南部小部分区域有对大气氧含量的正向贡献;第2季度(4—6月)和第3季度(7—9月)是植物的生长旺季,植被产氧的贡献率较高,产氧区域随时间自东南向西北扩张,且全域贡献率水平逐渐提高;第4季度(10—12月)大部分区域的植物已经枯萎,产氧区域又随时间向东南方向退缩,仅有东南部小部分区域还有对大气氧含量的正向贡献。
图11
图11
青藏高原2019年各季度植被产氧量对大气氧含量的贡献率季度均值
Fig. 11
Quarterly average value of contribution rate of vegetation oxygen production to atmospheric oxygen concentration on the Qinghai-Tibet Plateau in 2019
从青藏高原植被生长季的各月份来看,6—9月是青藏高原全年植被产氧贡献率最高的4个月份,贡献率呈现先上升后下降的趋势(图12)。6—8月贡献率逐渐上升,植被产氧区域随时间自东南向西北延伸,且全域贡献率水平逐渐提高,到8月到达顶峰,贡献率直方图也呈现向均衡化发展的趋势;9月贡献率又突然下降至低于6月的水平。
图12
图12
青藏高原2019年生长旺季各月份植被产氧量对大气氧含量的贡献率月均值
Fig. 12
Monthly average value of contribution rate of vegetation oxygen production to atmospheric oxygen concentration in the months of peak growing season on the Qinghai-Tibet Plateau in 2019
4 讨论
4.1 青藏高原植被产氧量及其时空分布特征
产氧量的时空分布由植被NPP决定,而植被NPP又受植被类型、气温、降水、海拔等因素的影响。在时间上,青藏高原夏季水热条件较冬季好,因此植被夏季生长旺盛而冬季生长缓慢或枯萎(一年生植物),植被产氧量也随之呈现在年内先上升后下降的变化特征。在空间上,自东向西,青藏高原海拔逐渐升高、温度降低、降水递减,受水热条件分布的综合影响,自东南向西北,青藏高原植被覆盖逐渐降低[29],且主要植被类型依次由森林变为草原、高山植被和荒漠(图1)。各地区的植被覆盖度差异以及不同植被类型的产氧能力差异(图5)造成产氧量的多寡,从而形成产氧量自东南向西北逐渐降低的分布格局。此外,随着海拔的升高,大气中CO2的浓度也随之降低,从而影响光合作用进程,这也是影响产氧量分布格局的一个重要因素。
由于青藏高原独特的地理、气候条件,青藏高原植被的产氧能力与其他地区也有所不同。如与内蒙古[30]相比,青藏高原森林的产氧能力(单位面积的全年产氧量)比内蒙古低约500 t/km2(大约相当于青藏高原森林单位面积全年产氧量的25%),草地的产氧能力比内蒙古低约250 t/km2(大约相当于青藏高原草地单位面积全年产氧量的60%)。总体而言,青藏高原由于海拔高、水热条件相对较差、CO2浓度低,其植被的产氧能力低于其他地区的同种植被类型。
4.2 青藏高原植被产氧量对近地表大气氧含量的贡献率及其时空分布特征
本文从机理角度,依据植被光合—呼吸过程的碳氧平衡原理计算出了青藏高原植被生产氧气的绝对量,并且基于一定的假设条件,首次制作了青藏高原植被产氧量对近地表大气氧含量贡献率的时空分布图,并揭示了青藏高原植被产氧量对近地表大气氧含量的贡献率及其时空差异。
青藏高原的大气氧含量随着海拔的升高而逐渐降低,南部、东部边缘以及东北部氧含量比高原腹地氧含量高。贡献率反映了植被产氧量在大气氧含量中的占比,由于植被产氧量由植被NPP决定,其受植被类型、气温、降水、海拔等因素的影响,而大气本底氧含量几乎仅与海拔有关。整体而言,随着海拔的升高,适于植被生长的水热条件变得更为苛刻,植被产氧量大幅下降,远大于大气本底氧含量的下降幅度,因此植被产氧量对大气氧含量的贡献率也随之降低,且呈现类似对数函数的下降特征(图9)。但这并不绝对,例如在柴达木盆地,虽然海拔较低,但其降水少,植被覆盖度低,植被产氧量几乎为0,因此其对大气氧含量的贡献率也很小。综上,海拔是影响贡献率分布格局的主要驱动因素,但贡献率的分布同样也受气温、降水等气候因素的影响。
本文得出的贡献率时空分布特征与先验知识基本一致。在时间上,贡献率在年内呈“∧”型的变化特征(图10),这与植被在年内的生长特征相一致;在空间上,贡献率与植被生产力[31]一样都呈现自东南向西北逐渐降低的格局(图7);从植被类型来看,单位面积的贡献率由高到低依次为森林、栽培植被、草原、沼泽湿地、灌丛和高山植被(图8);从海拔来看,单位面积的贡献率整体上随海拔高度的上升呈现逐渐降低的特征(图9),这些均符合先验知识。此外对比图5和图8可以发现,沼泽湿地的单位面积产氧量略高于草原(图5),而单位面积贡献率又略低于草原(图8),这是由于沼泽湿地在青藏高原的分布相对集中且有很大一部分分布在海拔较低的区域,相比于草原,其所在区域的大气本底氧气绝对含量整体较高,因此其产氧量对大气氧气的贡献率相对较低。
4.3 不确定性及展望
受限于植被NPP数据以及相关植被数据的时间分辨率,本文无法计算出每一时刻的植被产氧量,因此做出了两个假设来简化运算:一是大气在植被产氧释放的瞬间完全静止;二是植被产生的氧气瞬间扩散高度小于2 m。但在真实情况下,大气存在水平和垂直方向的流动,植被生产的氧气在空间中的扩散情况则更为复杂,扩散范围也可能会更大。综合以上情况,本文计算出的植被对近地表大气氧含量的贡献率应是理论上的上限值,实际贡献率应低于本文的计算结果。
本文使用了基于遥感数据估算的植被NPP数据产品来计算植被产氧量。虽然遥感能够在大尺度上估算植被NPP,但由于植物生理过程的复杂性和相关验证数据的缺乏,估算结果仍然具有一定的不确定性[32]。未来随着对NPP估算模型的完善、地面站点监测数据库的建立[33],对植被NPP的估算将会更加准确。此外,由于本文中获取的NPP数据是一年中NPP的累积值,因此使用了能够表征NPP年内变化特征的PSN数据将NPP年累积值分配至天尺度,得到的天尺度NPP数据虽然不能精确反映某一天的NPP,但是足够反映NPP在年内的季节变化特征。未来如要进一步提高估算精度,需要建立地面站点监测数据库来提供实测的NPP时序数据对遥感数据进行补充和校正。
本文的大气相对氧含量数据是使用基于实测数据所得的经验回归方程计算得出[9]。该经验回归方程仅考虑了海拔对大气氧含量的影响,其可靠性依赖于实测数据,且容易受采样点的分布情况、采样方式、采样时间等因素的影响,因此也具有一定的不确定性。未来的研究如果想获得更加准确的大气氧含量数据,则需要通过建立长期、空间分布均匀且范围广的大气氧含量监测站点来实现。
