地理学报, 2023, 78(12): 3018-3036 doi: 10.11821/dlxb202312007

产业与区域发展

价值链视角下中国新能源汽车产业网络及其机制

何瑶,1, 杨永春,1,2, 王绍博3

1.兰州大学资源环境学院,兰州 730000

2.兰州大学西部环境教育部重点实验室,兰州 730000

3.兰州大学县域经济发展研究院,兰州 730000

Network and mechanism of China's new energy vehicle industry from the perspective of value chain

HE Yao,1, YANG Yongchun,1,2, WANG Shaobo3

1. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

2. Key Laboratory of Western China's Environmental Systems, Ministry of Education of the People's Republic of China, Lanzhou University, Lanzhou 730000, China

3. Institute of County Economic Development, Lanzhou University, Lanzhou 730000, China

通讯作者: 杨永春(1969-), 男, 陕西白水人, 教授, 博士生导师, 研究方向为城市与区域发展规划。E-mail: yangych@lzu.edu.cn

收稿日期: 2023-01-16   修回日期: 2023-08-21  

基金资助: 国家自然科学基金项目(41971198)
第二次青藏高原综合科学考察研究(2019QZKK1005)

Received: 2023-01-16   Revised: 2023-08-21  

Fund supported: National Natural Science Foundation of China(41971198)
The Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK1005)

作者简介 About authors

何瑶(1994-), 女, 山西运城人, 博士生, 研究方向城市与区域发展规划。E-mail: heyao1116@163.com

摘要

基于2015年和2021年中国新能源汽车核心产业链的上市公司数据,从价值链视角构建其产业网络,运用社会网络和负二项回归模型等方法,研究不同价值环节网络的特征、演变、差异及形成机制。结果表明:① 研发型、生产型和服务型网络规模同步扩张,均向效率更高的“小世界”网络演化;度分布均始终呈现幂律分布且指数均下降,网络异质性增强;各价值环节节点度呈显著正相关性,同一节点在不同网络中的重要性相似;② 除服务型网络中始终无权力型节点,其余各环节的权力—威望、权力和威望型节点数量均在增加,具有不同程度的集聚指向:研发型网络中节点具有总部所在地及高等级城市指向,服务型具有直辖市、副省级及省会城市指向,生产型具有传统生产基地指向。③ 各价值环节在追求不同要素禀赋和集聚效应下形成不同的集聚类型,并形成了具有各自特征的最强联系产业网络结构。在社会、技术和地理邻近影响下研发网络始终为一体化联系紧密的多个核心—边缘结构社群;在社会、地理和制度邻近影响下服务型网络由一体化联系紧密的多个核心—边缘结构社群向多个核心—半边缘—边缘结构社群转变;在社会、地理和行政边界制度邻近的影响下生产型网络由部分一体化的核心—边缘结构社群向分散化多个独立的核心—边缘结构社群演化。

关键词: 价值链; 新能源汽车产业; 上市公司; 产业网络; 核心—边缘结构; 中国

Abstract

Based on the data of listed companies in the core industry chain of China's new energy vehicles in 2015 and 2021, this paper constructs their industrial network from the perspective of the value chain, and uses methods such as social network and negative binomial regression model to study the characteristics, evolution, differences, and formation mechanisms of different value chain networks. The results show that: (1) R&D-oriented, production-oriented, and service-oriented networks share several common features: These networks are simultaneously expanding in scale and transitioning towards more efficient "small world" network; The degree distribution in these networks follows a power-law distribution, indicating a scale-free network structure; There is a decrease in the power-law exponent of network's degree distribution, indicating an increase in network heterogeneity. Furthermore, there is a significant positive correlation between the degrees of nodes in networks with diverse value chains, suggesting that the same node holds a similar level of significance across different networks. (2) The number of power-prestige, power and prestige nodes increases in the networks of all value chain segments, except in the service-oriented network, where there are no power nodes. In each value chain network, these nodes have different agglomeration directions. In R&D-oriented network, the nodes tend to cluster around headquarters and high-level cities. In contrast, service-oriented network shows a concentration of nodes in municipalities, sub-provincial and provincial capitals. Similarly, production-oriented network demonstrates a clustering of nodes in traditional production bases. (3) Different value-added segments of industry form different types of agglomeration in pursuit of different factor endowments and agglomeration effect, and form the spatial structure of the strongest connection industrial network with different characteristics. The R&D-oriented networks have always been an integrated and closely connected multiple core-periphery structure community with the influence of social, technological and geographical proximities; transformation of service-oriented network from an integrated and closely connected multiple core-periphery structure community to a multiple core-semi-periphery-periphery structure community with the influence of social, geographical and institutional proximities; transformation of production-oriented network from the partially integrated and localized core-periphery structure community to the more decentralized multiple independent core-periphery structure community with the influence of the social, institutional and administrative boundaries and geographical proximities.

Keywords: value chain; new energy vehicle industry; listed company; industrial network; core-periphery structure; China

PDF (4881KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

何瑶, 杨永春, 王绍博. 价值链视角下中国新能源汽车产业网络及其机制. 地理学报, 2023, 78(12): 3018-3036 doi:10.11821/dlxb202312007

HE Yao, YANG Yongchun, WANG Shaobo. Network and mechanism of China's new energy vehicle industry from the perspective of value chain. Acta Geographica Sinica, 2023, 78(12): 3018-3036 doi:10.11821/dlxb202312007

1 引言

产业网络的研究是利用网络方法研究产业间或产业内部各种关系[1],根据研究需要的不同其构建网络的方式也不同,主要以城市、省份或国家等空间属性的地理单元为节点,利用节点之间复杂的产业关系如产业链或产业内企业等关系构建产业网络[2-7]。价值链即企业创造价值过程的各个环节的完整组合[8],由于不同环节要求的要素投入比例不同,具有不同要素禀赋的地域在不同的生产环节具有区位成本优势,从而在不同地域形成价值链分割生产,各地域也成为承接不同价值分工企业的空间载体[9-10]。因此,价值链视角下的某一产业在劳动空间分工下,产业中不同价值环节会根据各自适配的生产地理区位选址,如相同的价值环节(研发、生产或服务),通过同类型地域间的生产网络在地域上组织和布局,二者具有典型的映射关系[10],形成价值链体系下的产业网络结构。现有研究表明发达国家高端制造业的全球价值链分工普遍高于发展中国家[11],而国家内各区域之间若能够遵循禀赋优势进行分工,培育、建立和整合高质量的价值链可助力其在全球价值链中的攀升[12],合理识别区域分工和完善国内价值链成为关键;价值链的生产分割可实现产业的部分转移,使得边缘或欠发达地区能够承接部分产业参与到价值链分工[13],促进其经济发展,同时各地域所处的价值环节会随着区域内产业的发展发生变迁,其区位空间的功能、价值和用途也在改变[8],这一演化过程也是外部经济不断内在化的过程,产业、企业通过空间集聚发现、改变和重塑空间价值驱动产业网络结构演化。

随着中国融入国际分工程度的不断加深,中国汽车产业生产体系中各地域分工位置的阶段性特征明显。从1978年改革开放前引进苏联技术的东北长春第一汽车制造厂,到允许建立合资企业的以东部重点城市为主的北京吉普汽车有限公司、上汽大众汽车有限公司、广汽本田汽车有限公司等,再到零部件国产化率的刚性约束和合资政策限制的减少促使三四线城市发展汽车制造业[14],国内参与汽车制造分工的地域也在逐步增多。伴随国内汽车市场的成熟,研发和销售受到重视,上海、北京等总部所在高级别城市建立研发和销售中心实现价值升级。基于环境和能源安全的考虑,中国开启了新能源汽车产业的发展,新能源汽车作为汽车电动化、低碳化的重要发展方向,对于提高产业竞争力、改善未来能源结构、发展低碳交通都具有深远意义。随新能源汽车技术演进,中国汽车产业也不断开启新的发展空间。比亚迪、蔚来等本土品牌逐渐成熟,带动西安、合肥等城市在新能源汽车产业分工中占据重要位置,新能源汽车对锂电池等新产品的需求也使得具有电池生产能力和原材料的宁德、赣州等城市占据重要位置实现价值升级。全球主要发达国家和地区都将新能源汽车作为未来发展的重要战略方向并加快产业布局,新能源汽车浪潮正在推动汽车产业价值链加速重构。另一方面汽车制造业具有较强的集群正效应[15],在产业空间集聚与规模化生产下形成各自的汽车产业集聚区,中国汽车产业在20世纪80年代趋于分散,而在90年代趋于集中[16],但21世纪初趋于分散,这主要由于零部件及配件制造业的集聚水平对汽车制造业具有决定性和先导性影响[17]。随着汽车产业的生产方式从“福特式”到“平台式”,再发展到“模块化”的转变,这种生产方式使得本地集聚程度下降,但重组区域生产网络的组织结构,产生“超越地方”的竞争优势[18]。产业价值链的重构和生产方式的改变将重塑国内汽车产业网络结构和布局,进而会带来区域人口迁移和产业重组,从而推动区域经济发展和空间结构演化[19]

有学者认为在当代经济中最大的价值创造和获取主要来自无形商品的生产,而不是有形商品和标准化服务的生产,在价值链中,其上游和下游知识密集型活动,例如研发和品牌管理、分销和售后等服务创造和获取的价值明显高于生产业务[20]。企业投资活动及其“分割”价值链将其不同职能转移到潜在最有利可图的地点[21-22],经济地理学家和经济学家也已证明高附加值的知识密集型活动和企业控制往往集中在较发达的核心地区,而低附加值的生产网络往往集中在欠发达的外围地区[21,23 -24]。在汽车产业情况仍然如此,例如Sturgeon等基于汽车制造商及其最大供应商关系,概述了汽车生产网络的空间结构,认为为确保及时交货以及利用规模经济和低劳动力成本,生产环节倾向于区域化,研发则集中于几个中心[25]。Coe等在对宝马集团的案例研究中所提到的其在欧盟和东盟地区的生产网络可以看出,在巴伐利亚和泰国罗勇府的生产制造和装配的供应商均和汽车制造商存在区域内联系[26]。但这些研究主要以少数领先企业及其供应商为例,且侧重于供应商的总部,忽视了分支的研究,真正落在空间上具有生产布局意义的是每家供应商的分支工厂。在对中国汽车生产网络的研究中亦是如此,例如赵梓渝等以一汽-大众案例分析了“全球—地方”视角下中国汽车生产网络的跨域关联与影响因素[27],以及模块化生产下中国汽车产业集群空间组织重构[18]。同时对国内的研究[18,27 -31]忽视了汽车生产网络中的价值分割,而具有不同价值创造和获取潜力的经济活动的空间分布对区域发展具有重要意义[32]。其次在国外政府干预较低的情况下,领先公司控制着其国内汽车产业的发展轨迹,例如捷克共和国[33]和土耳其[34]的零部件供应商。但在中国管控政策下,领先公司别无选择[35-36],因而控制国内汽车产业发展有限,这种情况下仅以个别领先公司分析出现较大局限性。最后,目前关于汽车产业生产网络的布局研究多停留在传统汽车格局的剖析,例如Pavlínek借鉴了哈维的不均衡发展和时空固定理论概念化欧洲汽车工业的地理扩张和重组[37],同时其利用欧盟汽车贸易数据基于生产网络和价值链网络刻画了2003—2017年欧洲汽车工业的“核心—半外围—外围”结构[38];Kuroiwa等利用泰国汽车行业公司的新数据分析了泰国汽车零部件供应商和装配商企业的本地化[39]。当前对新能源汽车产业布局及不同价值环节中地域间联系的形成机制及差异研究的较少。

因此本文基于价值链视角,通过新能源汽车核心产业A股和港股上市企业的组织网络构建以城市为节点的中国新能源汽车产业网络,采用社会网络和负二项回归模型等方法,揭示中国新能源汽车不同价值环节的产业网络特征演变及差异,同时从集聚和多维邻近性角度剖析网络结构形成机制。在机制探讨方面,集聚理论和多维邻近性理论为解释不同价值环节中的集聚及其地域间联系的机制提供了丰富的理论基础,能够较为全面的剖析新能源汽车产业空间集聚及空间联系上的形成机制。在数据方面,将国内新能源汽车核心产业在A股和港股的所有上市企业的总部及分支进行分析,不局限于少量的领先汽车制造商及其供应商总部,而是最大限度的将更多具有生产分支的国内城市纳入研究范围,清晰刻画国内整体新能源汽车产业的布局及演变。在实践方面,新能源汽车产业是城市高质量发展的产业方向之一,也是各城市产业发展争夺的焦点,从价值链视角剖析中国新能源汽车产业的网络结构,提高对新能源汽车产业地域发展的理解,识别不同城市在不同价值网络中的分工及优势,剖析网络结构的形成机制,促进相关城市的价值升级及各城市间的协调发展,为合理配置新能源汽车产业链和完善国内新能源汽车价值链提供科学依据。

2 研究方法与数据来源

2.1 数据收集与处理

本文的企业数据收集与处理包括以下步骤:① 基于万得(Wind)数据库、国信证券和长江证券的新能源汽车核心产业链,整理新能源汽车核心产业链的相关数据和信息。截至2021年底,中国新能源汽车保有量达784万辆,其中纯电动汽车保有量640万辆,占新能源汽车总量的81.63%,因此选择以三电为核心的新能源电动汽车核心产业链进行分析,主要包括锂矿、稀土、其他金属、电解液、正极材料、负极材料、隔膜、永磁材料、电池、电机、电控、热管理、轻量化、线束、变频器、变速器、继电器、半导体、整车生产、充电桩等环节。② 基于万得数据库,获取A股和港股上市公司名录,参考天风证券汽车团队在新能源汽车核心产业链的公司列表,以及上市公司名录的企业简介、经营范围、产品类型和各企业官网的生产产品名录(该产品已具备生产能力并已供使用在新能源电动汽车),筛选出核心环节的具有代表性的上市企业。2015年和2021年分别获取到相关上市企业190家和270家。③ 根据企查查,搜集上市企业的控股子公司,包括经营范围、所属行业和所在城市。通过筛选和删除注销、迁移、经营范围完全不相关的子公司,最终留用获取到2015年相关上市企业2415家子公司和2021年相关上市企业6157家子公司,数据暂未含港澳台地区。所需要的城市常住人口及生产总值数据来自中经网数据库以及2021年各城市国民经济与社会发展统计公报,城市专利数据来自国家知识产权局2021年中国专利公布公告。

2.2 研究方法

(1)产业网络的构建:本文通过跨区域企业间的组织关系构建以城市为节点的产业网络,企业间的网络组织关系包括企业内部组织联系和企业间业务性联系,由于企业间的业务性联系数据具有保密性难以获取,而企业内部组织联系数据更加容易获取且相对稳定,因此多数学者基于企业内部之间的联系进行分析[40]。因此,本文基于上市企业总部与分支机构所在城市间的对应数量关系,借鉴链锁模型构建有向加权网络。结合Defever提出的跨国公司分支机构功能分类标准、Gawc对功能重要性的赋值方法,以及各分支机构的所属行业和经营范围,对新能源汽车核心产业链的上市企业及其分支机构进行功能分类与赋值如下:集团总部型功能(5分)、研发型功能(4分)、服务型功能(3分)、专业材料和零部件生产(3分)、整车生产(3分)、通用零部件生产(2分)、原材料采集(2分)。其中服务型分支主要包括物流、软件开发、金融、租赁、商务服务等生产性服务分支以及批发零售分支。

