地理学报, 2023, 78(12): 3095-3108 doi: 10.11821/dlxb202312011

城市地理

基于个体职住迁移的武汉郊区新城职住动态平衡测度方法

牛强,1, 伍磊1, 盛富斌1,2, 吴宛娴1

1.武汉大学城市设计学院 湖北省人居环境工程技术研究中心,武汉 430072

2.浙江大学城乡规划设计研究院有限公司,杭州 310030

Analytic approach for the jobs-housing dynamic balance in suburban new cities based on individual migration:A case study of Wuhan, China

NIU Qiang,1, WU Lei1, SHENG Fubin1,2, WU Wanxian1

1. School of Urban Design, Wuhan University, Research Center of Human Settlements Environment Engineering Technology of Hubei, Wuhan, 430072, China

2. Zhejiang University Urban-Rural Planning & Design Institute Co., Ltd., Hangzhou 310030, China

收稿日期: 2022-08-31   修回日期: 2023-03-21  

基金资助: 国家自然科学基金项目(52278075)

Received: 2022-08-31   Revised: 2023-03-21  

Fund supported: National Natural Science Foundation of China(52278075)

作者简介 About authors

牛强(1978-), 男, 湖北宜昌人, 博士, 教授, 博导, 研究方向为信息时代的城乡规划、定量城市研究和规划分析。E-mail: niuqiang@whu.edu.cn

摘要

郊区新城往往伴随着职住失衡。从行为视角来看,这主要是长周期建设中个体的职、住的单方面迁入和迁出造成的。然而,相关研究较少从个体职住迁移视角探究新城职住平衡动态过程,缺乏相关的分析方法,也未明晰其特征和规律。本文基于手机信令大数据,跟踪个体就业迁移和居住迁移的空间位置变化,提出了职住动态平衡的概念,以及用于测度和分析职、住迁入和迁出的同步、异步指数和职住动态平衡影响指数,以剖析职住动态平衡过程中的问题、动因、趋势,并以2017—2019年武汉郊区新城为例开展实证。研究发现:① 武汉郊区新城以职住异步迁入为主,就业迁移比居住迁移数量更多;② 各新城的职住平衡水平均偏低,但职住迁移促进了大多数新城的职住平衡水平;职住迁入大多推动了新城职住平衡,但迁出的影响也不容忽视,推动了部分新城的职住失衡;③ 武汉东南新城的职住平衡状态更易受到居住迁移影响,而居住迁入是其职住动态平衡的主要动力,应重点完善多元化居住结构。该方法能客观反映区域职住迁移的互动、职住平衡的动态过程和动因,对优化城市职住关系、制定职住空间供给政策有一定现实意义,也为后续理论研究提供了方法基础。

关键词: 郊区新城; 个体职住迁移; 职住动态平衡; 测度方法; 手机信令大数据

Abstract

Suburban new cities often accompany the phenomenon of jobs-housing imbalance. From the behavioral perspective, against a backdrop of changes in jobs and housing, this is mainly caused by individual migration in and out during the long-term development of suburban new cities. However, many studies have not considered incorporating individual migration into the dynamic process of jobs-housing balance, and there are few relevant analysis methoeds, as well as unclear characteristics and patterns. This paper proposes the concept of jobs-housing dynamic balance by tracking the spatial changes of individual employment and residence migration. Drawing on cellular signaling data throughout 2017 to 2019 in Wuhan suburban new cities, a new analytic approach is developed to analyze the problems, causes and trends in the process of jobs-housing dynamic balance, including the synchronous and asynchronous indices of individual migration, as well as the impact index of dynamic jobs-housing balance. The results reveal that the main trend is asynchronous jobs-housing migration, with migration of a larger number of employers compared to residential migration. At the same time, the jobs-housing imbalance in Wuhan suburban new cities is relatively common, but individual migration generally promotes jobs-housing balance. On the one hand, individual migration in is the main factor in optimizing jobs-housing balance. On the other hand, the impact of individual migration out cannot be ignored, as it has driven the imbalance of jobs and housing in some suburban new cities. Furthermore, our results highlight that the jobs-housing balance in the southeast new city is more susceptible to the impact of residential migration, and residential migration is the main driving force for its jobs-housing dynamic balance. Therefore, it is necessary to focus on improving the diversified residential spatial structure. We argue that, grounded in the new analytic approach, this paper can objectively reflect the dynamic process and driving factors of jobs-housing balance, and our findings would be important in optimizing urban jobs-housing relationships and formulating policies for jobs-housing space supply.

Keywords: suburban new cities; individual migration; jobs-housing dynamic balance; analytic approach; cellular signaling data

PDF (3535KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

牛强, 伍磊, 盛富斌, 吴宛娴. 基于个体职住迁移的武汉郊区新城职住动态平衡测度方法. 地理学报, 2023, 78(12): 3095-3108 doi:10.11821/dlxb202312011

NIU Qiang, WU Lei, SHENG Fubin, WU Wanxian. Analytic approach for the jobs-housing dynamic balance in suburban new cities based on individual migration:A case study of Wuhan, China. Acta Geographica Sinica, 2023, 78(12): 3095-3108 doi:10.11821/dlxb202312011

1 引言

郊区新城的建设往往会引起职住失衡[1],导致交通拥堵、空间隔离、环境污染等系列问题[2],这引起学者们和社会的高度关注。2020年习近平在《国家中长期经济社会发展战略若干重大问题》中就明确指出“要建设一批产城融合、职住平衡、生态宜居、交通便利的郊区新城,推动多中心、郊区化发展”。郊区新城的长周期建设中其内部的职住平衡水平也在动态变化,而造成职住失衡的直接原因在于个体的职、住单方面迁入和迁出。所以从个体的职住迁移行为视角展开郊区新城的职住平衡研究,能够精细化识别郊区新城职住平衡的动态过程,探索个体职、住迁移的互动机制,利于挖掘新城职住失衡的主导原因,预测职住平衡发展趋势。同时,也利于从人的需求出发构建职住平衡优化策略,丰富职住平衡的理论和分析方法。

为此,本文基于人口迁移流动提出了职住动态平衡的概念,重点分析职住人口迁移对职住关系的动态影响机理;然后在利用手机大数据识别和跟踪个体的就业和居住迁移行为的基础上,提出职、住迁入和迁出的同步、异步指数,以衡量导致职住关系动态变化的迁移行为结构;进而根据各类迁移导致的同、异区职住数变化提出职住动态平衡影响指数,精细化剖析各类迁移行为对职住平衡水平的影响程度,识别过程中的问题和原因,并以武汉市为例开展实证分析。

2 研究进展

“职住分离”始终与郊区密切相关。20世纪上半叶,西方大规模郊区化和城市空间重构[3]导致了居民通勤成本上升、能源消耗和社会冲突。由此,Kain最早系统性总结了“空间错位”假说[4],认为就业郊区化和住房歧视造成有色人种的失业和长距离通勤,引发后续对弱势群体职住分离的广泛关注。时至今日,中国大城市郊区的职住分离与通勤拥堵程度仍高于其他地区[5-6]

近期国内外研究在职住平衡的概念、测度方法[7-8]、内在机理[9]、调控策略[10]等方面做出有益探索。概念上,或认为居民中劳动者的数量和就业岗位的数量大致相等;或认为如果大多数通勤职工同时能在某一区域内居住、就业,那么该区域就实现了职住平衡[11];或认为平衡状态下通勤职工的平均职住通勤距离较近[12]、时间较短[13]等。方法上,侧重静态的、某一截面的职住人口平衡状态测度[14],例如职住比、自足度、就业居住离散度、空间相异指数等[15]。机理上,已有研究发现政策背景[16]、住房成本[17]、收入水平[18]、建成环境[19]等影响职住平衡的因素。策略上,基于职、住空间的建设顺序、住区郊区化与产业郊区化间的互动关系[20]等视角,提出了建设居住空间或增设就业岗位等措施,但扩张职住空间规模和平衡职住空间比不一定能改善职住关系[21]。总体而言,当前对于职住匹配动态演化过程的研究还较为薄弱[22]

职住迁移行为是区域职住平衡/失衡的直接成因,也带来了城市空间重构。从居民视角来看,其居住迁移决策和工作迁移决策是显著正向相互联系的[23],即居住或工作迁移极有可能引发工作或居住的随迁[24],但也可能受到阻碍而导致随迁滞后甚至失灵。以北京市为例,其户籍人口为追求生活条件改善而迁居至新城,能够较快引发就业随迁;而暂住人口以就业为首要选择,在就业迁移后受购买力限制而无法实现短期内居住随迁,从而造成职住失衡[25]。同时,这些迁入人群可能带动该区域的城镇化建设与空间扩展[26],从而带动后续迁移;也会改变该区域的社会结构,可能形成“空间隔离”[27]而阻碍其他人口的迁入。限于数据瓶颈,国内对于居住迁移、就业迁移,以及它们两者互动关系的探索还不成熟[28],关于个体职住迁移和职住平衡的关系研究更少。