受限于实验条件,本文以青藏高原植被产氧的绝对含量占大气氧含量的比例来计算植被产氧对近地表大气氧含量的贡献率。未来的研究要想进行植被对近地表大气氧含量贡献率的精确计算,最好的方法是采用控制实验,即设置对照组和实验组,并且将两组的海拔、气温、湿度等条件设为完全一致,仅控制植被这一个变量,分别监测同等条件下有无植被时的大气氧气含量,进而测算出植被对大气氧含量的贡献。
5 结论
本文使用NPP计算青藏高原的植被产氧量,并使用大气相对氧含量经验方程和理想气体状态方程计算青藏高原大气本底氧含量,进而计算了2019年青藏高原植被产氧量对近地表大气氧含量的贡献率;在此基础上,首次制作了青藏高原植被产氧量对近地表大气氧含量的贡献率时空分布图,并揭示了青藏高原植被产氧量对近地表大气氧含量贡献率的理论上限值及其时空差异。获得了以下主要结论:
(1)2019年青藏高原植被全年总产氧量为1.0353×109 t。植被产氧量主要来源于草原和森林这两种植被类型,其产氧量占所有植被总产氧量的92.63%,其中草原的产氧量最高,占所有植被总产氧量的52.55%;植被产氧量按海拔高度的分布来看,其峰值主要集中在海拔3000~5000 m的区域。
(2)2019年青藏高原植被产氧量对近地表大气氧含量贡献率的理论上限值平均为0.2788 %/d(95%置信区间为0.2786~0.2790 %/d),但贡献率在时空分布上存在巨大差异:全域全年贡献率最低为0.00 %/d,最高为4.62 %/d(去除离群异常值);时间上贡献率在年内呈“∧”型的变化特征,一年中贡献率最低值出现在12月(空间平均值为0.0146 %/d),较高值集中在6—9月,最大值出现在8月中旬(空间平均值为0.9799 %/d);空间上贡献率呈现自东南向西北逐渐降低的格局,贡献率的最小值出现在西北部(时间平均值为0.00 %/d),最大值出现在东南部(时间平均值为2.75 %/d)。从各植被类型来看,单位面积的贡献率由高到低依次为森林、栽培植被、草原、沼泽湿地和灌丛。从海拔分布来看,单位面积的贡献率总体上呈现随海拔升高而逐渐降低的变化特征。
参考文献
Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle
DOI:10.1038/358723a0 [本文引用: 1]
Increasing escape of oxygen from oceans under climate change
The global oxygen budget and its future projection
DOI:10.1016/j.scib.2018.07.023
PMID:36751087
[本文引用: 2]
Atmospheric oxygen (O) is the most crucial element on earth for the aerobic organisms that depend on it to release energy from carbon-based macromolecules. This is the first study to systematically analyze the global O budget and its changes over the past 100 years. It is found that anthropogenic fossil fuel combustion is the largest contributor to the current O deficit, which consumed 2.0 Gt/a in 1900 and has increased to 38.2 Gt/a by 2015. Under the Representative Concentration Pathways (RCPs) RCP8.5 scenario, approximately 100Gt (gigatonnes) of O would be removed from the atmosphere per year until 2100, and the O concentration will decrease from its current level of 20.946% to 20.825%. Human activities have caused irreversible decline of atmospheric O. It is time to take actions to promote O production and reduce O consumption.Copyright © 2018 Science China Press. Published by Elsevier B.V. All rights reserved.
大气氧气枯竭是比全球温室效应对人类持续健康生存造成更为严重危害的恶果//曾晓东
A discussion on the boundary and area of the Tibetan Plateau in China
DOI:10.11821/yj2002010001
[本文引用: 1]
<p>The Tibetan Plateau is a unique geomorphic unit composed of some basic geomorphic types, such as extreme high mountains,high mountains, hills, plains, and tablelands of high altitude or sub-high altitude. Different opinions for the exact scope of Tibetan Plateau exist. According to latest research achievement and the long time fieldwork, questions related to the area and boundary of the Plateau have been discussed in view of geography, and the principles taking geomorphic characters as the main rule and