城市节点之间的联系强度Tij反应两城市之间所有企业的总部—分支机构关联建立的网络联系强度,计算公式为:

Tij=n=1mVif×Vjf

式中:m表示同时在城市i和城市j设立有总部和分支机构的企业数量;VifVjf分别表示企业f在城市i和城市j的得分。

(2)网络指标。度中心性:中心性指标可应用于识别处于网络中心地位的关键节点。节点度是刻画节点重要性的最直接度量指标,一个节点的度越大则其度数中心性越高,合作伙伴数越多。其中,出度为上市企业总部所在城市与分支机构所在城市的对应数量,入度为各分支机构所在城市隶属于总部所在城市的对应数量。

Ki=Kiin+Kiout

式中:Kiin为节点i的入度;Kiout为节点i的出度;Ki表示节点的度,即与节点i联系的所有节点的数量。

平均路径长度:平均路径长度指网络中任意两个节点间最短路径长度的平均值,刻画了网络中要素流扩散能力。网络拥有较低的平均路径长度表明网络中节点在信息和货物等要素交换时的速度更快,便于城市之间交流学习,促进区域协调发展[41]

L=11/2n(n+1)ijdij

式中:L表示网络的平均路径长度;n为节点数;dij为从节点i到节点j的最短路径。

集聚系数:网络中所有节点局部聚类系数的平均值即为平均聚类系数,系数越大,说明该网络节点间的联系更为紧密[41]

Ci=2EiKi(Ki-1)
C=1ni=1nCi    

式中:Ki为节点i的度,即与节点i联系的所有节点的数量;Ei是与节点i联系的节点之间实际产生的边数。

(3)相关性和模块划分。为剖析不同价值环节节点度之间的相关性,本文借助SPSS中的相关分析模块,分别做服务型、生产型和研发型网络中节点度任意两者之间的Pearson相关分析。同时为了对不同价值环节产业网络分别进行社群划分和网络结构识别,本文采用GEPHI中模块度的测度和分类进行识别和分析。

(4)负二项回归模型。回归分析可以明晰解释变量对因变量的影响和关系[42]。网络中节点之间的联系强度为计数变量,数值是非负整数,通过计算方差远大于均数且存在集聚现象,在这种情况下负二项回归模型具有较好的拟合效果[43]。因此本文通过构建负二项回归模型来探讨多要素对节点之间联系强度的作用机制。模型如下:

Dij=α+βproximityij+controlvarij+εij

式中:因变量Dij为价值链不同环节下两城市节点之间的总联系强度;自变量proximityij为多维邻近性,分别为地理邻近、社会邻近、技术邻近和制度邻近;controlvarij为控制变量,本文选择城市间生产总值差、专利数量乘积或常住人口数量乘积。

地理邻近指行为主体之间的地理距离,一方面地理邻近可降低企业间的运输和交流成本,从而促进企业布局生产,另一方面地理邻近可为企业间共同应对外部风险和不确定因素[44],以及实现交换隐性知识的追求,从而提高创新效率。常用的测量指标为城市间的距离,本文通过经纬度测算并对其进行标准化处理:

Geoij=1-lnyijmaxyij

式中:yij表示城市i和城市j之间的地理距离;max yij为研究样本中节点间的最大距离。最后计算的结果为0~1之间的连续变量。

社会邻近性起源于根植性的研究,指主体之间共同关系的程度[45],表示主体间的亲疏关系[5],也可表示为主体之间存在涉及信任的其他关系[46],这些社会关系可以是血缘、地缘或者朋友关系[47],这促使主体之间相互了解从而决定他们之间信息交换的能力[48]。基于友谊、信任和频繁的互动而建立的这种关系使熟悉的主体间更容易产生合作,有助于不同产业之间的知识传播,提高产业联系发生的可能性[49]。因此本文参考已有研究选择两个节点的合作伙伴重叠的程度来衡量社会邻近性,并利用Jaccard指数进行计算:

Socij=qijri+sj-qij

式中:qij为城市节点ij的相同的合作伙伴的数量;ri为城市节点i的合作伙伴的数量;sj为城市j的合作伙伴的数量。

技术邻近性反应城市在交流时认知理解及知识禀赋分布的相似性,为产业联系的产生提供技术与知识基础。当主体间拥有相似的知识认知基础,他们之间相互交流学习的机会就会增加[50]。参考学者们的研究[42,51],本文将价值链各环节下的企业分为不同的类型,采用城市间企业类型的相似度来衡量技术邻近性。计算公式及分类如下:

Tecij=s=1txisxjss=1txis2s=1txjs2

式中:xisxjs表示城市节点ijs类型企业的数量;t为企业类型的总数。根据业务经营范围将研发型企业分为零部件研发、专用材料研发、充电技术研发、电子研发、检测技术研发、循环利用研发、其他技术研发等多个类型;生产型企业分为专业材料生产、专业零部件生产、整车生产和原材料采集等多个类型;服务型企业分为金融服务、技术推广服务、软件开发服务、充换电运营服务、供应链服务、循环利用服务、批发销售服务以及其他服务等多个类型。

制度邻近性是用来解释主体间的联系受制度环境影响、塑造和约束的事实[52],按照科斯理论,制度邻近性本质上应归结为制度设计上的便利性或相似性,即合作主体一方具有便利的政策环境或优惠的政策支持或合作双方政策环境相似,减少双方合作不确定性从而降低成本[53],也是地区间建立产业联系的重要基础[49]。考虑到一方面中国政府在产业发展中具有较强的组织作用,城市产业发展政策具有典型的行政等级分层;另一方面研究表明跨界的制度差异可能阻断产业间的知识溢出,从而影响产业联系路径的形成[49]。因此本文采用优势城市行政等级以及行政边界来测度城市间制度的便利性和相似性,从而完成制度邻近性的测度。参考已有研究[5,54]和中国城市行政等级划分,行政等级下的制度邻近性InsijⅠ:直辖市、副省级城市和省会城市之间的联系为3,以上城市与普通地级市之间的联系为1,普通地级市之间的联系为0,构建两两城市间的制度邻近性Ⅰ;行政边界下的制度邻近性InsijⅡ:同一省域内的城市联系为1,不同省域内的联系为0,构建两两城市间的制度邻近性Ⅱ。

控制变量:基于生产网络理论,主要控制地区的社会经济特性与行业特性。城市间的经济规模与发展水平差异可能通过当地的市场效应吸引上市企业建立分支,因此本模型需要控制城市的GDP,因此将城市间的GDP差值作为控制变量之一。考虑到不同价值环节的差异,城市人口规模一定程度上代表城市的消费能力和劳动力资本,对城市的服务和生产均具有较大的影响,因此测度两两城市间的常住人口数量的乘积作为生产型和服务型网络的控制变量之一。城市专利授权规模代表城市的创新能力,对城市的研发具有很大的影响,因此测度城市专利数量的乘积作为研发型城市网络的控制变量之一。

3 不同价值环节网络的特征、演变与差异

基于企业的研发功能、生产功能(专业材料和零部件、通用零部件、整车等)和服务功能的分支机构,文中分别构建了以城市为节点的新能源汽车产业研发型网络、生产型网络和服务型网络,并对比分析其特征、演变和差异。

3.1 3类网络的特征、差异及相关性

(1)规模同步扩张,联系强度同步增加。相较于2015年,2021年研发型中城市节点数量从73增长至128,节点之间联系数量从144增长至512,平均联系强度从1.973增长至3.556;服务型城市节点数从146增长至241,节点之间联系数量从570增长至2193,平均联系强度从3.904增长至9.100;生产型城市节点数量从205增长至240,节点之间联系数量从824增长至1662,平均联系强度从4.100增长至6.925。3类网络同步扩张,网络节点数量和节点之间联系均增加,至2021城市网络规模从大至小依次为服务型、生产型和研发型。其中,服务型网络反超生产型网络规模,这主要由于新能源汽车需求增大和服务类型分工细化。

(2)平均路径长度同步减小,集聚系数同步上升。相较于2015年,2021年研发型、服务型和生产型的网络平均路径长度分别从3.391、2.854、3.101下降至3.071、2.537和2.952,3类网络的平均路径长度均减小,网络中任意节点之间的联系中转次数减少,联系更为便捷。研发型、服务型和生产型网络集聚系数分别从0.106、0.216、0.138上升至0.17、0.408、0.186,各类网络的集聚系数均上升和网络集聚程度均在增加。整体上,3类网络的平均路径长度减小,网络集聚系数上升。这表明3类网络均向效率更高的“小世界”网络演化的态势。其中服务型网络平均路径长度始终最小和网络集聚系数始终最大,这表明相对于其余网络,服务型网络的联系更为便捷、网络集聚程度和效率较高。

(3)无标度网络分布,网络异质性增强。相较于2015年,2021年研发型、服务型和生产型网络平均度从1.726、2.233、2.473分别增长至2.672、4.278、3.554,各城市节点的联系范围均增大。3类网络的度分布均呈现幂律分布(图1),其拟合程度均大于0.92,表明其始终为无标度网络,马太效应明显,绝大部分城市节点度相对很低,但存在少量节点度相对很高。3类网络拟合幂律指数均呈下降趋势,网络的异质性在增强,这表明3类功能联系的总体差距增大。相对于研发型和生产型,服务型网络的幂律指数始终最小,即服务型功能联系的总体差距相对最大。

图1

图1   2015年和2021年价值链视角下中国新能源汽车产业网络度分布

Fig. 1   Degree distribution of China's new energy vehicle industry network from the perspective of value chain 2015 and 2021


(4)不同价值环节节点度之间显著正相关,同一城市在不同环节重要性相似。相较于2015年,2021年研发型和服务型网络中节点的度Pearson系数呈现显著正相关(R22015 = 0.900,R22021 = 0.845),研发型和生产型网络中节点的度也呈现显著正相关(R22015 = 0.832,R22021= 0.918),服务型和生产型网络中节点的度也呈现显著正相关(R22015 = 0.888,R22021 = 0.883),上述显著性检验值均小于0.01。节点的度表示节点在网络中的重要性,显著正相关表明同一城市节点在不同网络中很大程度上重要性相同,这也表明从低端价值环节进入产业从而实现升级的可能性。因此,对尚未进入核心产业的城市,可积极引进低端价值环节的生产,从而融入新能源汽车生产网络再实现升级。

3.2 新能源汽车产业网络中不同价值环节节点类型判断

将2021年3类网络中的城市节点的入度与出度,在ArcGIS中利用自然断点分别分为两个层级(高层级和底层级),按照相同分层标准对2015年3类网络进行划分。若网络中节点均表现为高层级的出度和入度,则具有较大辐射范围和较强吸引力,这些节点同时也是对外投资的发散地和吸引投资的承接地,可称为权力—威望型节点。若网络中节点表现为高出度和低入度,则具有较大辐射范围和较弱吸引力,一般是企业的总部所在地,可称为权力型节点。若网络中节点为低出度和高入度,则具有较强吸引力和较小的辐射范围,能吸引各地来此地建立分支企业,可称为威望型节点。需要说明的是,节点的出度和入度均为底层级的数量较多,该类节点的辐射范围和吸引力相对来说均较小,表1中未列出。

表1   价值链视角下中国新能源汽车产业网络中节点类型演变

Tab. 1  Evolution of node types in China's new energy vehicle industry network from the perspective of value chain

类型2015年2021年
研发型服务型生产型研发型服务型生产型
权力—
威望
深圳、上海、北京、深圳、杭州、上海、深圳、北京、
杭州、
上海、深圳、北京、
广州、杭州、青岛、
合肥
深圳、北京、上海、杭州、
广州、
权力深圳、合肥、宁波、东莞、
青岛、西安、宁德、
厦门
威望上海、
北京、
天津、
上海、
北京、
天津、
成都、
广州、天津、
苏州、武汉、
合肥、宁波、
成都、重庆、
芜湖、长沙、
南京、东莞、
天津、成都、苏州、
南京、常州、无锡、
长沙、
成都、苏州、海口、
武汉、重庆、天津、
南京、西安、厦门、
宁波、三亚、郑州、
无锡、太原、沈阳、
长沙、珠海、东莞、
哈尔滨、拉萨、南昌
南京、东莞、合肥、成都、
宁波、西安、重庆、苏州、
天津、武汉、长沙、芜湖、
宜春、嘉兴、南通、无锡、
滁州、长春、柳州、镇江、
常州、青岛、包头、泰州、
扬州、赣州、十堰、宁德、
珠海

注:层级划分标准:研发型入度高层级(8~36)、底层级(0~7),出度高层级(10~40)、底层级(0~9);服务型入度高层级(10~40)、底层级(0~9),出度高层级(33~124)、底层级(0~32);生产型入度高层级(7~18)、底层级(0~6),出度高层级(28~90)、底层级(0~27)。

新窗口打开| 下载CSV


研发型网络中,2015年尚无权力—威望型节点,仅深圳为权力型节点,为较多企业总部集聚地,辐射范围相对广;威望型节点有上海、北京和天津,吸引了各地的企业来此建立研发分支。2021年上海、深圳、北京和杭州上升为权力—威望节点,辐射范围和吸引力均增强。合肥、宁波、东莞、青岛、西安和宁德上升为权力型节点,随着这些地区上市企业的增多以及对研发的重视,纷纷在知识环境和创新氛围良好的城市节点设立研发分支,其中合肥的增长速度最快。除天津外,成都、苏州、南京、常州、无锡和长沙也上升为威望型节点,吸引力增强,其中,增长最快的是苏州,吸引众多企业,主要围绕充电及充电桩技术的研发。同时,这些节点也是较多上市企业总部所在地。

服务型网络中,2015年仅深圳为权力—威望型节点,上海、北京、天津和成都为威望型节点。2021年除深圳外,上海、北京、广州、杭州、青岛、合肥上升为权力—威望型节点,成都、苏州、海口、武汉、重庆等21个城市为威望型节点,以上节点中有82.14%为直辖市、副省级和省会城市。

生产型网络中,2015年仅上海、北京、深圳和杭州为权力—威望型节点,广州、天津、苏州等12个城市为威望型节点。2021年除上海、北京、深圳、杭州外,广州上升为权力—威望型节点,厦门为权力型节点,虽有总部企业入驻,具有较大的辐射范围,但其吸引力相对较弱。除天津、苏州、武汉、合肥等11个城市仍是威望型节点外,西安、宜春、嘉兴、南通、无锡、长春等18个城市上升为威望型节点。其中,传统的汽车零部件生产城市仍具有优势,吸引新能源汽车核心产业企业在此建立分支的能力提升;同时,对新材料的需求也使企业在具有资源优势的城市建立生产分支,如包头成为磁性材料,宜春、赣州成为锂电池材料的主要生产基地。

整体上,随着上市企业数量增多,研发、生产和服务的分支数量增加,研发型、生产型和服务型网络中各类型节点数量均增多,各地辐射范围和吸引力都增强。从图2可以看出,相较于2015年,2021年研发型、服务型和生产型的城市节点虽然从东部向中西部扩张,但仍较多集中在“胡焕庸线”以东地区,同时各环节的权力—威望型节点始终集中在东部沿海地区。2021年上海、北京、深圳和杭州均为不同价值环节网络的权力—威望型节点,在价值链各环节均具有较强的吸引力和辐射力,具有绝对的领导力量,综合性较强。2015年和2021年天津始终为研发、服务和生产的威望节点,辐射能力提升幅度较小,主要源于总部入驻天津的大型上市企业少,使得辐射能力有限。3类网络中节点中出度为0的节点数量远超过入度为0的节点数量,表明企业总部仍然集聚在少数城市。