当下大数据为个体职、住迁移和职住平衡研究提供了新渠道。通勤轨迹数据[29]、微博签到数据[30]、百度热力图数据[8]以及手机信令数据[31]等大数据在识别居住地、就业地和通勤距离等方面具有极大优势。且随着时序大数据的积累,追踪长周期的迁居、换岗行为也成为可能,例如王德等基于多年份的手机信令数据对上海居民就业地迁移行为开展长时序追踪分析[32],牛强等用类似方法识别武汉居民居住迁移行为的空间分布特征[33]。但是目前相关研究仍较少,尚未形成利用时序大数据分析职、住迁移互动行为的系统研究方法,更是少有基于迁移行为大数据来分析职住关系演变过程的研究。

3 职住动态平衡的原理和分析方法

3.1 职住动态平衡的内涵和原理:职住迁移同、异步导致的职住同、异区变化

现有研究表明,受职住空间供给、政策、个体属性等影响,职住人口不断迁入、迁出,区域职住关系也随之变化。本文将这种区域职住平衡水平受人口职住迁移影响而动态变化的过程,称为职住动态平衡。较之职住平衡主要关注平衡的结果,职住动态平衡重点关注平衡的过程,即引发职住关系改变的那些人口迁移对职住平衡的影响。

在职住迁移影响下,区域职住关系趋向于平衡或是失衡。因此本文认为衡量职住动态平衡的准则应当是:某一区域在一定时段内人口迁移对职住平衡的影响,如果迁移导致职住平衡水平的提升就是推进了职住动态平衡,反之则导致职住动态失衡。

因此,以迁移前后职住是否同区作为标准,将人口迁移行为细分为10类(图1):以就业迁入同步为例,基期年在研究区域居住、外地就业的个体,在研究期间将就业迁入至研究区域,最终由职住分离转变成了职住同区,推动了区域职住平衡。总的来看,这10种行为中有5种能够推动区域职住平衡,即居住迁入同步、就业迁入同步、职住同时迁入、居住迁出同步、就业迁出同步,而其余5种则将导致区域职住失衡。

图1

图1   职住迁移同步/异步的概念图

Fig. 1   The conceptual schema of synchronous and asynchronous individual jobs-housing migration


那么如何计算各类人口迁移对职住平衡水平的总体影响呢?传统的职住平衡水平主要关注职住同区人数占比,然而如果转换到基于迁移的职住动态平衡视角,就会发现迁移既能带来同区,也能带来异区(即职住不在同一区域),两方面都不能忽视。由于职住动态平衡主要考察职住关系变化量对平衡的影响,本文将某区域一定时期内因迁移导致的同区职住数量变化率和异区职住数量变化率之间的差值作为衡量职住动态平衡的准则,称之为职住动态平衡影响指数E(简称影响指数)。具体公式如下:

E=RS-RD
RS=ΔS/S0 
RD=ΔD/D0

式中:E为职住动态平衡影响指数;RS为同区职住数量变化率;RD为异区职住数量变化率;ΔS为同区职住数变化量;S0为基期年同区职住数量(简称同区数);ΔD为异区职住数变化量;D0为基期年异区职住数量(简称异区数,职住数量指职和住各自的人数,职住同区数量等于2倍职住同区人数)。

职住动态平衡影响指数E可以反映:相比基期年,研究时段人口迁移导致的职住关系改变对职住平衡的影响,其值的正负和大小与传统职住平衡指数的变化方向和程度是一致的。为验证E指数的有效性,本文在融合就业自足度和居住自足度的基础上提出更为综合的职住同区数占比P

P=C×2C×2+C

式中:P为职住同区数占比;C职住同为职住同区人数;C职住异为职住异区人数,职住同区人数乘以2的理由同前。推导可得,当RS > RD,即E > 0时,P会提升,即推动职住平衡,且两者差值越大,P提升越大;反之亦然;若RS = RD,即E = 0时,研究区域的职住同区数占比不会发生变化。

由于迁移行为可分为就业迁入、迁出和居住迁入、迁出,因此在公式(1)的基础上,可以精细化地分析每类迁移行为对职住平衡的影响,具体计算方法见下文3.3。

3.2 职住迁移行为的测度:职住迁移的同、异步指数

本文提出职住迁移的同步指数、异步指数,用以比较不同区域的10类迁移行为之间的数量关系。具体指某区域一定时期内特定迁移行为带来的职住数量变化在该区域各类迁移行为带来的职住数量变化总和中的占比,相当于其归一化值(表1)。同步指数和职住同时迁入指数越高越有利于职住平衡,异步指数和职住同时迁出指数越高越不利于职住平衡。需要说明的是同步指数大于异步指数并不一定导致职住平衡,这还取决于基期年的职住平衡水平,假如基期年职住平衡水平很高,即使同步指数和异步指数相同也会拉低期末的职住平衡水平。

表1   职住同异步指标体系表

Tab. 1  Synchronous and asynchronous indicator systems for jobs-housing migration

序号名称公式说明意义
(5)就业迁入同步指数I业同I=m/Sm业同为研究时间内某区域就业同步迁入的人数归一化各
类迁移行
为涉及的
职住数量
变化,便
于区域之
间的行为
对比
(6)就业迁入异步指数I业异I=m/Sm业异为研究时间内某区域就业异步迁入的人数
(7)居住迁入同步指数I居同I=m/Sm居同为研究时间内某区域居住同步迁入的人数
(8)居住迁入异步指数I居异I=m/Sm居异为研究时间内某区域居住异步迁入的人数
(9)职住同时迁入指数I同时I=2×m/Sm居业同为研究时间内某区域职住同时迁入的人数,
由于其带来职、住数的同时增长,故计算2倍
(10)就业迁出同步指数O业同O=n/SO业同为研究时间内某区域就业同步迁出的人数
(11)就业迁出异步指数O业异O=n/SO业异为研究时间内某区域就业异步迁出的人数
(12)居住迁出同步指数O居同O=n/SO居同为研究时间内某区域居住同步迁出的人数
(13)居住迁出异步指数O居异O=n/SO居异为研究时间内某区域居住异步迁出的人数
(14)职住同时迁出指数O同时O=2×n/SO为研究时间内某区域职住同时迁出的人数,
由于其带来职、住数的同时减少,故计算2倍
(15)各类迁移带来职住数量
变化总和S
S=m+m+m+m+m×2+n+n+n+n+n×2

新窗口打开| 下载CSV


3.3 职住动态平衡的测度:职住迁移对职住同、异区数量变化率的影响

① 明晰各类迁移行为对职住同区数、异区数的影响机制。以居住同步迁入为例,假设发生该行为的有m居同人,那么迁入后会新增m居同个同区居住,同时还会将本区域m居同个异区就业转化为同区就业,综合起来对职住同区数的影响是新增2m居同,对职住异区数的影响是减少m居同,对职住总数的影响是增加m居同。类似地,对其他迁移行为做影响分析,结果如表2所示。② 按照就业、居住的迁入、迁出,分别汇总其带来的职住同区数变化率以及职住异区数变化率(表3)。③ 根据公式(1)通过比较同、异区变化率来识别影响水平的原理,在表3基础上,进一步构建职住动态平衡影响指数,用以综合衡量各类职、住迁移行为对该区域职住平衡状态的影响。具体公式为:

E=RS+12RS-RD
E=RS+12RS-RD
E=RS+12RS-RD
E=RS+12RS-RD

式中:E业入为就业迁入影响指数,代表就业同步、异步迁入和职住同时迁入对职住平衡的影响水平;E居入为居住迁入影响指数;E业出为就业迁出影响指数;E居出为居住迁出影响指数。需要说明,由于职住同时迁入是两个迁移行为共同作用的结果,故在单独计算就业迁入、或居住迁入的影响时需要折半,职住同时迁出同理。

表2   职住迁移行为对职住平衡的影响机制

Tab. 2  The impact of individual migration behaviors on job-housing balance

迁移类型示意对职住同区
数的影响
对职住异区
数的影响
对职住总数
的影响
说明
原始状态---
居住同步迁入
m居同
2m居同-m居同m居同新增m居同个同区居住,同时将m居同
个异区就业转化为同区就业
就业同步迁入
m业同
2m业同-m业同m业同新增m业同个同住就业,同时将m业同
个异区居住转化为同区居住
职住同时迁入
m同时
2m同时无影响2m同时增加m同时个同区居住和m同时个同
区就业
居住异步迁入
m居异
无影响m居异m居异增加m居异个异区居住
就业异步迁入
m业异
无影响m业异m业异增加m业异个异区就业
居住同步迁出
n居同
无影响-n居同-n居同减少n居同个异区居住
就业同步迁出
n业同
无影响-n业同-n业同减少n业同个异区就业
职住同时迁出
n同时
-2n同时无影响-2n同时减少n同时个同区居住和n同时个同
区就业
居住异步迁出
n业异
-2n居异n居异-n居异减少n居异个同区居住,同时将n居异
个同区就业转化为异区就业
就业异步迁出
n居异
-2n业异n业异-2n业异减少n业异个同区就业,同时将n业异
个同区居住转化为异区居住