considering the integrity have been made to define the boundary. The 1∶1 000 000 geomorphological map was compiled based on 1∶100 000 aerial photographic map,1∶500 000 topographic map and interpretation of satellite images. By refering to the 1∶3 000 000 relief map, the boundary of the Plateau was delineated.The position of the boundary was quantitatively determined with GIS and GPS.The map of electronic version of the Tibetan Plateau was compiled. The main conclusion is that Tibetan Plateau starts from the southern edge of the Himalayan Range, abuts on India,Nepal and Bhutan,connects the northern edge of Kunlun, Altun and Qilian Mts., and joins Tarim Basin and Hexi Corridor in Central Asia.The west of it is the Pamirs and Karakorum Mts., bordering on Kirghizistan, Tajikistan, Afghanistan, Pakistan and Kashmir. The east of it is Yulongxueshan, Daxueshan, Jiajinshan and Qionglaishan Mts.as well as south or east piedmont of Minshan Mts. Tibetan Plateau joins the Qinling Mts.and Loess Plateau with its eastern and northeastern part. Tibetan Plateau in China's territory starts from the Pamirs in the west and reaches to Hengduanshan in the east. It bestrides a longitude of 31 degrees with a length of 2 945 km from east to west,and bestrides a latitude of 13 degrees with a length of 1 532 km from south to north. It ranges from 26°00′12" N to 39°46′50" N and from 73°18′52"E to 104°46′59"E, covering an area of 2 572.4×10 3 km 2. Administratively, it embraces 201 counties (cities) in 6 provinces, namely, the Tibet Autonomous Region (73 counties/cities,1 176.0×10 3 km 2, part of Cona, Mêdog and Zayü), the Qinghai Province(40 counties/cities,721.0×10 3 km 2, some counties only partially), Dêqen Tibetan Autonomous Prefecture in Northwest Yunnan Province(9 counties/cities,33.5×10 3 km 2), West Sichuan Province ( 46 counties/cities about 254.0×10 3 km 2,such as Garze Autonomous Prefecture, Aba Tibetan and Qiangzu Autonomous Prefecture,and Muli Autonomous County, etc.),Gansu Province(21 counties/cities, 74.9×10 3 km 2), and Southern Xinjiang Uygur Autonomous Region (about 12 counties/cities, 313.0×10 3 km 2).</p>
论青藏高原范围与面积
High-altitude adaptations
DOI:10.1016/S0140-6736(03)15058-1 URL [本文引用: 1]
Two routes to functional adaptation: Tibetan and Andean high-altitude natives
Climate suitability assessment on the Qinghai-Tibet Plateau
Further research on the factors contributing to oxygen concentration over the Qinghai-Tibet Plateau
再论青藏高原近地表大气相对氧含量影响因素的贡献率
High-altitude pulmonary edema is initially caused by an increase in capillary pressure
DOI:10.1161/01.cir.103.16.2078
PMID:11319198
[本文引用: 1]