图2

图2   2015年和2021年中国新能源汽车产业网络中节点类型分布演变

注:基于自然资源部标准地图服务网站审图号为GS(2019)1815号的标准地图制作,底图边界无修改。

Fig. 2   Distribution and evolution of node types in China's new energy vehicle industry network in 2015 and 2021


3.3 基于最强联系的产业网络结构演变

通过节点间最强联系,基于GEPHI模块化聚类算法,剖析了不同价值环节网络核心—边缘结构和社群划分。节点间最强联系表明了该节点联系最为紧密、便捷和影响最深的节点,这种关系可进一步促进城市间产业内各组织之间的信任与紧密合作(图3)。

图3

图3   2015年和2021年基于最强联系的中国新能源汽车产业网络结构演变

Fig. 3   The Evolution of China's new energy vehicle industry network structure based on the strongest connection in 2015 and 2021


基于最强联系的研发型网络结构始终表现为一体化的联系紧密的多个核心—边缘结构社群。2015年深圳、上海之间存在最强联系,形成最大社群,其次是以北京为核心的社群,而北京则与上海形成最强联系;除此之外,各社群的成员较少且联系强度较低,社群分化不够明显。2021年上海和深圳仍然是最强联系对,但随着研发型节点的数量增多和完善,分别形成以深圳、上海为核心的核心社群,其次为以北京、青岛—天津、合肥、东莞为核心的社群,社群数量和社群内部节点同步增多;整体上,深圳和上海依旧形成最强联系,也是整个网络中最强的联系。北京的最强联系也是上海,各社群核心节点间存在最强联系,从而使得全国范围的研发型企业呈现一体化发展。

基于最强联系的服务型网络结构表现由联系紧密的多个核心—边缘结构社群向多个核心—半边缘—边缘结构社群转变。2015年上海和北京间形成最强联系对,成为最大社群,其次是以深圳为核心的社群,深圳则与北京联系最强。2021年北京和深圳间的联系增强,形成最强联系对,从而形成最大社群;其次是分别以上海、广州、成都等为核心的社群发展壮大,其中上海与北京、广州与深圳、成都与深圳分别形成最强联系,同时也形成分别以西安、杭州为核心的新社群。整体来说,服务型网络结构形成以上海、北京、深圳、广州为核心的社群,以西安、成都、杭州等为核心的次等级社群。各社群核心节点间存在最强联系,从而提升了全国尺度服务型企业的一体化发展。处于高附加值的研发和服务环节企业,仍侧重在高层级核心节点之间的联系,并通过等级扩散到其他次一级城市。

基于最强联系的生产型网络结构表现为由部分一体化和局部化向分散化的多个独立的核心—边缘结构社群转变。2015年形成以上海、北京、杭州、深圳、厦门、广州等为核心的社群,其中深圳的最强联系是上海,这两个社群存在最强联系。2021年以某一城市为核心的各个社群更为分化,核心节点的最强联系在其社群内部,并形成多个独立的核心—边缘结构的社群。各核心节点均在社群内部存在最强联系对,形成了上海—南京、深圳—惠州、北京—长沙、杭州—金华、东莞—韶关等多个最强联系对。处于低附加值的生产环节表现为核心节点直接与次一级节点间直接对接,主要通过邻近扩散到其他层级的城市,区域化过程较明显。

4 新能源汽车产业不同价值环节网络结构的形成机制

不同价值环节在追求不同要素禀赋和集聚效应下在区域空间中形成不同的集聚类型,同时在多维邻近的影响下形成具有各自特征的网络空间结构(图4)。多维邻近对不同价值环节的演化的影响同时具有相同性和异质性,其中各环节的地理邻近和社会邻近均通过了显著性检验,服务型中技术邻近、研发型中两种制度邻近和生产型网络中技术邻近以及行政等级下的制度邻近均未通过显著性检验(表2)。

图4

图4   价值链视角下中国新能源汽车产业网络结构的形成机制

Fig. 4   The formation mechanism of the network structure of China's new energy vehicle industry from the perspective of value chain


表2   价值链视角下中国新能源汽车产业网络多维邻近机制回归结果

Tab. 2  Regression results of multidimensional proximity mechanism in China's new energy vehicle industry network from the perspective of value chain

变量模型1模型2模型3变量模型1模型2模型3
研发型生产型服务型研发型生产型服务型
Geoij0.0851016**
(0.0365204)
0.1028103***
(0.0332531)
0.0610812**
(0.0309952)
Gdpij0.0014708***
(0.0005832)
0.0008793**
(0.0004873)
0.0008893***
(0.0004504)
Socij1.329344***
(0.4147179)
1.699106***
(0.3668167)
1.744836***
(0.2370462)
Patij /Popij0.0000146**
(0.00000463)
0.0004679***
(0.000085)
0.0005694***
(0.0000679)
Tecij0.2277579**
(0.1062781)
-0.05579
(0.1089859)
0.121154
(0.1586508)
Cons2.513486***
(0.1472295)
2.292235***
(0.1332833)
1.999777***
(0.1844383)
Insij0.013834
(0.0347458)
0.046011
(0.0322685)
0.1607244***
(0.0266826)
α0.211330.3770510.372476
Log likelihood-1256.93-3193.46-3817.34
Insij-0.04883
(0.1109177)
0.186526**
(0.0885989)
0.4449469***
(0.0865728)

注:模型1~3的方差膨胀因子(VIF)均小于临界值10,各解释变量之间不存在多重共线性;括号内为标准误;******分别表示P < 0.10、P < 0.05、P < 0.01。

新窗口打开| 下载CSV


研发型网络中,当知识成为生产要素以及在经济社会发展中的贡献率不断加大时,科研企业、大学、研究机构正在成为新时期的创新主体和创新源,企业往往将研发活动集聚在这些创新资源丰裕的城市[55],追求植根于地方环境与产业氛围的技术外部性和学习效应带来正反馈[10]。而劳动力在规模更大和人力资本水平更为发达的大都市更易产生学习效应[56-57],同时研发活动的投入大、周期长、风险性高等特点,决定其一般分布在初始资本存量较高的地方。因此,研发型网络中节点具有高等级或总部所在地指向,这种高附加值的研发企业在区域政府政策的优惠支持、技术外溢本地化和集聚惯性下不断自我强化,常常以产业链中某一专业知识的研究在区域空间上形成专业化集聚。

在邻近机制的回归结果中,地理邻近通过了显著性检验,对研发型城市之间的合作联系具有正向作用,研发行为主体为满足对不易清晰化和编码化、难以实现远距离交换的隐性知识的追求,需在地理邻近的空间上形成集聚,以获得更多面对面交流学习机会, 达成降低创新成本、推动风险共担与合作创新的目标[58]。技术邻近性对城市之间的联系也具有显著的正向作用,这表明拥有相似的研发类型的城市之间合作的几率更高,相似的知识背景、共同的研究水平是开展合作的必要基础[47],可促进合作主体之间研发知识的吸收和理解,这也进一步表明研发型节点追求专业化集聚,其研发类型的相似性会促进节点间合作的增多;社会邻近在1%的水平上具有正向显著性回归且回归系数最大,这表明拥有相同合作伙伴的节点之间的合作可能性更高。共同朋友越多越易建立较高的信任度,从而可降低交易和合作过程中的风险,提升合作效率[48];两种制度邻近均未通过显著性检验,一方面,研发型网络中节点城市较少且大部分为高等级城市,而这些高等级城市之间的制度邻近值相似但联系值却在地理邻近、社会邻近和技术邻近的影响下差异较大。另一方面,研发型节点中存在部分不是高等级但是总部集聚地的城市,例常州、东莞等,因此制度邻近回归不显著。基于以上,集聚和多维邻近性使得最强联系下的研发型网络始终表现为一体化的核心—边缘结构,各社群的核心城市北京—深圳—上海间的高强度联系使得全国研发网络一体化。社群内的边缘城市节点通过核心城市节点与全国范围内其余城市间的联系效率增强,便于获得核心节点的技术知识外溢,提升研发产业转移承接的可能性和提高技术知识外溢本地化。这种网络模式提高了全国研发的整体效率和稳定性。

服务型网络中,新能源汽车核心产业下的服务业具有高附加值的特点,可承受大城市中较高的土地租金,且对知识需求程度较高,规模较大的城市通常能满足该需求[59-60]。而且因需劳动力与消费者面对面的交流,服务型企业中劳动力单位成本上升,因此须依附于高密度的消费者[61]。随着生产性服务业的分工细化,为追求企业间商务交流和合作的便利与互补,获取相关的正外部性,上市企业需更多专业化的服务分支以提升和匹配相关服务环节的质量和数量,因此上市企业常会在某一区域设立多种不同服务类型的服务分支,在区域空间形成多样性集聚。

在邻近机制的回归结果中,地理邻近通过了显著性检验,这表明地理空间的邻近有助于城市间服务的进行,地理邻近性对城市间服务合作的作用机制上主要表现为降低交易时空成本,这在服务型网络中主要表现在各社群内部的节点与核心节点间的联系。社会邻近也通过了显著性检验,倾向于与有共同合作伙伴的节点进行合作,这与研发环节相似,较高的信任可提高节点间的合作效率。技术邻近未通过显著性检验,这也进一步表明服务型城市追求类型多样化集聚,其服务类型的相似性并不会促进城市间合作的增多。行政等级和行政边界下的制度邻近性均通过了检验,合作主体一方政策的优越性和相同的制度环境便于主体之间开展交流合作。一方面高等级城市节点具有较强、较多服务门类,从而形成较强的合作,也使得全国服务信息互通,帮助中小城市节点的服务企业与更广泛的全国服务网络联系起来,这在服务型网络中主要表现为各社群之间的联系;另一方面省域内省会行政中心城市有着更高的资源控制能力,承担着省域对外联系的重要枢纽功能。同时在时空成本下,服务均具有一定的服务范围,如靠近网络核心的城市节点面临强大的竞争效应并易处于集聚阴影下,因此在距离生产性服务网络功能核心越远的外围城市,其生产性服务功能越强,即在“规模借用”下,拥有了一部分它本没有的生产性服务功能[60]。基于以上集聚和多维邻近性使得最强联系的服务型城市网络,已从2015年的一体化核心—边缘结构转变为2021年的一体化的核心—半边缘—边缘结构,并随着服务网络的完善,形成西安、成都、杭州等半边缘核心节点。

生产型网络中,企业为共享不可分的商品、设施与生产服务和共同承担风险,往往都会选择集聚在生产要素完备的城市进行生产,从而享受共享效应[58]。上市企业为获得各类生产企业集中后所产生的成本节约的城市化经济[62],往往在区域空间上形成多样类型集聚。伴随模块化生产方式的应用,汽车零组件适配性的扩大提升了整车企业在采购方面和零部件生产企业在生产方面的规模经济[18],继而促使区域间紧密联系。

在邻近机制的回归结果中,地理邻近通过了显著性检验,这表明城市节点间距离越小生产合作的几率越大,这主要由于生产环节中的运输及用地成本相较于研发和服务环节较高,为降低运输成本利用规模报酬递增和获取租金较低的生产用地,上市企业往往在总部地理邻近的低一层级的城市或其腹地布局生产环节。社会邻近通过了显著性检验,“朋友圈”重叠度越高,联系强度越强,这与研发和服务环节相似,较易建立深厚的信任提高城市节点间的合作效率。技术邻近没有通过显著性检验,这也进一步表明生产型节点追求类型多样化集聚,其生产类型的相似性并不会促进节点市间合作的增多。制度邻近中,行政等级下的制度邻近并未通过显著性检验,高等级城市的生产成本的增长使得生产联系减少,而行政边界的制度邻近通过了显著性检验,一方面同一省域内的制度相似性可减少城市生产合作的不确定性并降低交易成本,另一方面价值链中的生产环节是最低附加值的环节也是边缘型城市最易争夺的价值环节,一般具有较强的优惠政策,而同一省域内为防止这一环节的外流往往具有自上而下的城市合作机制。如此,基于最强联系的2015年生产型网络表现为部分一体化和局部化的核心—边缘结构社群,而到2021年则形成多个独立的核心—边缘结构社群。

5 结论与讨论

5.1 结论

(1)相较于2015年,2021年中国新能源汽车产业网络研发型、生产型和服务型网络同步扩张,网络节点数量增多,节点之间联系增加,其中服务型网络节点及节点之间的联系的增长和速度均是最快,至2021年网络规模最小的为研发型,研发型高附加值环节仍然分布在少数城市;3类网络度分布均呈现幂律分布,这表明3类网络始终为无标度网络,马太效应明显,绝大部分节点的度相对很低,但存在少量的度相对很高的节点;3类网络幂律分布的幂律指数均呈现下降趋势,这表明3类网络节点异质性增强,3类网络中节点度总体差距增大;不同价值环节节点度之间显著正相关,这表明同一城市节点在不同网络中很大程度上重要性相同,这也表明从低端价值环节进入产业从而实现升级的可能性。

(2)在产业网络中权力—威望型、权力型和威望型节点类型划分中,除服务型网络中始终无权力型节点,其余的各类型节点数量均在增加。各类网络中权力节点相较于威望节点均较少。各价值环节节点具有不同的集聚指向,研发型具有总部所在地指向或高等级城市指向,服务型则具有副省级城市及省会城市指向,生产型则具有传统生产基地指向。2021年上海、北京、深圳和杭州为3类网络的权力—威望型节点,综合实力较强。节点中出度为0的节点数量远超过入度为0的节点数量,表明企业总部仍然集聚在少数城市。

(3)新能源汽车产业不同价值环节在追求不同要素禀赋和集聚效应下在区域空间中形成不同的集聚类型,同时在多维邻近的影响下形成了具有各自特征的网络空间结构。为追求学习效应和技术外溢本地化,研发行为主体往往以某一专业知识在城市形成专业化集聚,在社会、技术和地理邻近影响下研发型最强联系网络始终表现为一体化的联系紧密的多个核心—边缘结构社群;服务类型分工细化促使上市企业需更多专业化的服务分支,从专业角度提升和匹配相关服务环节的质量和数量,从而在某一城市设立多种不同服务类型形成多样化集聚。但随着市场需求的增大,也受到规模借用和集聚阴影影响,同时在社会、地理和制度邻近影响下服务型最强联系网络表现由一体化的联系紧密的多个核心—边缘结构社群向多个核心—半边缘—边缘结构社群转变;为降低运输成本、追求共享效应、规模经济和城市化经济,生产行为主体往往在某一城市形成生产类型多样性集聚,同时在社会、地理和行政边界下的制度邻近的影响下,生产型最强联系网络表现为部分一体化和局部化的核心—边缘结构社群向分散化的多个独立的核心—边缘社群结构演化。