注:黑色表示职住同区人数;灰色表示本地就业、外地居住人数;白色表示本地居住、外地就业人数;红框表示增加部分;蓝框表示减少部分。

新窗口打开| 下载CSV


表3   职住同异区变化率的计算公式表

Tab. 3  Calculation method for the change rate of synchronous and asynchronous zones based on individual jobs-housing migration

序号名称公式说明
(16)就业迁入同区变化率RS业入RS=2m/S0就业迁入导致的职住同区数量变化率
(17)就业迁入异区变化率RD业入RD=m-m/D0就业迁入导致的职住异区数量变化率
(18)居住迁入同区变化率RS居入RS=2m/S0居住迁入导致的职住同区数量变化率
(19)居住迁入异区变化率RD居入RD=m-m/D0居住迁入导致的职住异区数量变化率
(20)职住同时迁入同区变化率RS同入RS=2m/S0职住同时迁入导致的职住同区数量变化率
(21)就业迁出同区变化率RS业出RS=-2n/S0就业迁出导致的职住同区数量变化率
(22)就业迁出异区变化率RDRD=n-n/D0就业迁出导致的职住异区数量变化率
(23)居住迁出同区变化率RS居出RS=-2n/S0居住迁出导致的职住同区数量变化率
(24)居住迁出异区变化率RD居出RD=n-n/D0居住迁出导致的职住异区数量变化率
(25)职住同时迁出同区变化率RS同出RS=-2×n/S0职住同时迁出导致的职住同区数量变化率

新窗口打开| 下载CSV


按照这一思路,分别探讨职住迁入、职住迁出、就业迁移、居住迁移对区域职住动态平衡的影响,具体公式为:

E=E+E
E=E+E
E=E+E
E=E+E

式中:E为职住迁入影响指数;代表就业和居住迁入对职住平衡的影响水平;E为职住迁出影响指数;E为就业迁移影响指数;E为居住迁移影响指数。

最后,得到职住迁移对总体职住平衡的影响,公式为:

E=E+E= E+E=RS-RD

式中:E为总体影响指数,是所有职住迁移行为对区域职住动态平衡的影响。

4 武汉郊区新城职住动态平衡的分析实证

4.1 研究区域

武汉地处中国中部、湖北省东部,长江和汉江交汇处,是近年来“大都市化”迅速发展的重点城市,人口增长的空间不断向外扩展,人口郊区化迁移现象显著。根据《武汉市城市总体规划(2010—2020年)》的设想,武汉市构建1个中心城区和6个郊区新城的武汉都市发展区,作为未来主要的集聚区和拓展区,总用地面积3261 km2图2)。本文以此为依据,划定中心城区和6个近郊区新城的边界,以这7个区域为基本分析单元,开展职住动态平衡的研究。都市发展区外的远郊区由于职住人口较少、迁移特征不显著,且基站分布稀疏导致数据不够准确,本文暂不考虑。

图2

图2   研究范围

Fig. 2   The study context


4.2 研究数据

本文主要使用的是由智慧足迹(Smartsteps)平台提供的武汉市联通手机信令数据,具体时段为2017年6月份整月和2019年6月份整月。本文将年龄在19~54岁 ( 根据中国现行标准,一般职工退休的年龄标准为50~60岁,其中女性为55周岁,在此取55岁为退休年龄。)的联通核心用户(即该月在武汉停留10 d及以上的常住人口)作为研究对象,依据现有经验[34],将用户在该月每日9:00—17:00的累加驻留时间最长位置识别为就业地,将每日21:00至次日8:00的累加驻留时间最长位置识别为居住地。

为追踪个体的职住变化,本文通过手机信令数据中的用户唯一识别号识别出研究时段首尾的同一用户,并从中筛选出两个时期均具有居住和就业地信息的用户,共计321110人,约占2017年武汉市统计数据(数据来源:武汉市统计局统计年鉴数据(http://tjj.wuhan.gov.cn/tjfw/tjnj/)。)当年总就业人口数的5.69%。其中,在2017—2019年中发生居住跨区迁移或就业跨区迁移任一行为的共计80317人。

为检验上述所获取数据的代表性和可靠性,本文选取完全处于都市发展区范围内的武昌区、汉阳区、洪山区、江岸区、江汉区、青山区和硚口区(占武汉都市发展区总人数的比例超过70%),检验2017年武汉市统计年鉴中常住人口数与前述手机信令数据用户落在各区内的居住总人口的相关性。经过计算,两者呈现显著强正相关,皮尔逊系数为0.901。关于工作地抽样识别数据的准确性,由于缺乏经济普查数据,暂无法实现。考虑到联通就业地采用与居住地相似的识别方式,且居住地分布符合真实居住空间分布,因此认为就业地也基本反映真实的工作空间分布。

4.3 武汉市郊区新城职住迁移的同异步特征

根据上述方法,针对武汉都市发展区内的6个郊区新城和中心城区,首先识别出职、住跨区域同异步迁入或迁出的就业人群,图3图4为该人群的迁入地或迁出地的空间分布(1000 m搜索半径的核密度)。然后根据公式(5)~(15)计算武汉都市发展区内6个郊区新城和中心城区的职、住迁入和迁出的同步、异步指数,结果如表4所示。

图3

图3   2017—2019年武汉市跨区职住迁入地的核密度

Fig. 3   Kernel density analysis of cross-district destination based on jobs-housing migration in Wuhan, 2017-2019


图4

图4   2017—2019年武汉跨区职住迁出地的核密度

Fig. 4   Kernel density analysis of cross-district origination based on jobs-housing migration in Wuhan, 2017-2019


表4   武汉市郊区新城的职住迁移的同异步指数

Tab. 4  The synchronous and asynchronous indices of individual jobs-housing migration in Wuhan suburban new cities

东部新城东南新城南部新城西南新城西部新城北部新城中心城区
就业迁入同步指数I业同0.0330.0390.0500.0460.0570.0600.151
居住迁入同步指数I居同0.0180.0430.0250.0410.0390.0290.095
职住同时迁入指数I同时0.0960.1160.0920.0840.0940.1100.060
就业迁入异步指数I业异0.2810.2590.1920.2410.2310.2230.057
居住迁入异步指数I居异0.1620.1130.1870.1600.1750.1990.032
就业迁出同步指数O业同0.2210.2110.1710.1960.1710.1780.078
居住迁出同步指数O居同0.0850.0810.1540.1420.1320.1080.059
职住同时迁出指数O同时0.0570.0680.0710.0420.0400.0400.122
就业迁出异步指数O业异0.0320.0430.0350.0280.0390.0390.205
居住迁出异步指数O居异0.0150.0260.0230.0200.0220.0150.142

新窗口打开| 下载CSV


通过比较指标的量值可以发现:① 从迁入来看,所有新城的就业迁入异步指数均高于其他指数,特别是东部和东南,说明各新城的就业单方面迁入占比高,就业吸引力强。此外,各新城的居住迁入异步指数基本位于第二高,说明各新城吸引居住单方面迁入的能力也很强。但是就业和居住迁入的同步指数均较低,说明在职或住单方面迁入后,只有很少数量的人完成了住或职的随迁;另外,职住同时迁入指数均远高于就业和居住迁入同步指数,甚至大于两者之和。② 从迁出来看,所有新城的就业迁出同步指数均最高、居住迁出同步指数第二高,说明各新城难以留住仅在新城内就业或居住的职住异区人口,带来人口净流失,但同时这也减少了职住异区的数量,能推进职住平衡。另外存在较小比例的就业、居住迁出异步,这会带来职住错位。最后不容忽视的是各新城还存在不少比例的职住同时迁出的现象,带来职住人口净流失。

通过比较指标之间的数量关系可以发现:① 各新城迁入和迁出之比约为6∶4,职住迁入、迁出均对区域职住平衡产生了较大影响。迁入指数总体高于迁出指数,说明武汉新城整体上以人口迁入为主,人口正在从中心城区向郊区新城迁移。其中,东部、西部、北部新城的人口迁入最为明显。② 就业迁移比居住迁移平均高40%,就业迁移比居住迁移更频繁。就业迁入高于居住迁入、就业迁出高于居住迁出,说明就业迁入是郊区新城人口流入的主要动力,而就业迁出现象也不容忽视。例如,东南新城、东部新城的就业迁入、迁出均为最高。③ 职和住迁入的异步之和均远大于同步之和,是后者的2~3倍,且职、住迁入异步均大于对应同步,说明武汉各新城以职、住单方面迁入为主,住、职的随迁不够充分,其中以东部新城为典型代表。④ 职和住迁出的同步之和均远大于异步之和,是后者的5~7倍,且职、住迁出同步均大于对应异步,表明职住异区是新城人口流失的重要成因之一,而在新城已实现职住同区的人较少迁出。⑤ 职、住迁入异步指数和职、住迁出同步指数均很高,这意味着武汉各新城在职、住单方面迁入后并不能很好地激发后续住、职的随迁,而是随即又迁出,带来较高的流动性。