High-altitude pulmonary edema (HAPE) is characterized by severe pulmonary hypertension and bronchoalveolar lavage fluid changes indicative of inflammation. It is not known, however, whether the primary event is an increase in pressure or an increase in permeability of the pulmonary capillaries.We studied pulmonary hemodynamics, including capillary pressure determined by the occlusion method, and capillary permeability evaluated by the pulmonary transvascular escape of 67Ga-labeled transferrin, in 16 subjects with a previous HAPE and in 14 control subjects, first at low altitude (490 m) and then within the first 48 hours of ascent to a high-altitude laboratory (4559 m). The HAPE-susceptible subjects, compared with the control subjects, had an enhanced pulmonary vasoreactivity to inspiratory hypoxia at low altitude and higher mean pulmonary artery pressures (37 +/- 2 versus 26 +/- 1 mmHg, P<0.001) and pulmonary capillary pressures (19 +/- 1 versus 13 +/- 1 mmHg, P < 0.001) at high altitude. Nine of the susceptible subjects developed HAPE. All of them had a pulmonary capillary pressure >19 mm Hg (range 20 to 26 mmHg), whereas all 7 susceptible subjects without HAPE had a pulmonary capillary pressure < 19 mm Hg (range 14 to 18 mm Hg). The pulmonary transcapillary escape of radiolabeled transferrin increased slightly from low to high altitude in the HAPE-susceptible subjects but remained within the limits of normal and did not differ significantly from the control subjects.HAPE is initially caused by an increase in pulmonary capillary pressure.
Chronic mountain sickness on the Qinghai-Tibetan Plateau
Illnesses at high altitude
DOI:S0012-3692(08)60216-0
PMID:18682459
[本文引用: 1]
High-altitude illnesses have profound consequences on the health of many unsuspecting and otherwise healthy individuals who sojourn to high altitude for recreation and work. The clinical manifestations of high-altitude illnesses are secondary to the extravasation of fluid from the intravascular to extravascular space, especially in the brain and lungs. The most common of these illnesses, which can present as low as 2,000 m, is acute mountain sickness, which is usually self-limited but can progress to the more severe and potentially fatal entities of high-altitude cerebral edema and high-altitude pulmonary edema. This article will briefly review normal adaptation to high altitude and then more extensive reviews of the clinical presentations, prevention, and treatments of these potentially fatal conditions. Research on the mechanisms of these conditions will also be reviewed. A better understanding of these disorders by practitioners will lead to improved prevention and rational treatment for the increasing number of people visiting high-altitude areas around the globe. There will not be space for writing about high-altitude residents, medical conditions in low-altitude residents going to high altitude, or training for athletes at high altitude. These topics deserve another article.