5.2 讨论

本文从价值链角度审视中国新能源汽车产业的网络空间分布和形成机制,提高了对新能源汽车产业地域发展的理解,也为提升不同城市在国内新能源汽车产业发展中的竞争提供了以下启示:① 对于尚未融入新能源汽车核心产业的城市,一方面应注重地理邻近的作用,利用地理邻近所带来的优势积极开展和已融入的邻近城市的相关合作;另一方面积极承接核心城市的产业转移,从低端价值环节融入产业发展之后再实现价值升级,同时核心城市合作伙伴较多,在社会邻近作用下可增加在产业内的可信力和合作伙伴数量。② 对于已融入新能源汽车核心产业的城市,一方面城市在新能源汽车产业某一价值环节的发展中,在提升自身的竞争力时应明确在其中的位置及优劣势,同步发展自身的吸引力和辐射力,才能掌握行业领导权力;另一方面城市在价值链攀升过程中,需关注不同环节作用机制的异质性,抓住省域范围内服务分工细化中缺少的服务类型,不断布局多样化的服务类型,提高对技术研发的专业化集聚,提升城市的研发能力。

结合价值链及生产网络,本文基于中国新能源汽车产业上市企业组织网络剖析国家尺度下以城市为节点的汽车产业的网络,揭示其在中国的具体地理分布规律和空间结构。基于大量的企业的总部—分支数据对传统的以少数领先企业和总部为案例的价值链体系下生产网络分布进行了科学的验证。同时分析了价值链视角下的新能源汽车产业网络结构的演变及形成机制,对各城市在抢占新能源汽车产业以及价值升级提供科学的依据。但仍然存在不足之处:在中国政策对新能源汽车产业的发展作用较强,而本文在制度邻近的测度中由于政策数据的难以量化因而使用行政等级及行政边界近似进行测度,有学者认为中国政治举措改变了老牌外国汽车公司在电动汽车市场和供应链的原始竞争格局和获得核心技术组件方面的条件[36],因而对新能源汽车政策对产业发展的影响仍需进一步更为细致的探讨。另一方面随着全球贸易摩擦的增加,欧美国家通过行政力量干涉跨国主导企业,从而改变全球生产网络的运作。而合资企业存在技术依赖和路径锁定的弊端,尤其是国外公司的技术封闭后对合资企业乃至国内汽车制造业带来的风险,因此提前预估国内汽车产业在技术封闭后汽车制造业的脆弱性和韧性,提出本地汽车产业相关企业在技术封闭后的发展战略与路径选择也是亟需解决的问题。

参考文献

Huang Shoukun, Li Wenbin.

Analysis of industrial networks and its evolution patterns

China Industrial Economics, 2005(4): 53-60.

[本文引用: 1]

[黄守坤, 李文彬.

产业网络及其演变模式分析

中国工业经济, 2005(4): 53-60.]

[本文引用: 1]

Wang C W, Miao W, Lu M M.

Evolution of the Chinese industrial structure: A social network perspective

Technological Forecasting and Social Change, 2022, 184: 121972. DOI: 10.1016/j.techfore.2022.121972

URL     [本文引用: 1]

Tang M H, Hong J K, Liu G W, et al.

Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input-output analysis and a complex network approach

Energy, 2019, 170: 1191-2101.

DOI:10.1016/j.energy.2018.12.164      URL     [本文引用: 1]

Li Y Q, Xiong J, Ma W Q, et al.

Environmental decoupling, eco-efficiency improvement, and industrial network optimization: Insights from 44 sectors in China

Journal of Cleaner Production, 2022, 376(20): 134374. DOI: 10.1016/j.jclepro.2022.134374.

URL     [本文引用: 1]

Zhan Yarong, Gu Renxu.

Characteristics and multi-dimensional proximity mechanism of the online game industry cooperative network in China

Progress in Geography, 2022, 41(7): 1145-1155.

DOI:10.18306/dlkxjz.2022.07.001      [本文引用: 3]

In the era of digital economy, digital technology has brought profound changes to the production system of creative industries. The influence of virtual space built on Internet platforms on physical geographical space is increasing, which destroys the old spatiotemporal relationship, new socioeconomic organization geospatial pattern is created, and the changing importance of geographical proximity and its role in the decentralization of cultural production remain to be explored. In order to examine the impacts of new digital technologies on the geographies of cultural production and to provide a reference for exploring the high-quality development model of cultural industry in the new era, this study applied social network analysis and negative binomial gravity model to examine the urban cooperative network structure and multi-dimensional proximity mechanism of the online game industry, based on the data of Chinese online game projects from 2016 to 2020. The conclusions are as follows: First, the new digital technology has strengthened the decentralization and agglomeration trend of the online game industry. The findings demonstrate the dominant role that external networks play in the operation of online game projects. Small and medium-sized cities rely more on cross-regional cooperation networks in particular, because they lack strong and influential local companies. Second, the connections between cities based on the division of value chain of the online game industry are relatively sparse, the cooperative network presents an uneven diamond-shaped connection pattern, the spatial pattern of the network is highly imbalanced, and the industry is mainly concentrated in the economically developed eastern coastal region. There is a mismatch between the influence of cities in the network and the scale of local clusters. The network hierarchy basically follows that of China's existing urban system, and the core nodes are highly concentrated in Beijing, Shanghai, Shenzhen, and Guangzhou. Local administrative centers also play an important role in the cooperation network. Social proximity, cognitive proximity, urban industrial scale, external connectivity, and human capital have positive effects on the establishment of cooperative network in the online game industry, while the wide application of digital technology makes the effects of geographical proximity and institutional proximity insignificant. At present, the main channel for enterprises in remote areas to obtain resources is still the dominant cultural production centers, which is related to the complex and diverse urban structure system in China.

[展亚荣, 谷人旭.

中国网络游戏产业合作网络特征及其多维邻近性机制

地理科学进展, 2022, 41(7): 1145-1155.]

DOI:10.18306/dlkxjz.2022.07.001      [本文引用: 3]

数字经济时代,依托互联网平台构建的虚拟空间对实体地理空间的影响不断加剧。论文基于2016&#x02014;2020年中国网络游戏项目数据,运用社会网络分析和负二项式重力模型等探究网络游戏产业的城市合作网络结构及其多维邻近性机制,以揭示数字技术对文化产业空间组织的影响,为探索新时期文化产业的高质量发展模式提供参考。研究发现:① 数字技术的发展强化了网络游戏产业的分散化和集聚趋势,外部网络在网络游戏项目运作中占据主导地位,中小城市对跨地域合作网络更为依赖;② 城市间基于网络游戏产业价值链分工合作的联系比较稀疏,合作网络呈现不均衡的&#x0201c;菱形&#x0201d;格局,网络层级基本遵循中国现有的城市体系,核心节点高度集中在北京、上海、深圳、广州等城市,地方行政中心在合作网络中也发挥了重要作用;③ 社会邻近性、认知邻近性、城市产业规模、对外连通性、人力资本等对网络游戏产业合作网络的构建具有正向促进作用,数字技术广泛应用下地理邻近性和制度邻近性作用不显著。

Taylor P J, Catalano G, Walker D R F.

Measurement of the world city network

Urban Studies, 2002, 39(13): 2367-2376.

DOI:10.1080/00420980220080011      URL     [本文引用: 1]

The purpose of this paper is to describe the construction of a set of data that can be used to measure intercity relations. Building on a specification of the world city network as an 'interlocking network' in which business service firms play the crucial role in network formation, information is gathered from global service firms about the size of their presence in a city and about any 'extra-territorial' functions of their offices. This information is converted into data to provide the 'service value' of a city for a firm's provision of its service in a 316 (cities) X 100 (firms) matrix. These data are used to measure the global network connectivity of the cities. In an initial analysis, the paper concludes with a simple correlation exercise that shows New York and London to be `exceptions' rather than 'exemplars' amongst contemporary world cities.

Jin Ying. The evolution of the spatial pattern and the resilience of Liaoning province's production network[D]. Changchun: Northeast Normal University, 2020.

[本文引用: 1]

[金瑛. 辽宁省产业网络空间格局及韧性演化[D]. 长春: 东北师范大学, 2020.]

[本文引用: 1]

Zhou Tao. Research on Urban Spatial Evolution from the Perspective of Value Chain. Beijing: China Social Sciences Press, 2021.

[本文引用: 2]

[周韬. 价值链视角下的城市空间演化研究. 北京: 中国社会科学出版社, 2021.]

[本文引用: 2]

Ren Jinling.

Production fragmentation of value chain, incomplete transfer and industrial transfer in China

Forum on Science and Technology in China, 2011(10): 37-41.

[本文引用: 1]

[任金玲.

价值链分割生产、不完全转移与我国的产业转移.中国科技论坛

2011(10): 37-41.]

[本文引用: 1]

Liu Qing, Yang Yongchun, Jiang Xiaorong, et al.

An analysis of the multidimensional globalizing city networks based on global value chain: A case study of iPhone suppliers

Acta Geographica Sinica, 2021, 76(4): 870-887.

DOI:10.11821/dlxb202104007      [本文引用: 3]

Based on the data of 197 suppliers of iPhone components and parts in 2019, this paper builds multidimensional world city networks from the perspective of global value chains, integrating specialized cities with global functions and the high-class world cities into the same analytical framework, which enriches the research perspective of world city networks in the era of globalization to a certain extent. The purpose of this paper is to expand the research and investigation scope of the existing field of world city networks. By means of social network analysis (i.e. the analysis of centrality, connectedness and network cohesion), rank-size rule and community detection, we study the power and prestige, the overall topological structure, the community structure and influence mechanism of the city networks of R&D-oriented, production-oriented and OEM service-oriented types. The results show that: (1) All the world city networks are characterized by polycentricity and diversification, differentiation of nodes' status and dependence on external connections. The "star" nodes in the network coexist with high power and high prestige, and the power is generally higher than the prestige. (2) The network cohesion and rank of R&D-oriented cities are the highest, and the network tends to show a primate city distribution, and the growth of small group structure and the phenomenon of R&D clusters are obvious. The production-oriented network has the highest connectedness, and it tends to present a rank-size distribution and an equilibrium structure. Its network scale is large, but the ties of many nodes are sparse and decentralized; OEM service-oriented network has the highest relative centrality, and power and information are concentrated in a few city nodes. (3) The cluster characteristics of R&D-oriented city communities are most noticeable. Moreover, the network has significant long-distance knowledge spillover and cooperation behavior. Enterprises form specialized clusters in R&D-type cities through non-tradable interdependence, and obtain the benefits of localization economies and spatial integrated effects. The cluster tendency of production-oriented city communities are relatively obvious. Geographical proximity and spatial dependence are the main factors incubating community structure. Enterprises form generalized clusters through tradable interdependence to obtain the benefits of urbanization economies and distance attenuation effect. No obvious cluster network has been incubated in OEM serviced-oriented city communities. Polarization phenomenon of the inter-community is extremely significant, that is to say, the core city community in Taiwan, China, radiates to other low-level equilibrium communities, forming a radial community structure. Contract manufacturers seek the cities with low labor costs around the world to carry out standardized production, and realize full competition through scale economies, therefore, a scatter-type city network layout structure is formed.

[刘清, 杨永春, 蒋小荣, .

基于全球价值链的全球化城市网络分析: 以苹果手机供应商为例

地理学报, 2021, 76(4): 870-887.]

DOI:10.11821/dlxb202104007      [本文引用: 3]

本文基于2019年苹果手机供应商数据,从全球价值链视角构建全球化城市网络,将具有全球化职能的专业城市与世界城市纳入同一分析框架,运用社会网络与社区发现方法,研究了研发型、生产型、代工服务型城市网络的节点中心性、整体拓扑结构、社群结构及影响机制。结果发现:① 苹果手机零部件的全球化城市网络均具有多中心与多样化、节点等级化、联系外部化特征,网络中“明星”节点高权力—高声望并存且权力总体高于声望;② 研发型城市网络联系最紧密,趋于首位城市分布,小团体结构与集群发育明显。生产型网络关联性最高,网络趋于均匀结构与位序—规模分布。代工服务型网络中心性最高,权力集中在少数城市节点,众多节点易受核心节点控制与支配。③ 研发型城市社区集群最明显,企业通过知识关联效应形成专业化集群,获取本地化经济益处,并通过链式与轮轴式布局建立基于关系接近的跨国网络社区。生产型城市社区集群次之,企业通过经济关联效应形成一般化集群,获取城市化经济益处,通过网络式布局建立基于地理接近的本国内跨行政区网络社区。代工服务型城市社区未发育出明显集群网络,企业通过低成本关联实现规模经济,世界工厂模式形成散点式网络社区。

Liang L, Liang Y W.

An empirical study on the national heterogeneity of high-end manufacturing technology innovation and GVC's division of labor status

Mathematical Problems in Engineering, 2021: 7464384. DOI: 10.1155/2021/7464384.

[本文引用: 1]

Yuan Kaihua, Peng Shuijun, Chen Hongwen.

The facts and explanations of the domestic value chain driving the export value of China's manufacturing industry

Economist, 2019(9): 93-103.

[本文引用: 1]

[袁凯华, 彭水军, 陈泓文.

国内价值链推动中国制造业出口价值攀升的事实与解释

经济学家, 2019(9): 93-103.]

[本文引用: 1]

Zhang Shaojun, Li Dongfang.

Industrial transference region in a mode of global value chain: From the perspective of business cost and learning curve

Economic Review, 2009(2): 65-72.

[本文引用: 1]

[张少军, 李东方.

全球价值链模式的产业转移:商务成本与学习曲线的视角

经济评论, 2009(2): 65-72.]

[本文引用: 1]

Fei Jin, Chen Luan, Xie Zhiying.

Development course and embedded evolution of China's automobile industry

Productivity Research, 2019(4): 82-87, 128.

[本文引用: 1]

[费劲, 陈銮, 谢芷莹.

中国汽车产业发展历程与嵌入性演变

生产力研究, 2019(4): 82-87, 128.]

[本文引用: 1]

Beaudry C, Swann P.

Growth in industrial cluster: A bird's eye view of the United Kingdom

SIEPR Discussion Paper, 2001: 1-38. DOI: 10.1.1.200.7347&rep.

[本文引用: 1]

Wu Zhengzheng, Wu Dianting, Yuan Jun, et al.

Study on the geographical concentration and contributing factors of Chinese automative industry

China Population, Resources and Environment, 2008, 18(1): 116-121.

[本文引用: 1]

[吴铮争, 吴殿廷, 袁俊, .

中国汽车产业地理集中及其影响因素研究

中国人口·资源与环境, 2008, 18(1): 116-121.]

[本文引用: 1]

Zhao Junzhu, Sun Tieshan, Li Guoping.

Agglomeration and firm location choice of China's automobile manufacturing industry

Acta Geographica Sinica, 2014, 69(6): 850-862.

DOI:10.11821/dlxb201406011      [本文引用: 1]

Using the Chinese industrial enterprises database over the period 2001-2009, we analyze the spatial distribution of China's automobile manufacturing industry, by calculating the geographic concentration ratio and the EG index. We find the agglomeration level of China's automobile manufacturing industry has been falling over the period, and the motor vehicle parts manufacturing industry plays an essential role. To analyze the location choice of motor vehicle parts manufacturing start-ups, we build up the conditional logit model using the prefecture level data. The results indicate that: (1) unlike the U.S. and the European countries, the distributions of China's motor vehicle manufacturing firms and motor vehicle parts manufacturing firms are not spatially adjacent, (2) the motor vehicle parts manufacturing startups are labor intensive, which makes the industry's productivity and specialization inefficient, (3) not considering agglomeration economies, the market size and the local protectionism are positive and significant factors that influence the start-ups location choice. Due to all these factors, the specialization and the agglomeration level of China's automobile manufacturing industry is becoming lower.