总体来看,武汉市郊区新城的职、住迁入和迁出均对区域职住平衡产生明显影响,其中职或住的迁入异步远高于迁入同步,迁出同步远高于迁出异步,并且就业迁移相比居住迁移数量更多。这说明郊区新城以就业单方面迁入为主,而居住随迁滞后,且单方面迁入的就业人口往往面临高流失风险。相比之下,中心城区则呈现相反特征:迁入同步远高于迁入异步,说明当前时期武汉市中心城区相较新城而言职住匹配能力更强,职、住迁入形成良性互动。上述结果验证了该方法在个体职住迁移研究上的效力。

4.4 武汉市郊区新城的职住动态平衡特征

根据公式(26)~(34),计算各新城就业、居住的迁入迁出对职住平衡的影响,得到各类职住动态平衡影响指数(表5)。根据公式(4)求得2017年和2019年武汉郊区各新城的职住同区数占比,以及中心城区的计算结果,用作参照。

表5   武汉郊区新城的职住动态平衡影响指数

Tab. 5  The impact index of dynamic jobs-housing balance in Wuhan suburban new cities

东部新城东南新城南部新城西南新城西部新城北部新城中心城区
总体影响指数-0.1000.0770.0260.2420.1550.191-0.104
职住迁入影响指数-0.1820.227-0.0560.2420.2030.2450.265
职住迁出影响指数0.082-0.1500.0820.000-0.048-0.055-0.369
就业迁移影响指数-0.045-0.0280.0460.0970.0690.140-0.059
居住迁移影响指数-0.0550.105-0.0200.1440.0860.051-0.044
就业迁入影响指数-0.1350.0150.0190.0930.1130.1920.160
就业迁出影响指数0.090-0.0430.0280.005-0.044-0.052-0.219
居住迁入影响指数-0.0470.212-0.0740.1490.0900.0530.105
居住迁出影响指数-0.008-0.1070.055-0.005-0.004-0.002-0.150
2017年职住同区数占比0.4350.3720.4840.3230.3620.3430.861
2019年职住同区数占比0.4130.3880.4900.3710.3940.3800.848

新窗口打开| 下载CSV


具体解析为:① 从总体影响指数来看,大部分新城为正,说明相比基期年,迁移大多推进了职住平衡,但东部新城的迁移不利于职住平衡。② 从职住迁入影响指数、职住迁出影响指数来看,迁入大多推进职住平衡,但迁出的影响也不容忽视,有3个新城的迁出不利于职住平衡。总体上迁入的影响大于迁出。③ 从就业和居住迁移影响指数来看,影响差异较大。其中东部新城是就业和居住迁移共同导致失衡,东南新城是就业迁移导致失衡,而居住迁移推动平衡;南部新城是居住迁移导致失衡,而就业迁移导致平衡;其他新城是居住和就业迁移均推动职住平衡。④ 从就业和居住迁入的影响指数来看,大多数新城为正,说明该时期职、住迁入均有利于新城职住平衡。例外的是,东部新城的就业和居住迁入、南部新城的居住迁入导致失衡,说明其单方面职、住迁入数量较多。⑤ 从就业和居住迁出的影响指数来看,大多数新城为负,说明职、住迁出一般不利于新城职住平衡。然而,东部新城的就业迁出有利于职住平衡,说明东部新城的单方面就业人口较多,迁出后对该城职住平衡有利;南部新城的就业、居住迁出均有利于职住平衡,说明该区域的职住错位较严重。⑥ 从职住动态平衡的动力来看,东部新城的主要动力是就业迁出,西部、北部新城的主要动力是就业迁入,东南、西南新城的主要动力是居住迁入,南部新城保持稳定。新城间职住动态平衡的动力存在差异的主要原因,可能是因为它们处于不同的发展阶段。新城早期以职、住单方面迁入作为人口增长的动力,但职住互动机制尚不完善,缺乏住和职的随迁以形成稳定人口,所以这些人口往往也容易流失,从而表现出迁出主导的动态平衡状态,例如东部新城(阳逻);新城中期职住迁移互动机制相对较好,在职、住迁入后能够较好引发住、职随迁,其中居住先行的新城以就业迁入为职住平衡的主要动力,如西部新城(东西湖),而产业先行的新城则以居住迁入为主要动力,东南新城(光谷科学城)、西南新城(汽车城)。北部新城可能是由于地方政策扶持,2017年提出长江新城战略后带来区域职住平衡状态明显提升。

总体而言,武汉市郊区新城的职住平衡水平均偏低,但平衡状态整体在向好的方向发展。这与职住同区数占比的变化趋势完全一致,但通过系列影响指数还能反映出迁入和迁出、就业迁移和居住迁移等对职住平衡水平的精细化影响。分析发现,职住迁入对职住平衡的影响一般高于职住迁出;就业迁移和居住迁移对区域职住平衡的影响则因城而异,取决于新城的发展阶段,以及本身的职、住状态等。上述结果证明了该方法在研究职住动态平衡过程上的效力。

4.5 武汉市东南新城职住动态平衡的典型解读

本文以武汉东南新城为例(表6),详述职住动态平衡分析的结果解析和应用。

表6   武汉东南新城的职住动态平衡计算结果

Tab. 6  Calculation results of the jobs-housing dynamic balance in southeast new city

就业居住职住
迁入影响指数0.0150.2120.227
迁出影响指数-0.043-0.107-0.150
迁移影响指数-0.0280.1050.077

新窗口打开| 下载CSV


东南新城的总体影响指数大于0,说明该区域职住平衡趋势总体向好。其中,职住迁入明显有利于职住平衡,而居住迁入对区域职住平衡的正面影响最大,说明东南新城正处于就业吸引居住的良性发展期。从表4可看出,东南新城的职住同时迁入指数I同时与居住迁入同步指数I居同之和在6个新城中最大,表明该区域就业的职住分离人口正在逐步迁居至此,这也是东南新城职住总体趋向平衡的关键因素。

同时,职住迁出对东南新城的职住平衡产生了较大的负面影响。其中,居住迁出的负面影响较大,从表4可看出,东南新城的居住迁出异步指数O居异在所有新城中最高,职住同时迁出指数O同时第2,这说明此区域的居住条件可能存在一定问题,本来职住同区的人为追求更好的居住环境、服务配套等而搬离此地,带来职住失衡。并且值得注意的是,东南新城的就业迁出同步指数O业同也非常高,即不在该城居住的就业者有很高比例将就业搬离,如此会引发恶性循环。

可见,制约东南新城职住动态平衡的关键因素是居住条件。东南新城作为湖北省新城建设的重点(光谷科学城)和高新技术产业的聚集地,对就业的吸引力充沛,其就业迁入异步指数I业异高居各新城第2。同时,该城也已经进入就业吸引居住的良性发展期,但吸引力仍不够强,甚至出现大量职住同区人口的居住单方面外迁。因此,东南新城应重点培育就业—居住的迁移互动机制,响应本地就业人口的居住需求。在建成环境质量上优化教育、养老、休闲、商业等城市公共服务设施配套,同时适当扩大居住空间供给规模,创造多层级、高水平的居住环境,以促进就业人口的就地职住平衡。这有助于提升就业“黏性”,保留住高水平人才以促进产业平稳较快发展。

5 结论与讨论

本文基于微观个体的迁移行为,利用手机信令数据,定量探究个体就业、居住迁移的互动与郊区新城职住平衡的关系,提出了职住动态平衡的概念、以及测度和分析方法。较之现有的职住比、自足度、就业居住离散度等静态职住平衡测度指标主要反映了当前的平衡状态,它能更精准地反映出郊区新城由于就业、居住人口的迁入、迁出同异步带来的职住动态平衡过程,包括职住迁移的同异步状态、各类迁移对职住平衡的影响、职住平衡变化的动因和核心问题等,从而掌握新城职住平衡的演变态势,进而可以从人对居住地、就业地的选择上发现影响职住迁移互动的城市空间问题,精准制定郊区新城职住平衡的空间优化策略,也为具体到人、更深层次地研究职住平衡的实现机制提供了方法支撑。

针对武汉市2017—2019年的实证研究,得到3个方面的主要结论,验证了该方法的有效性:① 迁移行为上,武汉市郊区新城以职住异步迁入为主,且就业迁移相较居住迁移更多。② 武汉市郊区新城的职住平衡状态总体向好;职住人口迁入大多推动了新城职住平衡,但与此同时迁出的影响也不容忽视,一半新城的职住迁出会推动失衡,总体上迁入的影响大于迁出;此外,还识别出各新城职住动态平衡的发展动力,例如西部新城的主要动力是就业迁入。③ 以武汉市东南新城为例开展详细分析发现,居住迁移是东南新城职住平衡状态的主要驱动力;居住迁入明显有利于区域职住平衡,而居住迁出明显导致职住失衡。可见,制约东南新城职住动态平衡的关键因素是居住条件,应积极响应本地就业者的差异化居住需求,这也有利于提升就业黏性。