Site assessment and analysis of military operation ability of plateau training troops
高原作训部队军人作业能力现场评估分析
Impact of plateau environment hypoxia on human cognitive function and intervention measures
DOI:10.3867/j.issn.1000-3002.2017.11.012
[本文引用: 1]
The size of the plateau in China is large and the plateau environment concerns our economic construction and national security because of its special location. The average altitude of the Qinghai-Tibet plateau, which is of great military and economic significance, is above 4000 m. The special plateau environment, such as hypoxia and low temperature, poses a serious threat to the physical and mental health of the populations there. In recent years, with the development of neuroscience and technology, the impact of plateau environment hypoxia on human cognitive function has received more attention. Here we review the impact of plateau environment on the human cognitive function and related intervention measures to provide reference, for protection of cognitive ability and mental ability at high altitude.
高原缺氧对人认知功能的影响及干预措施
DOI:10.3867/j.issn.1000-3002.2017.11.012
[本文引用: 1]
我国高原面积广阔,高原环境因其特殊地域事关我国经济建设和国家安全。具有重要军事及经济意义的青藏高原平均海拔>4000 m,空气稀薄、低温干燥等特殊的高原环境对进驻人群的身心健康产生严重威胁。近年来,随着神经科学技术的发展,高原环境对脑认知功能的影响越来越受到关注。本文综述了海拔高度和高原暴露时间对人认知功能的影响,以及改善脑认知功能的直接和间接干预措施和存在的问题等,为平原人急进高原和高原环境下人认知功能的保护、脑力作业能力的保障提供参考。
Implications and estimations of four terrestrial productivity parameters
生物生产力的“4P”概念、估算及其相互关系
Economic value assessment of CO2 fixation and O2 release of vegetation ecosystem in the Tibetan Plateau
青藏高原植被固定CO2释放O2的经济价值评估
Dynamic assessment of the values of CO2 fixation and O2 release in Qinghai-Tibet Plateau ecosystem
青藏高原生态系统固碳释氧价值动态测评
A new vegetation map for Qinghai-Tibet Plateau by integrated classification from multi-source data products
基于多源数据产品集成分类制作的青藏高原现状植被图
A high-accuracy map of global terrain elevations
DOI:10.1002/2017GL072874 URL [本文引用: 1]
Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017
DOI:10.1016/j.scib.2019.03.002 PMID:36659725 [本文引用: 1]
Copernicus global land cover layers: Collection 2
In May 2019, Collection 2 of the Copernicus Global Land Cover layers was released. Next to a global discrete land cover map at 100 m resolution, a set of cover fraction layers is provided depicting the percentual cover of the main land cover types in a pixel. This additional continuous classification scheme represents areas of heterogeneous land cover better than the standard discrete classification scheme. Overall, 20 layers are provided which allow customization of land cover maps to specific user needs or applications (e.g., forest monitoring, crop monitoring, biodiversity and conservation, climate modeling, etc.). However, Collection 2 was not just a global up-scaling, but also includes major improvements in the map quality, reaching around 80% or more overall accuracy. The processing system went into operational status allowing annual updates on a global scale with an additional implemented training and validation data collection system. In this paper, we provide an overview of the major changes in the production of the land cover maps, that have led to this increased accuracy, including aligning with the Sentinel 2 satellite system in the grid and coordinate system, improving the metric extraction, adding better auxiliary data, improving the biome delineations, as well as enhancing the expert rules. An independent validation exercise confirmed the improved classification results. In addition to the methodological improvements, this paper also provides an overview of where the different resources can be found, including access channels to the product layer as well as the detailed peer-review product documentation.