[赵浚竹, 孙铁山, 李国平.

中国汽车制造业集聚与企业区位选择

地理学报, 2014, 69(6): 850-862.]

DOI:10.11821/dlxb201406011      [本文引用: 1]

本文利用2001-2009 年《中国工业企业数据库》中汽车制造业企业有关数据,对近10 年来中国汽车制造业的空间布局进行描述,利用地理集中度指数和EG指数对产业集聚水平进行测算和分析后,发现中国汽车制造业的空间集聚水平呈现不断下降的趋势,零部件及配件制造业的集聚水平对汽车制造业具有决定性和先导性影响。针对零部件及配件制造业的特点,构建了基于地级以上城市为空间单元的新建企业区位选择模型,进行估计后发现:① 中国不存在类似欧美日等国家整车和零部件企业邻近的空间集中集聚现象;② 零部件制造业的劳动密集型特点显著,不利于产业生产率和专业化水平提高;③ 在不考虑集聚经济的条件下,市场规模和地方保护对新建企业的区位选择影响非常显著。在这些原因的共同作用下,使得中国汽车制造业的专业化水平和空间集聚程度越来越低。

Zhao Ziyu, Wang Shijun, Chen Xiaofei.

Beyond locality in restructuring the spatial organization of China's automobile industry clusters under modular production: A case study of FAW-Volkswagen

Acta Geographica Sinica, 2021, 76(8): 1848-1864.

DOI:10.11821/dlxb202108003      [本文引用: 4]

Under the background of the third revolution of production mode in the automobile industry, as represented by modularization, there arise a series of urgent theoretical and practical problems: how the new production mode affects the evolution of the spatial organization of the automobile industry, how to explain its mechanism based on economic geography, and how to analyze its effects on specific industrial clusters. Taking FAW-Volkswagen as an example, based on the local full-coverage first-level supply chain mapping industry cluster organization of vehicle manufacturing, this paper explores the effects of modular production on the spatial organization of automobile industry clusters at the local-regional scale. Results indicate that: (1) The degree of local agglomeration decreases with the decline of local economy. To a certain extent, the scale economy created by modular production overcomes transportation cost, leading to both the weakened production dependence of large-scale vehicle groups on the host area after industrial transfer and the reduced spatial agglomeration of parts suppliers. (2) Beyond locality: the production network between regions is reconstructed. Under modular production, regional production networks will be reorganized, which reflects the importance of scale production and scale reorganization for spatial economic dynamics. When the Yangtze River Delta region, with its regional advantages in the manufacturing industry and its complete auto parts industry chain, takes part in the division and cooperation of the production network of FAW-Volkswagen automobile factories in four cities across the country in the form of industry clusters, "beyond locality" competitive advantages are created. (3) Scale economic effect, knowledge technology sharing, and enterprise organization strengthening jointly drive the spatial reconstruction of China's automobile industry clusters under modular production. This study provides insight to understand the interactive mechanism between the adjustment of production mode and the evolution of the spatial organization structure of manufacturing industry clusters, offering beneficial complements to studies on industrial geography from the perspectives of economy, system, society, and innovation.

[赵梓渝, 王士君, 陈肖飞.

模块化生产下中国汽车产业集群空间组织重构: 以一汽-大众为例

地理学报, 2021, 76(8): 1848-1864.]

DOI:10.11821/dlxb202108003      [本文引用: 4]

在以模块化为代表的第三次汽车工业生产方式变革背景下,新生产方式如何影响汽车工业空间组织演化,如何基于经济地理学阐释其发生机制及剖析对特定产业集群的影响作用,成为亟需解决的理论和现实问题。本文以一汽-大众为例,基于整车制造的本土全覆盖一级供应链映射产业集群组织,探讨地方&#x02014;区域尺度下模块化生产对于汽车产业集群空间组织的影响。结果显示:① 地方式微:本地集聚程度下降。模块化生产所带来的规模经济在一定程度上克服运输成本,导致大型整车集团产业转移后对东道地生产依赖的下降和零部件供应商空间集聚的降低;② 超越地方:生产网络跨区重构。模块化生产将重组区域生产网络的组织结构,反映出尺度生产和尺度重组过程对空间经济动态的重要性。长三角地区凭借制造业区域优势和完整汽车零部件产业链,以产业集群作为行动主体参与到一汽-大众全国4个城市整车厂生产网络的分工协作中,产生了&#x0201c;超越地方&#x0201d;的竞争优势;③ 规模经济效应、知识技术共享和企业组织强化共同驱动模块化生产下汽车产业集群的空间组织重构。研究有助于理解生产方式调整与制造业产业集群空间组织结构演化的互动机制,同时为以经济、制度、社会和创新为视角的产业地理研究提供有益补充。

Han Ying, Pan Zhigang.

Analysis of the driving effectiveness of automobile industry to its correlative industry

China Soft Science, 2005(6): 139-143.

[本文引用: 1]

[韩颖, 潘志刚.

汽车工业对其关联产业的带动效用分析

中国软科学, 2005(6): 139-143.]

[本文引用: 1]

Mudambi R.

Location, control and innovation in knowledge-intensive industries

Journal of Economic Geography, 2008, 8(5): 699-725.

DOI:10.1093/jeg/lbn024      URL     [本文引用: 1]

Dicken P.

Global Shift: Mapping the Changing Contours of the World Economy

London: Sage, 2011.

[本文引用: 2]

Gereffi G, Humphrey J, Sturgeon T.

The governance of global value chains

Review of International Political Economy, 2005, 12(1): 78-104.

DOI:10.1080/09692290500049805      URL     [本文引用: 1]

Hymer S. The multinational corporation and the law of uneven development. International Economic Policies and Their Theoretical Foundations. 2nd ed. California: Academic Press, 1992: 436-463.

[本文引用: 1]

Massey D.

In what sense a regional problem?

Regional Studies, 1979, 13(2): 233-243.

DOI:10.1080/09595237900185191      URL     [本文引用: 1]

Sturgeon T, Van Biesebroeck J, Gereffi G.

Value chains, networks and clusters: Reframing the global automotive industry

Journal of Economic Geography, 2008, 8(3): 297-321.

DOI:10.1093/jeg/lbn007      URL     [本文引用: 1]

Coe N M, Hess M, Yeung H W C, et al.

'Globalizing' regional development: A global production networks perspective

Transactions of the Institute of British Geographers, 2004, 29(4): 468-484.

DOI:10.1111/tran.2004.29.issue-4      URL     [本文引用: 1]

Zhao Ziyu, Wang Shijun, Chen Xiaofei, et al.

Cross-regional relatedness and influencing factors of China's automobile production network from the perspective of 'global-local': A case study of FAW-Volkswagen

Progress in Geography, 2022, 41(5): 741-754.

DOI:10.18306/dlkxjz.2022.05.001      [本文引用: 2]

Under the background of global production network development, the research on "global-local" cross-regional relatedness of production organizations has important theoretical significance. The cross-regional network characteristics and geospatial representations of China's joint venture automobile production network have been explored in the global-local interactive situation. Based on the perspective of global-local production relatedness and multi-scale integration and using primary supply data of automobile manufacturing, this study analyzed the cross-regional relatedness and influencing factors of China's joint venture automobile production network represented by FAW-Volkswagen. The results show that: 1) The global-local multi-scale integration provides a good perspective for understanding the industrial transfer footprint of multinational corporations in building global production networks. The German company Volkswagen is embedded into China's automobile manufacturing system by building global production network, and the structure of the production network shows a typical characteristic of global-local relatedness. 2) The spatial distribution of local primary suppliers in the FAW-Volkswagen automobile production network is highly consistent with the "T"-shaped pattern of China's territorial development strategy. Investment type / technology control of automobile suppliers presents a regional organization model of the same type of spatial agglomeration, and the agglomeration degree presents the characteristic of sole proprietorship ≈ joint venture > local investment business. 3) Through the production transfer of automobile assembly plants and the procurement by cross-regional supply chains, the production organization of FAW-Volkswagen has formed a cross-regional cluster network structure with the core of cities where the automobile assembly plants are located and are restricted by geographical boundaries. 4) Spatial and temporal constraints, location advantages and agglomeration effects, technological innovation represented by modular production, venture strategies of multinational groups, and foreign investement club strategies jointly influence the spatial organization structure of the FAW-Volkswagen production network. Through a typical case study, this study provides theoretical and practical bases for understanding the organizational structure of China's key industrial production networks under the global-local multi-scale.

[赵梓渝, 王士君, 陈肖飞, .

“全球—地方”视角下中国汽车生产网络的跨域关联与影响因素: 一汽-大众案例

地理科学进展, 2022, 41(5): 741-754.]

DOI:10.18306/dlkxjz.2022.05.001      [本文引用: 2]

全球生产网络背景下,生产组织的&#x0201c;全球&#x02014;地方&#x0201d;跨域关联研究具有重要的理论意义。为探究中国合资汽车生产网络在&#x0201c;全球&#x02014;地方&#x0201d;互动情景下跨域网络特征及地理空间表征,论文基于&#x0201c;全球&#x02014;地方&#x0201d;生产关联与多尺度融合视角,利用整车制造一级供应链数据,分析以一汽&#x02014;大众为代表的中国合资汽车生产网络的跨域关联及其影响因素。研究发现:① &#x0201c;全球&#x02014;地方&#x0201d;多尺度融合为理解跨国公司构建全球生产网络的产业转移足迹提供了良好视角。德国大众公司通过构建全球生产网络嵌入中国汽车制造业体系,生产网络结构表现出典型的&#x0201c;全球&#x02014;地方&#x0201d;关联特征。② 一汽&#x02014;大众整车生产本土一级供应商数量的空间分布与中国国土开发的&#x0201c;T&#x0201d;字形战略高度吻合。供应商资本类型/技术掌控呈现出同类型空间集聚的地域组织模式,集聚程度呈现独资&#x02248;合资&gt;内资的差异性特征。③ 一汽&#x02014;大众通过整车厂生产转移和跨区域供应链采购,生产组织形成了以整车厂所在城市为核心、受地理边界制约的跨区域集群网络结构。④ 地理时空约束、区位优势与集聚效应、模块化生产为代表的技术革新、跨国集团的企业战略与外资俱乐部策略,共同影响了一汽&#x02014;大众汽车生产网络的空间组织结构。论文通过典型案例研究,为理解&#x0201c;全球&#x02014;地方&#x0201d;多尺度下中国关键性产业生产网络的组织结构提供了理论与现实依据。

Lin Bingquan, Sun Bindong.

The impact of inter-cluster networks on firms' TFP: A case study of China's automobile manufacturing industry

Geographical Research, 2022, 41(9): 2385-2403.

DOI:10.11821/dlyj020220080      [本文引用: 1]

The debate between agglomeration externality and network externality is the current research hotspot in the field of regional science. With the intensification of globalization and localization, the cooperation of firms will be more frequent. In this context, Global Cluster Network is an emerging theme in the field of economic geography. We discuss network externality in the direction of industrial cluster. Since relational data to measure cooperation between clusters is difficult to obtain, most of the existing literature uses patent data to analyze innovation cooperation between clusters and firms' innovation performance. Existing research lacks the discussion on the total factor productivity of firms. The paper constructs a theoretical analysis framework for the influence of industrial clusters on TFP under different research paradigms, and uses firm-level patent data and supply chain cooperation data to describe the innovation cooperation network and supply chain in automobile manufacturing industry clusters cooperation networks, and use fixed effects panel regression models to compare and analyze the influences of network externality and agglomeration externality on TFP. Industrial clusters are widely networked by supply chain cooperation and innovation cooperation. Among them, supply chain cooperation between clusters is more intensive than innovation cooperation, but the average connection strength of the latter is greater than that of the former. The results show that the supply chain cooperation networks have significant and heterogeneous effects on TFP. For firms with stable supply chain cooperation relationships, for every 100 additional supply chain cooperation between their industrial clusters and other clusters, the firms' TFP will increase by 0.422. For firms lacking stable supply chain cooperation, the TFP is mainly due to the agglomeration externalities caused by intensive supply chain cooperation within the cluster. Further analysis of the mediation effect finds that the influence of network externalities on TFP stems from the learning and matching mechanism, that is, supply chain cooperation between clusters can improve the level of firms' research and development, enhance the matching efficiency to supply chain partners, and then improve firms' TFP. The paper finds that cluster networks are important influencing factors of firms' TFP, which have been widely ignored in existing research. The conclusions enrich the theoretical framework of the Global Cluster Networks and have important policy implications.

[林柄全, 孙斌栋.

网络外部性对企业生产率的影响研究: 以中国汽车制造业集群网络为例

地理研究, 2022, 41(9): 2385-2403.]

DOI:10.11821/dlyj020220080      [本文引用: 1]

&#x0201c;全球集群网络&#x0201d;理论是经济地理学领域的新兴主题,是在产业集群研究方向上对&#x0201c;网络外部性&#x0201d;进行探讨。本文构建了网络外部性和集聚外部性影响企业TFP(全要素生产率)的理论分析框架,利用企业层面的专利数据和供应链合作数据,描绘中国汽车制造业产业集群之间的创新合作网络和供应链合作网络,并采用固定效应面板回归模型检验和对比网络外部性和集聚外部性对企业TFP的影响,结果显示:集群之间的供应链合作网络对企业TFP产生异质性的作用。对于具有稳定的供应链合作关系的企业,其所在的产业集群与其他集群的供应链合作有助于增加企业TFP;对于缺少稳定供应链合作关系的企业,其TFP的增加主要得益于集群内部密集的供应链合作引发的集聚外部性。进一步中介效应分析发现,网络外部性对TFP的影响是源于&#x0201c;学习机制&#x0201d;和&#x0201c;匹配机制&#x0201d;,即集群间的供应链合作能够提升企业研发能力、提高对供应链合作企业的匹配效率,从而提高企业TFP。研究结论丰富了全球集群网络的理论框架,并具有重要的政策参考价值。

Cong Haibin, Zou Deling, Gao Bo, et al.

Network patterns and influence factors of new energy vehicle trade along the countries of the Belt and Road

Economic Geography, 2021, 41(7): 109-118.

[本文引用: 1]

[丛海彬, 邹德玲, 高博, .

“一带一路”沿线国家新能源汽车贸易网络格局及其影响因素

经济地理, 2021, 41(7): 109-118.]

[本文引用: 1]

Chen Xiaofei, Miao Changhong, Pan Shaoqi, et al.

Characteristics and construction mechanism of enterprise networks in "Hub-and-Spoke" cluster: Empirical evidence from Chery cluster in 2014

China, Geographical Research, 2018, 37(2): 353-365.

[本文引用: 1]

[陈肖飞, 苗长虹, 潘少奇, .

轮轴式产业集群内企业网络特征及形成机理: 基于2014年奇瑞汽车集群实证分析

地理研究, 2018, 37(2): 353-365.]