本文也存在不足:① 受数据限制,实证未考虑市外迁入因素,可能对本文针对武汉发现的特征产生一定影响,但不影响职住平衡动态过程的分析方法;② 手机信令缺乏个体/家庭的属性数据,使得本文对职住迁移的互动规律揭示得仍不充分。

职住动态平衡研究还有广阔的发展空间。测度方法上,本文所提出的同异步指数和平衡影响指数还能衍生出众多指标,例如测度不同年龄、性别、职业、收入人群的同异步指数,据此分析社会属性对职住迁移互动和区域职住动态关系的差异化影响。进而可以在理论研究上,结合建成环境质量、职住空间规模和结构、政策、市场等要素,探究职住动态平衡过程空间分异的内在机制。另外,在时序演变研究上,还可以通过多个截面的长时序数据或动态监测实时数据,构建区域职、住关系的动态平衡曲线,以更为精准地识别当前城市职住关系的发展阶段和未来发展态势。最后在应对策略上,可根据上述研究成果,研判职住空间可能存在的问题和空间需求,制定职住空间供给政策和优化策略,并预测规划干预下的未来的职住关系演变和城市空间结构。本文所提出的方法对上述研究均有支撑和参考价值。

参考文献

Zhou Yixing.

On the suburbanization of Beijing

Scientia Geographica Sinica, 1996, 16(3): 198-206.

DOI:10.13249/j.cnki.sgs.1996.03.198      [本文引用: 1]

Suburbanization is a stage of urbanization process. It means that population, jobs and service trades decentralize from the inner city to suburban area. It has greatly changed the economic and urban development in the developed countries Peter Hall’s model of urban change offered a framework which can easily identify whether a city is in the process of suburbanization. How about it in China as a developing country? When did it start? And what is the present situation in process? Beijing region can be divided into three levels:the inner city(<i>cheng qu</i>),the inner suburban districts(<i>jin jiao qu</i>) and the outer suburban districts and counties(<i>yuan jiao qu xian</i>). The author discusses the situation of Beijing from the data of three population censuses(1964,1982 and 1990) and considers that the suburbanization in Beijing has been in process since 1982. During 1982-1990, population of all districts of the inner city lost 82,000 people and in fact the permanent residents holding the household registration lost 144,000, about 6.12% of permenant residents in the inner city. Like the West, suburbanization in China also happened against the macro backgrounds of improvements of transportation and living conditions, growth of urban population moving from rural areas. But in the cast of the forces that make decentralization possible, China is different from the western countries. In China, the levels of economy and urbanization are rather low; the real middle class is not rich; only very few Chinese families own private cars; and the inner cities still have great attraction for Chinese people. Investigating the causes of decentralization, the author considers three points:(1) reform of urban land use system brings about migration from the core area.(2) Construction of a large number of city roads reinforces this process.(3) Reform of housing system and renovation of delapidated houses encourage outward movement. In a word, the large scale renovation of the old city has led to suburbanization in Beijing under the open door policy and the socialist market system. It wasn’t spontaneity of any individual but under the leadership of government and “Dan Wei” (work-units). Finally, the author puts forward some thought provoking and distinctive phenomena and problems that should be seriously treated.

[周一星.

北京的郊区化及引发的思考

地理科学, 1996, 16(3): 198-206.]

[本文引用: 1]

Han Huiran, Yang Chengfeng, Song Jinping.

Progress and prospects of jobs-housing spatial relationship research

Human Geography, 2014, 29(6): 24-31.

[本文引用: 1]

[韩会然, 杨成凤, 宋金平.

城市居住与就业空间关系研究进展及展望

人文地理, 2014, 29(6): 24-31.]

[本文引用: 1]

Chai Yanwei, Zhang Yan, Liu Zhilin.

Spatial differences of home-work separation and the impacts of housing policy and urban sprawl: Evidence from household survey data in Beijing

Acta Geographica Sinica, 2011, 66(2): 157-166.

[本文引用: 1]

[柴彦威, 张艳, 刘志林.

职住分离的空间差异性及其影响因素研究

地理学报, 2011, 66(2): 157-166.]

[本文引用: 1]

Kain J F.

Housing segregation, negro employment, and metropolitan decentralization

The Quarterly Journal of Economics, 1968, 82(2): 175-197.

DOI:10.2307/1885893      URL     [本文引用: 1]

Zhao P J, Hu H Y.

Geographical patterns of traffic congestion in growing megacities: Big data analytics from Beijing

Cities, 2019, 92: 164-174.

DOI:10.1016/j.cities.2019.03.022      URL     [本文引用: 1]

Shen Y, Ta N, Liu Z L.

Job-housing distance, neighborhood environment, and mental health in suburban Shanghai: A gender difference perspective

Cities, 2021, 115: 103214. DOI: 10.1016/j.cities.2021.103214.

URL     [本文引用: 1]

Yan L X, Wang D, Zhang S W, et al.

Evaluating the multi-scale patterns of jobs-residence balance and commuting time-cost using cellular signaling data: A case study in Shanghai

Transportation, 2019, 46(3): 777-792.

DOI:10.1007/s11116-018-9894-3      [本文引用: 1]

Zhang P, Zhou J P, Zhang T R.

Quantifying and visualizing jobs-housing balance with big data: A case study of Shanghai

Cities, 2017, 66: 10-22.

DOI:10.1016/j.cities.2017.03.004      URL     [本文引用: 2]

Sun Tieshan, Wang Lanlan, Li Guoping.

Distributions of population and employment and evolution of spatial structures in the Beijing metropolitan area

Acta Geographica Sinica, 2012, 67(6): 829-840.

DOI:10.11821/xb201206010      [本文引用: 1]

This study aims to examine the characteristics and changes of the spatial structure in the Beijing Metropolitan Area with the rapid urban growth and decentralization, through analyzing the spatial distributions of urban population and employment. To demonstrate the spatial evolution of population and employment distributions in the Beijing Metropolitan Area, we apply the nonparametric analysis in this study. Our study finds that the significant population and employment subcenters in the suburbs of the Beijing Metropolitan Area, characterized by the polycentric urban spatial structure. Since the 1980s, with the suburbanization of population, the number of population subcenters has increased in the Beijing Metropolitan Area, and the distribution of population subcenters has expanded from the inner suburbs to the outer suburbs. The overall trend toward the decentralization and polycentrification of population is evident, whereas the spatial extent of the decentralization of population is limited in the Beijing Metropolitan Area. Contrary to the decentralization of population, our study finds that the centralization of employment in the Beijing Metropolitan Area from 2004 to 2008 has led to the weakening influences of the outer suburban employment subcenters as well as the decline of the polycentricity of the spatial structure. This implies the spatial pattern of the Beijing Metropolitan Area may still be highly centralized, and the nature of the monocentric urban spatial structure may not be fundamentally changed. Meanwhile, the decentralization of population and the centralization of employment may lead to the overall jobs-housing imbalance. Therefore, to form the polycentric spatial structure, it is necessary to reinforce the agglomeration economies of suburban subcenters and improve the overall jobs-housing balance in the Beijing Metropolitan Area.

[孙铁山, 王兰兰, 李国平.

北京都市区人口—就业分布与空间结构演化

地理学报, 2012, 67(6): 829-840.]

DOI:10.11821/xb201206010      [本文引用: 1]

本研究应用非参数计量方法,实证刻画北京都市区人口—就业空间分布演化,揭示在快速城市化和城市增长背景下,北京都市区空间结构特征及发展趋势。研究发现,北京都市区人口和就业分布都呈现多中心空间结构。20 世纪80 年代以来,随着人口郊区化,北京都市区人口次中心数量不断增加,并由近郊向远郊扩展,人口分布呈现明显的分散化和多中心化趋势,但人口分散的空间范围还比较有限。与人口的分散化趋势不同,2004-2008 年,北京都市区就业仍呈现向心集聚的趋势,造成远郊就业次中心的影响不断被弱化,都市区空间结构的多中心性有所降低。这说明北京都市区的单中心或强中心结构可能并未从根本上改变,且人口的分散化和就业的向心集聚导致宏观面上人口—就业的空间失衡。北京都市区多中心空间结构的形成,需要强化郊区次中心的集聚能力,同时注重人口—就业的平衡布局,这是未来北京都市区空间结构调整的重点。

Bi Yufei, Guo Liang, He Hui.

The connotation, difficulties and implementation countermeasures of the concept of jobs-housing balance

Urban Development Studies, 2019, 26(3): 1-8, 40.

[本文引用: 1]

[毕瑜菲, 郭亮, 贺慧.

职住平衡理念的实施难点与优化策略研究

城市发展研究, 2019, 26(3): 1-8, 40.]

[本文引用: 1]

Zhou Jiangping, Chen Xiaojian, Huang Wei, et al.