National wetland mapping in China: A new product resulting from object based and hierarchical classification of Landsat 8 OLI images
DOI:10.1016/j.isprsjprs.2020.03.020 URL [本文引用: 1]
An observation dataset of carbon, water and heat fluxes over an alpine shrubland in Haibei (2003-2010)
2003—2010年海北高寒灌丛碳水热通量观测数据集
Evaluating North American net primary productivity with satellite observations
DOI:10.1016/0273-1177(87)90308-5 URL [本文引用: 1]
Factors contribution to oxygen concentration in Qinghai-Tibetan Plateau
青藏高原大气氧含量影响因素及其贡献率分析
Spatial pattern of oxygen concentration and "three-dimensional zonation" in the natural zone on the Qinghai-Tibet Plateau
DOI:10.11821/dlxb202303002
[本文引用: 1]
The earth surface oxygen concentration on the Qinghai-Tibet Plateau is the result of the combined effect of multi-factors, such as elevation, topography, climate, water, vegetation, and soil, among them, the relative contributions of altitude, temperature, vegetation coverage and leaf area index are -39.58%, 35.50%, and 24.92%, respectively. The earth surface oxygen concentration on the plateau primarily shows the difference from southeast to northwest, which is mainly related to the effect of vegetation on oxygen production depending on precipitation; secondly shows the difference on east-west extension and north-south turnover, which is mainly related to the effect of atmospheric pressure on relative oxygen concentration depending on temperature and terrain; thirdly shows the vertical zonation, which is mainly related to the effect of atmospheric pressure on the relative oxygen concentration depending on the terrain and temperature, bond with the effect of vegetation on oxygen production depending on temperature and precipitation. The earth surface oxygen concentration can quantitatively reveal the spatio-temporal pattern of the physiographical characteristics of the earth surface. Accordingly, we divide the natural zone of the Qinghai-Tibet Plateau into 3 first-grade regions and 17 second-grade zones. In the southeastern subtropical forest-forest steppe region, including 2 second-grade zones, the annual average oxygen concentration is 20.35%, the average oxygen concentration in July is 20.45%, and the average oxygen concentration in January is 20.27%. In the eastern temperate forest-steppe region, including 5 second-grade zones, the annual average oxygen concentration is 20.10%, the average oxygen concentration in July is 20.23%, and the average oxygen concentration in January is 20.00%. In the western cold temperate grassland-desert-steppe region, including 10 second-grade zones, the annual average oxygen concentration is 20.00%, the average oxygen concentration in July is 20.10%, and the average oxygen concentration in January is 19.91%.
青藏高原地表大气氧含量空间格局及自然地带“三维分异”的新认识
DOI:10.11821/dlxb202303002
[本文引用: 1]
青藏高原地表氧含量是海拔、地势、气候、水域、植被、土壤综合作用的结果,其中海拔、气温、植被覆盖度与叶面积指数的相对贡献分别为-39.58%、35.50%、24.92%。青藏高原地表氧含量首先呈现东南向西北递减的差异,这主要与依赖水热条件的植被产氧有关;其次是东西延伸、南北更替的差异,这主要与依赖气温与地势的大气压对氧含量的影响有关;第三是随海拔变化的垂直分异,这主要与依赖地势、气温的大气压,以及依赖温度与水分的植被产氧有关。地表氧含量可以定量展现地表自然地理特征的时空格局,据此,本文把青藏高原自然地带划分为3个一级区、17个二级区,即:东南部亚热带森林—森林草原区域,地表年均氧含量为20.35%,7月平均值为20.45%,1月平均值为20.27%,含2个二级区;东部温带森林—草原—草甸区域,地表年均氧含量为20.10%,7月平均值为20.23%,1月平均值为20.00%,含5个二级区;西部寒带温带草原—荒漠—草甸区域,地表年均氧含量为20.00%,7月平均值为20.10%,1月平均值为19.91%,含10个二级区。
Spatio-temporal variation of vegetation coverage over the Tibetan Plateau and its responses to climatic factors
青藏高原植被覆盖时空变化及其对气候因子的响应
Estimating net primary productivity of terrestrial vegetation based on GIS and RS: A case study in Inner Mongolia, China
基于GIS和RS的区域陆地植被NPP估算: 以中国内蒙古为例
Spatial-temporal change in vegetation net primary productivity and its response to climate and human activities in Qinghai Plateau in the past 16 years
近16年青海高原植被NPP时空格局变化及气候与人为因素的影响
Research progress on remote sensing based net primary productivity of terrestrial vegetation
基于遥感技术的植被净初级生产力研究进展
/
〈 |
|
〉 |