DOI:10.11821/dlyj201802009      [本文引用: 1]

随着全球经济格局调整和规则重构,全球“第四次产业转移浪潮”为中国轮轴式产业集群升级提供了一扇“区位机会窗口”。基于对以奇瑞汽车集群为代表的轮轴式产业集群实地调研,通过企业半结构式访谈和问卷调查,研究了2014年集群内部企业间的产业联系网络、创新合作网络和社会交流网络,深度刻画了企业网络结构特征和形成机理。研究发现:① 企业网络中心性较为突出,呈现显著的“核心—边缘”结构。说明以QR为代表的核心企业在集群内部拥有绝对的“市场权利”“技术权利”和“网络权利”,对企业网络形成具有重要的支配作用;② 企业网络整体发育层次较低,差异较大。其中产业联系网络发育水平相对较高,创新合作网络最低,说明企业间交往仍以产品垂直供货和水平分工协作为基础,虽然在核心企业主导下外围节点间存在社会交流现象但程度相对较弱,同时汽车生产系统技术差异及“小团体”“俱乐部”等现象也导致企业间创新合作网络的发育迟缓。③ 企业网络建构是地理临近性、关系异质性和认知互动性共同作用的结果。其中,企业地理空间接近和面对面交流为网络形成提供了基本条件,企业关系资产和行动者网络为网络形成提供了介质条件,企业技术关联和路径创造为网络形成提供了保障条件。

Wang Cheng, Wang Maojun, Chai Qing.

The relationship between centrality and power in the city network

Acta Geographica Sinica, 2015, 70(12): 1953-1972.

DOI:10.11821/dlxb201512008      [本文引用: 1]

Centrality and power show important network structure characteristics of a major city. However, research on the city network often ignores the connection and the differences between these concepts. We explain the basic concepts underpinning both centrality and power. We introduce two concepts: recursive centrality and recursive power, to describe degree centrality and betweenness centrality as applied to a city's position and power in a network, respectively. We form a complete set of relational data based on a matching relationship between Chinese auto parts supply and demand in 2009. Finally we review China's urban network topology characteristics, such as node distribution and link relationships, and identify the relationship between the center and the power index. Empirical studies show that (1) the Chinese city network (based on auto parts supply and demand) is of low density, polycentric, and is characterized by the "rich club". (2) Shanghai, Changchun, Beijing, Chongqing and Shiyan show the highest level of centrality in their city networks within the six major auto industry regions (northeast China, Beijing-Tianjin, central China, Sichuan-Chongqing, and the Yangtze River Delta). (3) There are six major network power city clusters in China: the Yangtze River Delta, Beijing-Tianjin, Shandong Province, Guangxi autonomous region, Hubei Province, and Sichuan-Chongqing. Among them, the Yangtze River Delta is the most powerful one. (4) With regards to measuring centrality and power in a network, recursive centrality and recursive power are both discernible and accurate. (5) City network distribution features can be classified as either core cities, with high centrality and high power, or peripheral cities, with low centrality and low power. The damping effect of distance influences the degree of connection within a city. Other relationships exist, such as center city clusters, with high center and low power, and powerful gateway cities, with low centrality and high power.

[王成, 王茂军, 柴箐.

城市网络地位与网络权力的关系: 以中国汽车零部件交易链接网络为例

地理学报, 2015, 70(12): 1953-1972.]

DOI:10.11821/dlxb201512008      [本文引用: 1]

网络中心性和网络权力是城市节点的两个重要网络结构特征,现有研究往往缺乏对二者联系和差别的足够重视。从拓扑结构角度,解析城市网络中心性和网络权力的基本内涵,基于度中心性、介数中心性分别表征城市网络中心性和网络权力存在的不足,引入递推中心性和递推权力的概念,利用2009年中国汽车零部件供需链接配套关系数据构建城市关联网络,讨论网络节点分布、链接关系等拓扑结构特征,识别各项中心性和权力指标的相互关系。研究表明:① 汽车零部件供需链接的城市网络具备低密度、多中心、“富人俱乐部”的特征;② 上海、长春、北京、重庆、十堰为最高等级的网络中心城市,分别锁定中国6大汽车产业带的对应地区;③ 长三角、京津地区、山东、广西、湖北三省及川渝地区为6大网络权力城市集中区,长三角地区网络权力最为突出;④ 递推中心性、递推权力在测度城市网络中心性和网络权力方面,具有更高的区分性和精准度;⑤ 城市网络存在由“高中心性—高权力”的核心城市到“低中心性—低权力”的裙带城市的一维分布特征,这与空间距离阻尼对城市链接有无的影响程度的衰减有关;同时也存在二者关系非匹配的“高中心性—低权力”的中心集束城市和“低中心性—高权力”的权力门户城市。

Pavlínek P, Ženka J.

Value creation and value capture in the automotive industry: Empirical evidence from Czechia

Environment and Planning A: Economy and Space, 2016, 48(5): 937-959.

DOI:10.1177/0308518X15619934      URL     [本文引用: 1]

This article investigates how distinct tiers of firms contribute to value creation and value capture in the automotive industry. We employ firm-level indicators to evaluate the value creation and capture of distinct supplier tiers in the Czech automotive industry, while considering differences between foreign-owned and domestic firms. Our analysis suggests that the economic effects of the automotive industry largely depend on its capital intensity and that mostly foreign-owned higher tier firms generate and capture greater value than lower tier firms, which include the vast majority of domestic suppliers.

Natsuda K, Thoburn J, Blažek J, et al.

Industrial policy and automotive development: A comparative study of Thailand and Czechia

Eurasian Geography and Economics, 2022, 63(2): 212-238.

DOI:10.1080/15387216.2020.1836983      URL     [本文引用: 1]

Özataǧan G.

Shifts in value chain governance and upgrading in the European periphery of automotive production: Evidence from bursa, Turkey

Environment and Planning A: Economy and Space, 2011, 43(4): 885-903.

DOI:10.1068/a43428      URL     [本文引用: 1]

This paper examines shifts in value chain governance and upgrading in the automotive component production node of Bursa in Turkey. Component suppliers in Bursa have gained design and product-development competences, one result of which is that European and global firms have turned to the creation of modular value chains for the sourcing of components from these suppliers. This paper considers the implications of the insertion of Turkish suppliers into modular value chains on suppliers' upgrading, and reveals that, despite the diffusion of design and product-development competences to suppliers in Bursa, cutting-edge innovation activities such as marketing and branding continue to remain the domain of the lead firms. It is argued that although Turkish suppliers seem to be successful in upgrading to take on design and product-development tasks, this has been more due to the willingness of global lead firms to relinquish these functions than to the success of Turkish suppliers in encroaching upon these once core competences of their customers. It is concluded that power asymmetries in global automotive value chains continue to exist, and that lead firms continue to have a major influence on the type of upgrading strategies that are open to their suppliers.

Schwabe J.

From "obligated embeddedness" to "obligated Chineseness"? Bargaining processes and evolution of international automotive firms in China's new energy vehicle sector

Growth and Change, 2020, 51: 1102-1123.

DOI:10.1111/grow.v51.3      URL     [本文引用: 1]

Yeung G.

'Made in China 2025': The development of a new energy vehicle industry in China

Area Development and Policy, 2019, 4(1): 39-59.

DOI:10.1080/23792949.2018.1505433      URL     [本文引用: 2]

Pavlínek P.

Restructuring and internationalization of the European automotive industry

Journal of Economic Geography, 2020, 20(2): 509-541.

[本文引用: 1]

Pavlínek P.

Relative positions of countries in the core-periphery structure of the European automotive industry

European Urban and Regional Studies, 2022, 29(1): 59-84.

DOI:10.1177/09697764211021882      URL     [本文引用: 1]

This article investigates the core-semiperiphery-periphery structure of the European automotive industry between 2003 and 2017 by drawing on the global value chains and global production networks perspectives and on the conceptual explanation of the spatial division of labor in transnational production networks in the automotive industry. It develops a methodology to empirically determine the relative position of countries in the core, semiperiphery, or periphery, and changes in their position over time. The methodology is based on calculating the automotive industry power of individual countries, which is the combination of trade-based positional power, ownership and control power, and innovation power in the automotive industry. On the one hand, the empirical analysis revealed a dominant position of Germany as a higher-order core, which is joined only by France and Italy in the stable core of the European automotive industry. On the other hand, the periphery is mostly located in East-Central Europe despite the rapid growth of the automotive industry there since the 1990s. The majority of countries kept a stable relative position in the core-semiperiphery-periphery structure of the European automotive industry transnational production system during the 2003–2017 period.

Kuroiwa I, Techakanont K, Keola S.

Evolution of production networks and the localisation of firms: Evidence from the Thai automotive industry

Journal of the Asia Pacific Economy, 2022. DOI: 10.1080/13547860.2021.2024361.

[本文引用: 1]

Zhao Xinzheng, Li Qiuping, Rui Yang, et al.

The characteristics of urban network of China: A study based on the Chinese companies in the Fortune Global 500 List

Acta Geographica Sinica, 2019, 74(4): 694-709.

DOI:10.11821/dlxb201904006      [本文引用: 1]

Based on the data of Chinese enterprises that entered the Fortune 500 list in 2015, this paper uses the eclectic model to construct the inter-city association network. Using the network analysis method, the spatial connection characteristics of 311 inter-city networks at prefecture level and above and 20 urban agglomerations networks in China are examined respectively. The research found that: (1) The overall connectivity of urban network is poor, the centripetal concentration is strong, and the network is not complete. The urban network connection shows a strong tendency of political center cities directivity, coastal cities directivity as well as resource-based cities directivity. The external economic dependence of each node city in the urban network is high, and the urban network structure has obvious flattening characteristics. The network of urban agglomerations is characterized by decentralization of power, differentiation of status and dependence on external connections. (2) The boundary effect of provinces, urban agglomerations and urban agglomerations clubs in the urban network is significant. The network evolution process is influenced by the provincial administrative district economy, the urban agglomerations economy and the urban agglomerations club economy. The size and number of central cities in the region and its surrounding areas have an impact on the provincial administrative district economy, the city agglomerations economy and the urban agglomerations club economy. (3) The function of cities is obviously divided in a multi-scale network. The large cities and regional central cities have a complete and more balanced function system than the small and medium-sized cities do. The radiation effect of three major urban agglomerations in coastal China is significant, while the dominant function of other urban agglomerations needs to be strengthened. (4) The cross-scale regional functional interaction effect of cities (clusters) is significant. The radiation-driven function of cities (clusters) is positively related to their self-agglomeration capabilities. This study provides support for the understanding of urban network model expansion and the spatial relation of urban network in China.

[赵新正, 李秋平, 芮旸, .

基于财富500强中国企业网络的城市网络空间联系特征

地理学报, 2019, 74(4): 694-709.]

DOI:10.11821/dlxb201904006      [本文引用: 1]

基于2015年世界财富500强中的102家中国企业数据,根据企业组织特征构建了反映企业—城市间关联的折衷网络模型,借助网络分析等多种方法分析了中国地级城市间和典型城市群之间的网络联系。研究发现:① 城市网络总体连通性较差、向心集中性强,发育不够完备;城市网络连接具有明显的行政中心指向、沿海指向和资源指向;网络节点城市对外经济依赖度高,网络结构扁平特征明显。城市群网络存在权力分散、地位分化和外部联系依赖特征。② 城市网络中省域、城市群和俱乐部边界效应明显,区域内外的中心城市规模和数量对省域行政区经济、城市群经济和俱乐部经济的发展产生影响。③ 城市在多尺度网络中的功能分化明显,大城市和区域型中心城市比中小城市拥有更加完备和均衡的功能体系。沿海三大城市群的辐射带动作用明显,其他城市群的优势功能有待突出。④ 城市(群)跨尺度区域功能互动效应显著,城市(群)的自我经济集聚能力与城市(群)的对外辐射带动功能之间存在密切的正向关系。研究为城市网络模型拓展及理解中国城市网络空间联系特征提供了支撑。

Guo Jianke, He Yao, Wang Shaobo, et al.

Rank-size distribution changes and transportation network connections of the coastal container port system in Chinese mainland since 1985

Geographical Research, 2019, 38(4): 869-883.

DOI:10.11821/dlyj020181050      [本文引用: 2]

Since the beginning of the 21st century, many coastal cities of Chinese mainland have been transformed into port cities, with obvious regional characteristics of ports and new competitive and cooperative relations in port development. This paper describes the regionalization characteristics of China's coastal container port system since 1985 from the aspects of scale structure and shipping network by using the rank-size rule and complex network model. The results show that: (1) The port system is becoming perfect and the scale structure is in a good order. The evolution of port system can be divided into three stages: low-level equilibrium, obvious centralization and relative decentralization. Container transport is forming regional agglomeration and intra-group diffusion around world-class hub ports. (2) The small-world characteristics of the port shipping network have been strengthened, and the network characteristics of different types of port routes have changed significantly. The hub port has declined in depth and the transfer function has been rising;The changes of large-scale ports are relatively complicated, more than half of the large-scale ports in the hinterland have obvious characteristics and weak transit function. Local ports are polarized, and most of the ports are diversified in the depth, breadth and radiation capacity of the route network. and a few of ports have shrunk in many ways. (3) The inherent characteristics of port regionalization are more evident in the logistics network with liner routes as the carrier. The hub-spoke characteristics of the network are strengthened, and the transport efficiency of the whole port network is greatly improved. From the perspective of the strongest connection of shipping network based on UCINET, the coastal container port network transformed from a structure of local networks coexisting with several ports pairs to a double-layer hub-spoke structure, which has upgrade the development of port linkage. Regional shipping network and port group have space dislocation rather than one-to-one correspondence.

[郭建科, 何瑶, 王绍博, .

1985年以来中国大陆沿海集装箱港口体系位序—规模分布及其网络联系

地理研究, 2019, 38(4): 869-883.]

DOI:10.11821/dlyj020181050      [本文引用: 2]

21世纪以来,中国大陆众多沿海城市纷纷转型为港口城市,港口区域化态势明显,港口发展呈现新的竞合关系。运用位序-规模法则与复杂网络模型,从规模结构、航运网络两方面刻画1985年以来中国大陆沿海集装箱港口体系的区域化特征。结果表明:① 港口体系日趋完善,位序-规模分布更加明显;发展演化呈低级均衡,明显集中化及相对分散化三个阶段,围绕世界级枢纽港形成区域集聚和群内扩散的空间格局。② 港口航运网络小世界特征得到强化,不同类型港口航线网络特性变化差异明显。枢纽港以广度上升深度下降、中转功能上升为主;大型港口变化较为复杂,超过一半的大型港口腹地引致特征明显,中转功能较弱;地方港呈现两极分化态势,大部分港口在航线网络深度、广度与辐射能力等多方面得到提升,少部分港口则明显萎缩。③ 以班轮航线为载体的物流网络推动港口区域化内在联系更加紧密,轴-辐特征得到强化,整个网络效率大为提升。从社会网络分析软件(UCINET)呈现的最强联系航线看,沿海集装箱航运网络已由局部网络转变为统一的双层轴-辐网络,全国性的港口网络联系水平大幅提升,区域航运网络与港口群存在空间错位而非一一对应。

Zhang Yi'ou, Gu Renxu, Ma Shuang.

Spatial characteristics and proximity mechanism of technology transfer among cities in China

Progress in Geography, 2019, 38(3): 370-382.