Jobs-housing balance and commute efficiency in cities of central and western China: A case study of Xi'an

Acta Geographica Sinica, 2013, 68(10): 1316-1330.

[本文引用: 1]

[周江评, 陈晓键, 黄伟, .

中国中西部大城市的职住平衡与通勤效率: 以西安为例

地理学报, 2013, 68(10): 1316-1330.]

[本文引用: 1]

Zhao P J.

Managing urban growth in a transforming China: Evidence from Beijing

Land Use Policy, 2011, 28(1): 96-109.

DOI:10.1016/j.landusepol.2010.05.004      URL     [本文引用: 1]

Kim C.

Commuting time stability: A test of a co-location hypothesis

Transportation Research Part A: Policy and Practice, 2008, 42(3): 524-544.

DOI:10.1016/j.tra.2008.01.001      URL     [本文引用: 1]

Cheng Peng, Tang Zilai.

A study on the spatial match of jobs-housing balance and its change over time in the central city of Shanghai

Urban Planning Forum, 2017(3): 62-69.

[本文引用: 1]

[程鹏, 唐子来.

上海中心城区的职住空间匹配及其演化特征研究

城市规划学刊, 2017(3): 62-69.]

[本文引用: 1]

Bai Yu, Zhao Pengjun.

A review of concept and methodology of jobs-housing balance

Journal of Northwest Normal University (Natural Science), 2018, 54(4): 89-98.

[本文引用: 1]

[白羽, 赵鹏军.

职住平衡概念与测度方法研究进展

西北师范大学学报(自然科学版), 2018, 54(4): 89-98.]

[本文引用: 1]

Kim K, Horner M W.

Examining the impacts of the Great Recession on the commuting dynamics and jobs-housing balance of public and private sector workers

Journal of Transport Geography, 2021, 90: 102933. DOI: 10.1016/j.jtrangeo.2020.102933.

URL     [本文引用: 1]

Blumenberg E, King H.

Jobs-housing balance re-re-visited

Journal of the American Planning Association, 2021, 87(4): 484-496.

DOI:10.1080/01944363.2021.1880961      URL     [本文引用: 1]

Yao Z Y, Kim C.

Analyzing the multiscale patterns of jobs-housing balance and employment self-containment by different income groups using LEHD data: A case study in Cincinnati metropolitan area

Computers, Environment and Urban Systems, 2022, 96: 101851. DOI: 10.1016/j.compenvurbsys.2022.101851.

URL     [本文引用: 1]

Ren Peng, Peng Jiandong, Yang Hong, et al.

Relationship between jobs-housing balance and built environment in areas around urban rail transit stations of Wuhan

Journal of Geo-information Science, 2021, 23(7): 1231-1245.

[本文引用: 1]

[任鹏, 彭建东, 杨红, .

武汉市轨道交通站点周边地区职住平衡与建成环境的关系研究

地球信息科学学报, 2021, 23(7): 1231-1245.]

DOI:10.12082/dqxxkx.2021.200662      [本文引用: 1]

轨道交通的快速发展提高了通勤可达性,也被认为在重构城市职住空间格局进而影响职住关系方面产生重大影响。探究城市轨道交通站点周边地区(下称轨交站点周边地区)就地职住平衡与建成环境的关系,对于通过建成环境设计促进站点尺度职住&#x0201c;微平衡&#x0201d;,调节由于轨道交通所导致的区域性职住分离意义重大。本文基于武汉市189个轨交站点刷卡数据,首先识别了轨道交通通勤人员并分析了其出行特征,进而利用逐步回归与地理加权回归模型(GWR)探究武汉市轨交站点周边地区职住平衡与建成环境的关系。结果表明:① 从整体看,武汉市向心通勤显著,且汉口片区与武昌片区之间产生较大规模的跨江通勤,跨江交通压力较大;主城区职住平衡指数优于城市近郊区,就业集聚程度呈现&#x0201c;中心-外围&#x0201d;递减趋势,居住空间围绕二环线在外围城区分布,城市整体形成&#x0201c;中心就业,外围居住&#x0201d;的职住分离格局;② 土地利用混合度、公交站点数量对轨交站点周边地区职住平衡有正向促进作用,轨交站点出入口数量则有负向作用,且各因素的影响具有明显的空间异质性;③ 非首末站的职住状况较首末站更好,而是否为换乘站则差异不大。本研究可为轨交站点周边地区就地职住平衡的形成提供参考,促进轨道交通与城市功能协调发展。

Song Jinping, Wang Enru, Zhang Wenxin, et al.

Housing suburbanization and employment spatial mismatch in Beijing

Acta Geographica Sinica, 2007, 62(4): 387-396.

DOI:10.11821/xb200704005      [本文引用: 1]

Along with the social economic development, urbanization has speeded up in China. Suburbanization has been taking place in large and super-large cities. In Beijing, suburbanization (mainly led by housing suburbanization) started from the late 1980s and early 1990s. By now suburbanization in Beijing has experienced three stages: beginning, inner suburbanization and rapid development. Housing suburbanization has been characterized by concentric outward expansion along ring roads, leading to rapid urban sprawl. But urban sprawl in Beijing differs from low-density sprawl in Western countries. New housings are mainly located along arterial roads. Distinct regional variations exist in housing types, showing some similarities to housing segregation in Western cities. This paper argues that housing suburbanization in Beijing and that in Western cities share both similarities and differences. Suburbanization in both settings is a necessary result of improving urbanization and establishment of an urban land market, and guided by urban planning. In Beijing, however, housing suburbanization is "passive" suburbanization, as most residents do not really want to leave the central areas but urban renewal and extremely high housing prices force them to purchase housing in suburban areas. Along with housing suburbanization, the issue of spatial mismatch between housing and employment has emerged in Beijing. Despite all the differences, this spatial mismatch shares similarities to that in American cities in several aspects: spatial separation of residences from jobs, social segregation, leading to increasing costs (in terms of both time and money) for low-income commuters and many social problems such as traffic congestion and social segregation.

[宋金平, 王恩儒, 张文新, .

北京住宅郊区化与就业空间错位

地理学报, 2007, 62(4): 387-396.]

[本文引用: 1]

Zheng Z, Zhou S H, Deng X D.

Exploring both home-based and work-based jobs-housing balance by distance decay effect

Journal of Transport Geography, 2021, 93: 103043. DOI: 10.1016/j.jtrangeo.2021.103043.

URL     [本文引用: 1]

Dai Liuyan, Jiao Huafu, Xiao Lin.

A review on jobs-housing spatial matching of urban residents

Human Geography, 2013, 28(2): 27-31, 66.

[本文引用: 1]

[戴柳燕, 焦华富, 肖林.

国内外城市职住空间匹配研究综述

人文地理, 2013, 28(2): 27-31, 66.]

[本文引用: 1]

Yu Jianhui, Dong Guanpeng, Zhang Wenzhong, et al.

The correlated decision process of house moving and job change and its heterogeneity: A case study of Beijing

Acta Geographica Sinica, 2014, 69(2): 147-155.

[本文引用: 1]

[余建辉, 董冠鹏, 张文忠, .

北京市居民居住—就业选择的协同性研究

地理学报, 2014, 69(2): 147-155.]

[本文引用: 1]

Dang Yunxiao, Zhan Dongsheng, Chen Li, et al.

The coordination mechanism of migrants' residence and employment change in the process of urban renewal: A case study of Beijing

Geographical Research, 2021, 40(2): 513-527.

DOI:10.11821/dlyj020191122      [本文引用: 1]

In the last 40 years, China has experienced large-scale migration, which has greatly contributed to its urban construction and economic growth. Meanwhile, migrants face residence and employment instability in the process of urban renewal. The existing literature mostly attributes this instability to individual factors, but ignores the influence of macro events (such as urban demolition and reconstruction) or the industrial restructuring on migrants' lives. Moreover, in most studies, migrants' residence and employment changes are regarded as independent behaviors of non-interference rather than as correlated behaviors. To fill these research gaps, this study builds a theoretical framework for the coordinative changes of migrant residences and employment. Based on a large-scale survey in Beijing in 2013, we use multilevel bivariate probit models to analyze how the background features impact migrants' residence and employment changes under urban renewal. In particular, this research focuses on two types of background features: the instability of residence, which is measured by the number of city villages in the sub-district, and the instability of employment, which is measured by the proportional area of the wholesale and retail industries in the sub-district. Moreover, we analyze the coordinative change between migrants' residences and employment. The results show that: (1) Compared with residents, migrants are more likely to change residence and employment, and the instability of their residence and employment are correlated more with urban renewal. Migrants living in the city center have higher stability in their residences and employment than those in outlying areas. (2) At the sub-district level, the difference in probability of employment change is significantly greater than that of residence changes. Residence and employment changes are correlated, and change in residence (or employment) is likely to lead to changes in employment (or residence) simultaneously. (3) Migrants living in the sub-districts of city villages have tended to report a higher probability of residence change in the last five years. (4) The young-generation migrants have higher coordination of residence-employment change than old-generation migrants, and the residence instability of the young generation is more related to the instability of the living environment in the sub-districts.

[党云晓, 湛东升, 谌丽, .

城市更新过程中流动人口居住—就业变动的协同机制研究: 以北京为例

地理研究, 2021, 40(2): 513-527.]

DOI:10.11821/dlyj020191122      [本文引用: 1]

城市更新过程中流动人口面临居住与就业的不稳定。本文构建流动人口居住与就业协同变动的理论分析框架,使用北京大样本问卷调研数据,基于双层级双变量离散选择模型,分析城市更新背景下流动人口居住-就业变动协同性及其与背景环境的关系。结果发现:流动人口的居住/就业变动概率远高于本地人口,城市更新对流动人口居住和就业的不稳定性影响更大;流动人口的居住变动行为与就业变动行为是相互作用的协同过程,单项变动极有可能引发双变动的调整。居住在城中村数量较多的街道,流动人口发生居住变动的概率更大。青年流动人口的居住-就业变动协同性相比老一代更高,而且街道的居住不稳定性与青年流动人口的居住行为不稳定更相关。

Yao Yongling.

People and job migration during suburbanization: A case study of Beijing

Urban Development Studies, 2011, 18(4): 24-29.

[本文引用: 1]

[姚永玲.

郊区化过程中职住迁移关系研究: 以北京市为例

城市发展研究, 2011, 18(4): 24-29.]

[本文引用: 1]

Yang Chuankai, Ning Yuemin.

Evolution of spatial pattern of inter-provincial migration and its impacts on urbanization in China

Geographical Research, 2015, 34(8): 1492-1506.

DOI:10.11821/dlyj201508008      [本文引用: 1]

Since China's reform and opening up in 1978, the scale of inter-provincial migration increased sharply, especially from 2000 to 2010. The redistribution of inter-provincial migration has had significant influences on China's urbanization and socio-economic development. Using data from China's 2000 and 2010 censuses, this paper investigates inter-provincial migration by describing its spatial patterns and estimating its impacts on urbanization development with various indictors, such as geographic concentration index, gravity center of migration, composite index of migration, network analysis, and coefficient of variation. The results are as follows: 1) There have been escalating dispersion trends for the distribution of in- and out-migration, especially the out-migration. At the same time, the gravity center of in- and out-migration both move towards north and east. Besides, the destinations of migration has shifted from one single polar (Guangdong) in 2000 to multi-polar (Guangdong, Zhejiang, Shanghai, Jiangsu, Beijing, Fujian) in 2010; while Anhui, Sichuan, Henan and Hunan become the new top four sources of migration in 2010. 2) With the rapid growth of floating population, the network trend of inter-provincial migration is more prominent. Overall, the migration network of 2010 becomes more compacted, connective and balanced than that of 2000. At the regional scale, the migration of population is mainly from central and western to eastern China. The eastern region become the main destinations, while the central and western regions of China have become the main sources of inter-provincial migration, especially the "mid-belt subsiding" is more prominent. At the provincial scale, the increased migration flows mainly to Shanghai, Zhejiang, Jiangsu, Beijing, Tianjin, Fujian, etc. Besides, the migration flows formulate different models due to the effects of regional development disparities, migration distance and migration stocks. 3) The regional types of inter-provincial migration could be divided into four kinds: active regions have a larger floating population and their in-migration is much more than out-migration, which is mainly located in the eastern coastal provinces and Xinjiang; active regions have a larger floating population and their out-migration is much more than in-migration, which is mainly located in the central and western China; active regions have a larger floating population and their in-migration is nearly equal to out-migration; inactive regions have a smaller floating population, such as some provinces with a large ethnic minorities population. 4) Inter-provincial migration has a positive effect on the development of urbanization. It contributes to 18.13% of the increment of urbanization rate and it also narrows the disparities of urbanization rate among provinces, during 2000-2010. However, migrant workers account for most of the inter-provincial migration, and make great contributions to the development of urban socio-economy, but they cannot share the same identity with the citizens due to the household registration system. Therefore, it is necessary to accelerate the reform of household registration system and promote the citizenization of migrant workers.

[杨传开, 宁越敏.

中国省际人口迁移格局演变及其对城镇化发展的影响

地理研究, 2015, 34(8): 1492-1506.]

DOI:10.11821/dlyj201508008      [本文引用: 1]

基于2000年和2010年人口普查数据,利用多种指标和方法研究了中国省际人口迁移的格局演变及其对城镇化的影响。研究发现:省际迁入和迁出人口在空间分布上均呈分散化态势,迁入迁出重心均向北向东偏移,迁入地由广东省&#x0201c;一枝独秀&#x0201d;向多极化演变,安徽、四川、河南、湖南成为新的四大迁出地。利用净迁移流构建的省际人口迁移网络,表现出紧凑化和均衡化趋势;迁移流仍然是从中西部地区指向东部地区,但新增加迁移流集中指向长三角、京津以及福建。综合考虑省际人口迁移强度和方向,可将全国31个地区划分为净流入型活跃区、平衡型活跃区、净流出型活跃区以及非活跃区四种类型。省际迁移改变了迁入地和迁出地的城乡人口结构,通过不同模式促进了城镇化率的提高和省际差异的缩小,对2000-2010年全国城镇化率增加的贡献占到了18.13%。

Li Mengjie, Lin Sainan, Huang Jingnan, et al.

A review of residential mobility research in the 21st century

Urban Planning International, 2021, 36(4): 64-72.

[本文引用: 1]

[李梦洁, 林赛南, 黄经南, .

21世纪国外居住迁移研究进展与评述

国际城市规划, 2021, 36(4): 64-72.]

[本文引用: 1]

Song Weixuan, Chen Peiyang, Hu Yongjia.

A review of research on residential mobility from the perspective of urban geography

Urban Planning Forum, 2015(5): 45-49.

[本文引用: 1]

[宋伟轩, 陈培阳, 胡咏嘉.

中西方城市内部居住迁移研究述评

城市规划学刊, 2015(5): 45-49.]

[本文引用: 1]

Luo Qiong, Shu Hong, Xu Yajin, et al.

Citizen commuting analysis using mobile trajectory data

Geomatics and Information Science of Wuhan University, 2021, 46(5): 718-725.

[本文引用: 1]

[罗琼, 舒红, 徐亚瑾, .

移动轨迹数据支持下的城市居民通勤活动分析

武汉大学学报(信息科学版), 2021, 46(5): 718-725.]

[本文引用: 1]

Zhao Pengjun, Cao Yushu.

Jobs-housing balance comparative analyses with the LBS data: A case study of Beijing

Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(6): 1290-1302.

[本文引用: 1]

[赵鹏军, 曹毓书.

基于多源LBS数据的职住平衡对比研究: 以北京城区为例

北京大学学报(自然科学版), 2018, 54(6): 1290-1302.]

[本文引用: 1]

Wang Bei, Wang Liang, Liu Yanhua, et al.

Characteristics of jobs-housing spatial distribution in Beijing based on mobile phone signaling data

Progress in Geography, 2020, 39(12): 2028-2042.

DOI:10.18306/dlkxjz.2020.12.006      [本文引用: 1]

As the most important parts of urban systems, jobs and housing spaces and their balance directly affect the spatial structure of cities, the behavior and experience of the residents, and the harmony and livability of the society. This study used more than 100 million records of mobile phone signaling data, covering the whole city of Beijing and over a period of one month, to identify the jobs-housing spaces by targeting the origin-destination (OD) oriented connections applying the density-based spatial clustering of applications with noise (DBSCAN) method. Furthermore, this study explored the spatial distribution pattern and matching characteristics of Beijing's jobs and housing spaces from different spatial scales by using various measurement methods of jobs-housing balance. The spatial scales for analysis cover the whole city, ring roads, districts, and residential community and town and townships, and the methods applied include the spatial mismatch index, deviation degree, commuting flow rate, and so on. The results show that: 1) Mainly influenced by the spatial layout of the Beijing Master Plan, Beijing's housing space is characterized by dispersion at the large scale and agglomeration at the small scale, showing a pattern of scattered groupings. In contrast, its working space presents features of agglomeration at the large scale and dispersion at the small scale, retaining a significant single-centered layout. 2) Although working in local areas is the first choice for people at both the ring road scale and the district scale, there are still a great number of people works outside their residential areas. The degree of jobs-housing mismatch gradually decreases from the central city to the periphery no matter which method was adopted or at which scale. At the residential community and town and township scale, however, a more detailed feature of three-zones, with job agglomeration inside, housing agglomeration in between, and balanced distribution outside, was observed. 3) Both the general lack of jobs in certain areas caused by the high concentration of working space and the two-way commuting phenomenon in the majority of the areas caused by the high spatial concentration of jobs indicate the necessity of spatial reorganization of residential function and employment function. Specifically, for the regions with a high proportion of two-way commuting flow between them, such as Chaoyang-Changping, Tongzhou-Daxing, Haidian-Changping, Mentougou-Shijingshan, and Chaoyang-Tongzhou, further in-depth investigation should be conducted to find out the reasons for its formation and then possible industrial adjustment or functional reconstruction from the city level should be coordinated. Relying on big data, on the one hand, the job preference and demand of local residents can be identified, so the types and number of jobs in each region could be adjusted accordingly; on the other hand, the proper locations for new job and residential centers may be identified to help rearrange the land use of the whole city.