DOI:10.18306/dlkxjz.2019.03.007      [本文引用: 2]

Technology transfer is the main route of regional economic development. Cities are the center of the flow of various elements, and interactions and relationships between them is an important content of urban geography research. Therefore, in the era of knowledge economy, the mechanism of technology transfer is particularly important. Consequently, in the perspective of technology transfer and network capital and based on the patent transfer data from the State Intellectual Property Office for 2000-2015, this study explored the main structure, the sub-category model, and the spatial characteristics of the technology transfer network using Gephi, ArcGIS and Stata. The results show that: 1) Although private enterprises and universities are playing an increasingly important role in the technology transfer network in China, most of the connections are established between universities, research institutions, and their derivative enterprises, indicating that the overall connectivity is low and the network spillover effect is weak. 2) According to the patent transfer data of sub-categories, the knowledge required for innovation ability is often generated in relatively few places, and its transfer is mainly concentrated in cities, suggesting that there are some regional barriers to technology transfer between cities in China. 3) In addition, the vast majority of cities are more likely to carry out patent transfer in the same administrative area or between cities with geographical proximity or similar knowledge scale when establishing innovative ties—geographical proximity, technological proximity, and social proximity play a positive role in promoting the development of China's technology transfer network that comprises of enterprises, universities, and research institutions.

[张翼鸥, 谷人旭, 马双.

中国城市间技术转移的空间特征与邻近性机理

地理科学进展, 2019, 38(3): 370-382.]

DOI:10.18306/dlkxjz.2019.03.007      [本文引用: 2]

技术转移是区域经济发展的主要方式。城市作为多种要素流动的中心,彼此间的相互作用和联系状况,是城市地理研究的重要内容。因此,在知识经济时代,对技术转移的机理进行探讨尤为重要。在此背景下,论文基于国家知识产权局2000—2015年的专利转移数据,借助Gephi、ArcGIS和Stata等工具,对中国技术转移网络的主体结构、分部类模式及其空间特征进行了探究。结果表明:① 就技术转移网络的主体而言,虽然民营企业和高校的地位不断攀升,但多数联系建立在高校、科研院所与其衍生企业之间,说明网络整体连通性较低,溢出效应微弱;② 从分部类专利转移数据来看,对创新能力要求较高的知识往往在相对较少的地方产生,且其转移的空间尺度主要集中于城市内,说明中国城市间技术转移存在一定的地域阻隔;③ 对多维邻近性及其影响的回归分析表明,多数城市在建立创新联系时,更倾向与同一行政区内或地理、技术规模邻近的城市进行专利转移,即地理邻近、技术邻近、社会邻近对中国产学研合作网络的构架具有正向的促进作用。

Liu Lin, Liu Huiting, Chen Jianguo, et al.

The impact of "Thunder Anti-drug" operation on drug dealing crime: A case study of the main urban area of ZG city

Acta Geographica Sinica, 2022, 77(6): 1461-1474.

DOI:10.11821/dlxb202206011      [本文引用: 1]

Drug dealing is closely related with economic benefits, which brings great damage to the society. Many strict measures have been taken to crack down drug-related crimes in China, but there is a lack of research on the spatial displacement and influencing factors' changes of drug dealing after crackdown. Based on the routine activity theory, crime pattern theory and social disorganization theory, this study built negative binomial regression models before and after the "Thunder Anti-drug" operation respectively, and analyzed how the impacts of semi-public, outdoor and private spaces on drug dealing had changed in the microcosmic scale. The findings are as follows: (1) Drug dealing crimes dropped significantly immediately after the operation. (2) The impact of the semi-public space, such as hotels, stores, supermarkets and entertainment places, on drug dealing crimes decreased after the crackdown. (3) The impact of outdoor public space, such as main roads, branch lines, bus-stops and parks, on drug dealing crime strengthened after the intensified crackdown. Private space such as residential areas had significant positive influence on drug dealing crimes, and the impact strengthened after the crackdown. The results show that drug dealing crimes moved to outdoor public space and private space from semi-public space. The "Thunder Anti-drug" operation was effective to crackdown top drug traffickers and drug dealing gangs, which led to a massive decline in drug dealing crimes in 2014. The follow-up operations further improved the ability for investigating hidden drug crimes. The results show that law enforcement department must carry out sustained and targeted operations on drug related crimes, to ensure continuous effect.

[柳林, 刘慧婷, 陈建国, .

“雷霆扫毒”对贩卖毒品犯罪的影响及后续时空分布变化: 以ZG市主城区为例

地理学报, 2022, 77(6): 1461-1474.]

DOI:10.11821/dlxb202206011      [本文引用: 1]

贩卖毒品是实现毒品犯罪经济利益的重要环节,是危害最为严重的毒品犯罪类型之一。现有研究主要关注毒品犯罪与建成环境之间的关系,没有顾及打击后贩卖毒品犯罪空间转移现象以及影响因素的变化。本文基于日常活动理论、犯罪模式理论和社会解组理论,以中国ZG市主城区为例,融合多源时空数据,分别对2013年8月开始的&#x0201c;雷霆扫毒&#x0201d;前后的贩卖毒品犯罪构建负二项回归模型,分析微观尺度下半公共空间、室外公共空间和室内私人空间对贩卖毒品犯罪影响的变化。研究发现&#x0201c;雷霆扫毒&#x0201d;行动后:① 贩卖毒品犯罪案件数量显著下降;② 半公共空间对贩卖毒品犯罪的影响作用减弱;③ 室外公共空间对贩卖毒品犯罪影响作用增强,室内私人空间对贩卖毒品犯罪的影响上升。结果表明:&#x0201c;雷霆扫毒&#x0201d;专项行动开展后一年,贩卖毒品犯罪的&#x0201c;主阵地&#x0201d;发生变化,由城市半公共空间逐渐向室外公共空间和室内私人空间转移。特别的是,&#x0201c;雷霆扫毒&#x0201d;对大毒枭及贩毒团伙的打击成效突出,促使2014年贩毒案件大幅度下降,实现了专项行动开展的目的。后续一系列专项行动进一步提升了对贩卖毒品犯罪的发现和查处能力,显示出专项行动对打击隐性犯罪的明显效果。研究表明公安执法部门必须对毒品贩卖犯罪进行持续的、有针对性的打击,对发生地的变动进行定期的监控,不能一蹴而就。

Bathelt H, Malmberg A, Maskell P.

Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation

Progress in Human Geography, 2004, 28(1): 31-56.

DOI:10.1191/0309132504ph469oa      URL     [本文引用: 1]

The paper is concerned with spatial clustering of economic activity and its relation to the spatiality of knowledge creation in interactive learning processes. It questions the view that tacit knowledge transfer is confined to local milieus whereas codified knowledge may roam the globe almost frictionlessly. The paper highlights the conditions under which both tacit and codified knowledge can be exchanged locally and globally. A distinction is made between, on the one hand, the learning processes taking place among actors embedded in a community by just being there dubbed buzz and, on the other, the knowledge attained by investing in building channels of communication called pipelines to selected providers located outside the local milieu. It is argued that the co-existence of high levels of buzz and many pipelines may provide firms located in outward-looking and lively clusters with a string of particular advantages not available to outsiders. Finally, some policy implications, stemming from this argument, are identified.

Granovetter M.

Economic action and social structure: The problem of embeddedness

American Journal of Sociology, 1985, 91(3): 481-510.

DOI:10.1086/228311      URL     [本文引用: 1]

Dai Liang, Liu Chengliang, Wang Song, et al.

Proximity and self-organizing mechanisms underlying scientific collaboration of cities in the Yangtze River Delta

Geographical Research, 2022, 41(9): 2499-2515.

DOI:10.11821/dlyj020211014      [本文引用: 1]

With further research on intercity knowledge networks, the underlying influencing factors and mechanisms have become important issues in urban geography and regional studies. This study constructed an intercity scientific collaboration network of the Yangtze River Delta based on the co-publication data derived from the Web of Science during 2019-2020. After an exploratory analysis of spatial patterns and topological characteristics of the intercity scientific collaboration network, valued exponential random graph models were designed to quantitatively explore the effects of variables at the city, intercity-relation, and network-structure levels on the formation of the network, and then unravel the underlying self-organizing and proximity mechanisms. The results show that: (1) The intercity scientific collaboration network of the study area results from the joint effects of endogenous forces and exogenous forces. Exogenous forces include conventional urban knowledge endowments and multi-dimensional proximities between cities, while endogenous forces are self-organizing and self-evolving forces from local structures of the network per se which is relatively under-reported. In terms of urban endowment variables, cities with more universities, more R&D investment, and larger GDP per capita are more likely to develop scientific collaboration with other cities, among which the number of universities plays the most important role. (2) In terms of intercity relational variables, organizational proximity contributes most to the formation of the intercity scientific collaboration network. The probability of scientific collaboration between cities in the same province is 3.157 times the collaboration between cities in different provinces. For every 0.1 unit increase of cognitive proximity between cities, the probability of scientific collaboration between them would be 1.981 times the previous probability. Geographical proximity and social proximity contribute little to facilitating the intercity scientific collaboration. In contrast, the impacts of institutional proximity and cultural proximity are negative due to the stronger effects of preferential attachment and weaker barriers of regional dialects. (3) In terms of network structural variables, the intercity scientific collaboration network presents significant self-organizing and self-evolving properties. The contribution of local structures, i.e., star configuration and triangle configuration, to the formation of new intercity scientific collaboration is respectively 0.875 and 0.540, suggesting that the preferential attachment effect is stronger than the triadic closure effect.

[戴靓, 刘承良, 王嵩, .

长三角城市科研合作的邻近性与自组织性

地理研究, 2022, 41(9): 2499-2515.]

DOI:10.11821/dlyj020211014      [本文引用: 1]

随着学者们对知识网络研究的深入,网络关联的影响因素和作用机制成为重要议题。本文基于2019&#x02014;2020年Web of Science论文合作发表数据构建长三角城市科研合作网络,在空间和拓扑特征分析的基础上,采用加权指数随机图模型定量模拟了城市属性、城际关系和网络结构对合作网络的影响,揭示了科研合作中的邻近性和自组织性。研究发现:① 长三角城市科研合作网络是内外生动力共同作用的结果。就城市禀赋而言,高校数量、研发投入、人均GDP可促进城市的对外科研合作,其中高校数量的边际效应最大。② 就城际关系而言,组织邻近性的正向影响最强,同省城市合作的概率是跨省城市的3.157倍;认知邻近性每提高0.1,城市间的合作概率将是原先的1.981倍;而地理和社会邻近性的促进作用甚微,制度和文化邻近性影响为负,是择优偏好较强和方言壁垒有限的结果。③ 就网络结构而言,长三角城市科研合作具有自组织自演化性,局部星型结构和三角形结构对新合作关系的贡献为0.875和0.540,择优链接性强于传递闭合性。

Boschma R.

Proximity and innovation: A critical assessment

Regional Studies, 2005, 39(1): 61-74.

DOI:10.1080/0034340052000320887      URL     [本文引用: 2]

Boschma R, Frenken K.

The spatial evolution of innovation networks: A proximity perspective

Papers in Evolutionary Economic Geography (PEEG), 2009: 0905. DOI: 10.4337/9781849806497.00012.

[本文引用: 2]

He Canfei, Yu Changda.

Multi-dimensional proximity, trade barriers and the dynamic evolution of industrial linkages between China and the world market

Acta Geographica Sinica, 2022, 77(2): 275-294.

DOI:10.11821/dlxb202202002      [本文引用: 3]

As China enters the new normal era, the existing mode of joining into the global production network is confronted with the dual dilemma of internal dividend disappearance and external trade frictions. It is very important to explore the characteristics and driving forces of dynamic evolution of industrial linkages between China and other countries or regions in the world. Based on the world input-output table database from 1995 to 2014, this study depicts the global industrial interdependence network from the national scale using input—output analysis and social network analysis, and focuses on the evolution of China's role and position in this pattern using spatial econometric model. The main findings are as follows: China has become a bridge between East Asia and Southeast Asia and other emerging markets, thus upgrading from an "outsider" to an important hub in the industrial network linking Europe and the United States. However, from 2015 to 2019, the expansion of China's foreign industrial linkages has gradually reached a plateau. From the perspective of supply side, China's resource and manufacturing industries are constantly embedded in the supply side of the global production network. However, the overall external supply capacity of most China's service industry is relatively below global average. In terms of demand, China, as the "factory of the world" and a major country in infrastructure construction, has an increasing global influence in manufacturing and infrastructure. Nevertheless, the international influence of productive services like Transportation, Logistics and Finance has been declining since 2005. The Chinese industries obtain the local added value overall to continue to grow, but the efficiency of the added value capture is low. On this basis, this study explores the influence of multi-dimensional proximities and trade protectionism on China-global industrial linkages and their value added. Among them, the geographical and cognitive proximity has the most extensive influence, while the social and institutional proximities only promote and strengthen the intermediate production linkage with more complex forms of industrial linkages and final demand linkages. However, technical barriers and anti-dumping investigation have weakened China's foreign industrial links. The sanitary and phytosanitary measures have a significant weakening effect on the final demand linkage, but not on the intermediate product production. To sum up, the upgrading of production-oriented service industry and the efficiency of the acquisition of overall added value are the potential directions for the expansion of China's foreign industrial linkages, while the construction of domestic industrial cycle and industrial diversification are the reasonable measures for the expansion of China's foreign industrial linkages.

[贺灿飞, 余昌达.

多维邻近性,贸易壁垒与中国—世界市场的产业联系动态演化

地理学报, 2022, 77(2): 275-294.]

DOI:10.11821/dlxb202202002      [本文引用: 3]

随着中国经济步入新常态,中国嵌入世界生产网络的既有模式遭遇内部红利消失与外部贸易摩擦的双重困境,探讨中国同世界其他国家/地区间的产业联系特征及其动态演化机制,对寻找中国产业对外联系的破局方向至关重要。基于1995&#x02014;2014年世界投入产出表数据库,从国家尺度刻画世界产业相互依赖网络,并着重关注中国在这一格局中的角色与地位演变。研究发现:① 1995&#x02014;2014年中国从世界生产联系网络的边缘国家演变成为沟通东亚、东南亚地区与其他新兴市场的桥梁,并从美欧主干联系的&#x0201c;局外人&#x0201d;升级成为链接欧美产业网络的重要枢纽。而2015&#x02014;2019年中国对外产业联系拓展逐渐进入曲折发展的瓶颈期。② 从供给角度看,中国基础资源行业和制造业正不断嵌入世界生产网络的供给侧。相比之下,中国大部分服务业对世界产业网络的供给能力低于世界平均水平。③ 从需求看,中国作为&#x0201c;世界工厂&#x0201d;与基础设施建设大国,在制造业与基建方面具有世界性的影响力,然而中国的交通、物流、金融等生产型服务业的国际影响力在2005年后逐步下降。④ 中国产业获取本地附加值总体持续增长,但附加值捕获的效率较低。在此基础上,本文探讨了多维邻近性、贸易保护对中国&#x02014;世界产业联系的作用,发现:中国对外产业联系的演化受地理、认知、社会与制度4个维度的邻近性影响并形成路径依赖。其中地理与认知邻近性的影响最为广泛,而社会与制度邻近性仅对产业联系形式更加复杂的中间生产联系与发展较为成熟的最终需求联系有促进作用,技术贸易壁垒与反倾销调查会削弱中国对外产业联系;卫生安全检疫措施对最终市场需求联系有显著削弱作用,而对中间产品生产联系的作用并不显著。综上所述,生产型服务业与总体附加值获取效率是中国对外产业联系拓展的潜力方向,而内销&#x02014;出口平衡与多元化的产业发展策略是中国对外产业联系拓展的合理举措。

Cohen W M, Levinthal D A.