[王蓓, 王良, 刘艳华, .

基于手机信令数据的北京市职住空间分布格局及匹配特征

地理科学进展, 2020, 39(12): 2028-2042.]

DOI:10.18306/dlkxjz.2020.12.006      [本文引用: 1]

职住空间作为城市系统最重要的组成部分,直接影响了城市的形态结构、居民的行为体验以及社会的和谐宜居,长期以来受到城市研究者的关注和重视。论文利用覆盖北京全市域并持续1个月的1亿多条手机信令数据,基于DBSCAN的聚类方法,通过OD定向联系,识别出同时具备居住—就业关系特征的职住空间。在此基础上,针对北京市辖区、环路、街道乡镇等不同空间尺度,综合运用空间错位指数、职住偏离度、职住分离率、通勤流动率等计算方法,研究北京职住空间分布格局及匹配特征。研究发现:① 北京市居住空间呈现大分散、小集聚特征,就业空间呈现大集聚、小分散特征;② 基于各个空间尺度、不同测度方法的分析结果均表明,职住空间的不匹配程度呈现出由中心城区向外围逐渐降低的态势,但基于街道乡镇尺度呈现出由内向外更细化的就业集聚—居住集聚—二者均衡的三段式变化特征;③ 无论是就业空间高度集聚导致的非集聚区就业岗位数量不足,还是包括就业高集聚区在内大量区域出现的双向通勤现象,均说明居住功能和就业功能空间重组的必要性。

Wang De, Zhu Zhasong, Xie Dongcan.

Research on intra-city employment mobility in Shanghai: Based on cell phone data

China Population Science, 2016(1): 80-89, 127.

[本文引用: 1]

[王德, 朱查松, 谢栋灿.

上海市居民就业地迁移研究: 基于手机信令数据的分析

中国人口科学, 2016(1): 80-89, 127.]

[本文引用: 1]

Niu Qiang, Sheng Fubin, Liu Xiaoyang, et al.

Research on the identification method of relocation activity degree in inner city based on mobile phone signaling data: A case study of Wuhan

Geographical Research, 2022, 41(8): 2142-2154.

DOI:10.11821/dlyj020210949      [本文引用: 1]

The rapid development of Chinese cities has accelerated the residential mobility of inner city. Precisely measuring residents' migration behavior and its spatial differentiation characteristics is of practical significance to analyze the evolution process of urban residential spatial structure from the perspective of human behavior. Taking Wuhan Metropolitan Area as an example, based on mobile signaling big data, this paper proposes the net activity index and the total activity index to quantitatively describe relocation activity degree, and classifies the residential places into six spatial types based on the classification and combination of the two indicators: high immigration and active area, stable and active area, high emigration and active area, high immigration and inactive area, stable and inactive area, and high emigration and inactive area, and then explores the spatial distribution characteristics of residents' migration. The results show that: (1) The population migration within Wuhan Metropolitan Area generally shows a trend of migrating from the main city to inner suburbs, and the total activity degree in the main city is higher than that in the suburbs. (2) The main city is dominated by high emigration and active areas, and high immigration and active areas, while the inner suburbs are dominated by stable and inactive areas. (3) There are differences in residential types among different spatial types: high immigration and active areas are mainly new residential areas, college residential areas, school district housing, and urban villages; stable and active areas mainly consist of rural residential areas and residential buildings around industrial parks; high emigration and active areas are mainly old residential areas, residential buildings around industrial parks, urban villages and rural residential areas; inactive areas are mainly rural residential areas. This paper proposes an evaluation index system of residents' relocation activity degree based on time-series mobile signaling big data, and proves its validity for the spatial classification of residents' migration places by empirical research. The results can provide data support for relevant planning decision-making departments to regulate population migration within a city, and provide reference for public resources allocation in different areas of the city.

[牛强, 盛富斌, 刘晓阳, .

基于手机信令数据的城内迁居活跃度识别方法研究: 以武汉市为例

地理研究, 2022, 41(8): 2142-2154.]

DOI:10.11821/dlyj020210949      [本文引用: 1]

中国城市的快速发展加速了城市内部人口的居住迁移,精细测度居民迁居行为及其空间分异特征,对于从人的行为视角来分析城市居住空间结构演进过程具有现实意义。本文以武汉都市发展区为例,基于手机信令大数据,提出净活跃度指标和总活跃度指标来量化描述迁居活跃度,并依据两个指标的分类及组合,将居民居住地划分为高迁入型活跃区、平稳型活跃区、高迁出型活跃区、高迁入型非活跃区、平稳型非活跃区与高迁出型非活跃区六种空间类型,进而探讨居民迁居的空间分布特征。结果表明:① 武汉都市发展区内部人口迁移总体呈现出从主城区向近郊区逐步迁移的趋势,且主城区人口总活跃度相较更高。② 主城区以高迁出型活跃区和高迁入型活跃区为主,近郊区则以平稳型非活跃区为主。③ 不同空间类型内的居住类型存在差异:高迁入型活跃区内以新建小区、高校住区、学区房、城中村为主;平稳型活跃区以农村居住地、园区周边住宅为主;高迁出型活跃区以老旧小区、园区周边住宅、城中村、农村居住地为主;非活跃区则以农村居住地为主。本文提出了一种基于时序手机信令大数据的居民迁居活跃度评价指标体系,并以实证研究证明其对于居民迁居地空间类型划分的有效性,研究结果可为相关规划决策部门掌控城市内部的人口迁移特征提供数据支撑、为城市不同区域针对性的进行公共资源配置提供参考依据。

Zhu Wei, Liang Xuemei, Gui Zhao, et al.

The inter-generational differences in the effects of job-housing optimization in Shanghai

Acta Geographica Sinica, 2020, 75(10): 2192-2205.

DOI:10.11821/dlxb202010011      [本文引用: 1]

Job-housing relationship in city has always been a concern of scholars. Excess commuting is a well-accepted concept for evaluating commuting efficiency and potential of optimizing it. By calculating difference between observed commute and theoretical minimum commute, excess commuting can measure to what extent the commute of a city is wasted. Studies on excess commuting are rather scarce in China, especially in perspective of different age groups. Using the mobile phone grid data in September 2017 in Shanghai, this paper analyzes the residential locations, job locations, and commuting distances of three age groups, namely, the young, the middle and the old. To calculate their excess commuting, a modified algorithm is devised, simulating individuals exchanging their residences based on the principle of Pareto Optimality, so that no one has to sacrifice their status quo. The new method also uses large-scale individual data instead of small-scale aggregate origin-destination data adopted in the traditional linear programming method. The job-housing relationships under the optimal commuting are estimated and compared between age groups. The results show that: (1) There is an evident inter-generational differentiation in the job-housing relationships. The young people are the disadvantaged group with the longest commute distances and the farthest residence locations from the city center; the elderly are the dominant group with the shortest commute distances and the closest residence locations from the city center; the middle-aged are in-between. (2) The excess commuting rate in Shanghai is 69%, indicating a large potential in optimizing the job-housing relationships. (3) The benefits of the optimization are immense: the average commuting distance declines, the inter-generational differentiation moderates, and the spatial structure of population age becomes more balanced. (4) The young group will benefit most from this process. It is suggested that the spatial planning and policy making of Shanghai should set a target for an ideal spatial structure of the urban population age, so as to increase the fluidity of the job and housing spaces, youthen the city center, and make the perimeter areas more livable for the middle-age and old people.

[朱玮, 梁雪媚, 桂朝, .

上海职住优化效应的代际差异

地理学报, 2020, 75(10): 2192-2205.]

DOI:10.11821/dlxb202010011      [本文引用: 1]

城市的职住关系一直为研究者广泛关注。过剩通勤概念以实际通勤与理论最短通勤的差距反映城市职住关系与通勤状态,是衡量通勤效率和优化潜力的常用指标。国内的过剩通勤研究数量有限,且鲜有从年龄视角考察。本文利用2017年9月上海市手机网格数据,分析不同年龄段居民的职住与通勤状态,采用模拟个人换居的方法测度过剩通勤,并探讨职住关系优化效应的代际差异。结果表明:上海居民的职住关系存在明显的代际差异,青年人是劣势群体,老年人是优势群体,中年人介于其间;上海全市过剩通勤率为69%,职住关系优化的潜力和效应巨大,可使得通勤距离显著减少,代际分异缓和,青年人的获得感最大,城市年龄空间结构更加均衡。提出上海的空间规划和政策应以理想的城市年龄空间结构为目标,以提高人的居住和就业空间的流动性、青年化城市中心、中老年化城市外围为途径。

/