Absorptive capacity: A new perspective on learning and innovation

Administrative Science Quarterly, 1990, 35(1): 128-152.

DOI:10.2307/2393553      URL     [本文引用: 1]

Zhang Kaihuang, Qian Qinglan.

Characteristics and proximities mechanism of China's new energy vehicle industry innovation network

Geographical Research, 2021, 40(8): 2170-2187.

DOI:10.11821/dlyj020201065      [本文引用: 1]

In the context of the knowledge-based economy and innovation-driven development strategy, innovation networks and their multidimensional proximity mechanisms have attracted increasing attention from governments and economic geographers. However, knowledge about their regional differences remains limited. Using Ucinet software, the authors describe the technological innovation network characteristics of the new energy vehicle (NEV) industry in China from 2009 to 2014, which corresponds to the period of rapid development of vehicle ownership. The authors use partial least squares structure equation modelling to explore the impacts of multidimensional proximities from national and regional perspectives. The study found that: (1) Unlike innovation, activities are primarily concentrated in metropolitan areas and three major urban agglomerations. The innovation networks of the NEV industry in China are primarily concentrated in the Beijing-Tianjin-Hebei and Yangtze River Delta regions; the innovation networks in the Pearl River Delta region are significantly weaker. Additionally, regions with poor innovation could achieve more innovation cooperatively. (2) For the network characteristics, the national innovation network presents a “core-edge” structure, and the State Grid is the most important innovation actor of the network. In the Beijing-Tianjin-Hebei region, large state-owned enterprise groups control the network which has a prominent “core-edge” structure, the most active collaborative innovation, and a high degree of network extroversion. Regarding the innovation network in the Yangtze River Delta, the types of actors in the region are diversified, the “core-edge” structure is prominent, the intensity of cooperative innovation is high, and the degree of network extroversion is relatively high. In the Pearl River Delta, private enterprises are the principal actors in the network, the regional network structure is loose, cooperative innovation is limited, and the network is highly extroverted. (3) For regional proximity mechanisms in the Beijing-Tianjin-Hebei region, the Grid Group strongly promoted the formation of cross-regional networks. In the Yangtze River Delta, the State Grid and large regional enterprises have influenced the formation of networks, and abundant knowledge sources have promoted cooperation. In the Pearl River Delta, the impact of geographical proximity on the cooperation and innovation in private enterprises is small, and knowledge demand has promoted cross-regional cooperation. Based on these results, we present some policy recommendations in industrial and regional dimensions.

[张凯煌, 千庆兰.

中国新能源汽车产业创新网络特征及其多维邻近性成因

地理研究, 2021, 40(8): 2170-2187.]

DOI:10.11821/dlyj020201065      [本文引用: 1]

随着知识经济的发展和创新驱动发展战略的实施,创新网络及其多维邻近性机制已成为政府和学者共同关注的焦点。利用Ucinet软件,从区域、主体性质等维度,刻画了2009&#x02014;2014年产业快速发展时期的中国新能源汽车专利创新网络特征。运用PLS-SEM模型,探究全国及不同区域创新网络的多维邻近性影响过程及原因。研究发现:① 与中国新能源汽车产业创新活动集中在大城市和三大城市群不同,其合作创新网络主要集聚在京津冀与长三角地区,珠三角地区的创新网络明显较弱。同时,创新能力欠发达的区域出现了与其数量不匹配的合作创新规模。② 总的来看,全国创新网络呈现&#x0201c;核心-边缘&#x0201d;结构,国家电网是网络中最重要的创新主体。在京津冀,大型国企集团控制网络,&#x0201c;核心-边缘&#x0201d;结构突出,合作创新最活跃,网络外向程度高。在长三角,区域内主体类型混合多样,&#x0201c;核心-边缘&#x0201d;结构突出,合作创新活跃,网络外向程度较高。在珠三角,民营企业是网络的主要主体,区域网络结构松散,合作创新活跃度低,网络外向程度高。③ 从创新网络的多维邻近性成因看,在全国尺度,组织关系与知识搜寻是全国网络形成的两大动力。在京津冀,国电集团强有力推动跨区域网络形成。在长三角,国电系及区域大企业影响网络形成,丰富的知识源推动合作创新发生。在珠三角,地理邻近性对民营企业合作创新影响有限,知识需求推动了跨区域合作。

Gertler M S. Tacit knowledge, path dependency and local trajectories of growth// Fuchs G, Shapira P. Rethinking Regional Innovation and Change. New York: Springer, 2005: 23-41.

[本文引用: 1]

Zhou Ruibo, Qiu Yifeng, Hu Yaozong.

Characteristics, evolution and mechanism of inter-city innovation network in China: From a perspective of multi-dimensional proximity

Economic Geography, 2021, 41(5): 1-10.

DOI:10.2307/141854      URL     [本文引用: 1]

[周锐波, 邱奕锋, 胡耀宗.

中国城市创新网络演化特征及多维邻近性机制

经济地理, 2021, 41(5): 1-10.]

[本文引用: 1]

Dai Liang, Cao Zhan, Ma Haitao, et al.

The influencing mechanisms of evolving structures of China's intercity knowledge collaboration networks

Acta Geographica Sinica, 2023, 78(2): 334-350.

DOI:10.11821/dlxb202302005      [本文引用: 1]

The study of influencing mechanisms of intercity knowledge collaboration networks is an important research topic of innovative geography. Most existing research focuses on the influence of exogenous forces (e.g., urban resources endowment, multidimensional proximity), whereas less attention has been paid to endogenous factors (e.g., preferential attachment, transitivity). This research constructs an intercity knowledge collaboration network of Chinese cities based on the co-publication data from the Web of Science, analyzes its evolving characteristics of spatial and topological structures from 2006 to 2016, and quantitatively explores the endogenous and exogenous forces underlying the network formation through exponential random graph modelling. The results show that: (1) From the spatial structure perspective, the intercity knowledge flows are dense in the eastern region but spare in the western region, which is stable during 2006-2016. The overall network has developed from a dual-core structure of Beijing and Shanghai to a polycentric structure, in which five national-level urban agglomerations have become important bases for nurturing multiple centers. The nodal regions centered on highly administrative cities have become increasingly consistent with the planned urban agglomeration, which plays the dual role of proximal spillover and remote interaction of knowledge resources. (2) From the topological structure perspective, the scale and density of intercity knowledge flows have increased significantly, and the preferential attachment to big cities is obvious. However, with the rise of multiple centers, the network polarization and disassortativity have been weakened. With the optimization of intercity knowledge collaboration paths, the network cohesion has improved, thus becoming a small-world network. (3) From the influencing mechanism perspective, self-evolution and preferential attachment are important driving forces of knowledge collaboration networks, showing an overlapping effect with urban hierarchy. The positive impact of urban knowledge-related attributes on intercity flows is weaker than multidimensional proximity and path dependence. The presence of high-speed railways promotes knowledge collaboration, while the influence of geographic distance is not significant.

[戴靓, 曹湛, 马海涛, .

中国城市知识合作网络结构演化的影响机制

地理学报, 2023, 78(2): 334-350.]

DOI:10.11821/dlxb202302005      [本文引用: 1]

城市知识合作网络的影响机制是创新地理的重要研究议题,已有研究大多关注外生动力(城市资源禀赋、多维邻近性等)的影响,而较少关注内生动力因素(择优链接、传递性等)。基于“Web of Science”中的论文合作发表数据构建中国城市知识合作网络,分析其2006—2016年空间结构和拓扑结构的演化特征,并通过加权随机指数图模型(ERGM)定量揭示内生和外生动力对该网络形成的影响。结果显示:① 从空间结构看,东密西疏的格局比较稳定,但整体由北京—上海双核结构向多中心发展,五大国家级城市群成为孕育多极的重要空间。以高能级城市为核心形成的节点区域愈发与规划的城市群范围一致,其发挥着知识资源邻近溢出和远程交互的双重作用。② 从拓扑结构看,知识合作的规模和密度显著增加,对大城市的择优选择效应明显。但随着多中心崛起,网络极化程度和异配性均在弱化;随着城际合作路径不断优化,网络聚合性提升,成为小世界网络。③ 从影响机制看,自演化与择优链接是知识网络的重要驱动力,其作用与城市等级效应相重叠;城市知识规模属性对知识流动的正向影响弱于多维邻近性和路径依赖性;高铁的存在有利于促进知识合作,而地理距离的影响不显著。

Dolores H, Alfonso D M.

Do universities matter for the location of foreign R&D?

BRQ Business Research Quarterly, 2021: 234094442110423. DOI: 10.1177/23409444211042382.

[本文引用: 1]

Glaeser E L.

Learning in cities

Journal of Urban Economics, 1999, 46(2): 254-277.

DOI:10.1006/juec.1998.2121      URL     [本文引用: 1]

Glaeser E L, Saiz A.

The Rise of the Skilled City

Cambridge, Mass: National Bureau of Economic Research, 2003. DOI: 10.3386/w10191.

[本文引用: 1]

Sheng Lei. Spatial Agglomeration and Knowledge Spillovers of Foreign R&D in China. Shanghai: East China Normal University Press, 2012.

[本文引用: 2]

[盛垒. 外资在华研发空间集聚与知识溢出研究. 上海: 华东师范大学出版社, 2012.]

[本文引用: 2]

Smętkowski M, Celińska-Janowicz D, Wojnar K.

Location patterns of advanced producer service firms in Warsaw: A tale of agglomeration in the era of creativity

Cities, 2021, 108: 102937. DOI: 10.1016/j.cities.2020.102937.

URL     [本文引用: 1]

Wang Yixiao, Sun Bindong, Zhang Tinglin.

Urban producer service functions and geographical distance in Chinese city clusters: A perspective from network externalities

Geographical Research, 2022, 41(9): 2418-2432.

DOI:10.11821/dlyj020211066      [本文引用: 2]

Producer service, as one of the important urban functions, reflects the urban ability to serve other cities in the networked urban system. Correspondingly, the urban producer service functions can be influenced by the relationships, particularly distance between these cities. Previous research paid little attention to the role which distance between cities plays in network externalities, and focused more on the positive effects of network externalities stemming from synergy, which derives from cooperation between cities, while neglecting the negative ones caused by intercity market competition. To further explore the relationship between urban functions, geographical distance and network externalities, this paper builds a theoretical city-cluster model with core-periphery spatial structure. This model hypothesizes that the impact of network externalities on the producer service functions depends on the trade-off between synergy effect and competition effect, which are closely related to the spatial relationships, or distances, between cities. Employing data of 12 city clusters in China from 2013 to 2016, and applying the employment ratio of the producer service sector to the manufacturing sector to measure the intensity of urban producer service functions, we examine the effects of geographical distance on urban producer service functions. The results reveal that: (1) the intensity of urban producer service functions increases with distance from the core city. In addition, internet penetration rate and transportation network centrality significantly reinforce this effect. (2) The mechanism is based on the difference in sensitivity to geographical distance between the competition effect and synergy effect. Seemingly, the competition effect decays more quickly with distance than the synergy effect. Thus producer service functions of the cities which are close to the core city tend to suffer the "agglomeration shadow" effect resulted from competition, while producer service functions of the cities which are further away tend to benefit from the synergy effect. The findings of this paper demonstrate that in the context of urban networks, geographical distance (urban location) still plays an essential role in the regional labor division. It also provides important insights for the promotion of the urban functional specialization and regional integration within city clusters. Cities near the core city could choose to actively undertake complementary functions of the core city; conversely, carrying out synergetic functions with the core city is a better choice for cities far away from the core city.

[王艺晓, 孙斌栋, 张婷麟.

中国城市群城市生产性服务功能与地理距离: 网络外部性的视角

地理研究, 2022, 41(9): 2418-2432.]

DOI:10.11821/dlyj020211066      [本文引用: 2]

以往研究对于距离在网络外部性影响城市功能过程中的作用所知甚少,而且多关注城市网络外部性的正面效应,对城市间竞争以及由此所带来的网络外部性的负效应缺少分析。为了弥补已有研究的不足,本文采用空间的视角,以城市群内的城市生产性服务功能为例,建立一个核心-外围的空间结构来揭示城市生产性服务功能、网络外部性与地理距离之间的关系。研究发现:① 城市生产性服务功能强度随着远离城市群核心城市而上升,互联网渗透率和列车网络中心度会显著地强化这一效应;② 城市生产性服务功能随距离变化的机制在于竞争效应比协同效应对地理距离更加敏感,从而衰减更快,因而靠近核心城市的城市在生产性服务功能上遭受了&#x0201c;集聚阴影&#x0201d;,而远离核心城市的城市在功能上更多的受到了协同作用的支撑。本文结论为推进城市群内的分工协作与一体化发展提供了重要启示。

Chen Le.

Theoretical basis and empirical studies of agglomeration economy influencing urban economic growth: Literature review and prospect

Progress in Geography, 2022, 41(7): 1325-1337.

DOI:10.18306/dlkxjz.2022.07.015      [本文引用: 1]

Agglomeration economy theory has been intrinsically linked to urban economic growth since its inception. This article systematically reviewed the origin and development of agglomeration economy theory, summarized the core ideas of agglomeration economy in explaining the formation and development of urban space, and suggested that agglomeration economy and urban economic growth are intrinsically related. In addition, this article reviewed the impact of agglomeration economy on urban economic growth, and found that the agglomeration economy represented by increasing population density can significantly promote urban economic growth, and the explanatory mechanism of urban agglomeration economy effect can be explored from two perspectives: macro-processes and micro-processes. This article is not only a review of the literature on agglomeration economy theory and urban economic growth, but also a reference for empirical analysis of the impact of agglomeration economy on urban economic growth in China.

[陈乐.

集聚经济影响城市经济增长的理论基础与实证研究: 文献述评与展望

地理科学进展, 2022, 41(7): 1325-1337.]

DOI:10.18306/dlkxjz.2022.07.015      [本文引用: 1]

集聚经济理论自诞生之日起便与城市经济增长存在着本源联系。论文系统梳理集聚经济理论的起源与发展,归纳集聚经济阐释城市空间形成与发展的核心思想,明确集聚经济与城市经济增长之间是具有本源联系的。进一步回顾集聚经济影响城市经济增长的程度与机制,发现以人口密度等指标为代表的集聚经济能够显著促进城市经济的增长,可从&#x0201c;宏观过程&#x0201d;与&#x0201c;微观过程&#x0201d;两大视角探寻城市集聚经济影响城市经济增长的解释机制。这一工作不仅是以往集聚经济与城市经济增长相关文献回顾的一个延续,也为后续集聚经济影响中国城市经济增长的实证研究提供了一个参照。

Ge Ying, Yao Shimou, Pu Yingxia, et al.

Application of Spatial autocorrelation for the spatial patterns of urbanization and localization economy

Human Geography, 2005, 20(3): 21-25.

[本文引用: 1]

[葛莹, 姚士谋, 蒲英霞, .

运用空间自相关分析集聚经济类型的地理格局

人文地理, 2005, 20(3): 21-25.]

[本文引用: 1]

/