地理学报, 2022, 77(9): 2308-2321 doi: 10.11821/dlxb202209012

气候变化与农业地理

1992—2018年中国旱作农田土壤湿度的时空模式及气象驱动因素

庄慧敏,1, 张朝,1, 程飞1, 张亮亮1, 何邦科2

1.北京师范大学国家安全与应急管理学院 应急管理部教育部减灾与应急管理研究院,北京 100875

2.北京师范大学地理科学学部 遥感科学国家重点实验室,北京 100875

Spatiotemporal pattern of soil moisture and its meteorological driving factors in dry croplands across China from 1992 to 2018

ZHUANG Huimin,1, ZHANG Zhao,1, CHENG Fei1, ZHANG Liangliang1, HE Bangke2

1. Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management and Ministry of Education, School of National Safety and Emergency Management, Beijing Normal University, Beijing 100875, China

2. State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

通讯作者: 张朝(1971-), 女, 教授, 主要从事农业灾害、粮食安全以及自然灾害综合风险方面的研究。E-mail: zhangzhao@bnu.edu.cn

收稿日期: 2021-11-29   修回日期: 2022-06-14  

基金资助: 国家重点研发计划(2020YFA0608201)

Received: 2021-11-29   Revised: 2022-06-14  

Fund supported: National Key R&D Program of China(2020YFA0608201)

作者简介 About authors

庄慧敏(1998-), 女, 硕士生, 主要从事农业干旱的研究。E-mail: zhuanghuimin@mail.bnu.edu.cn

摘要

土壤湿度作为影响陆气水热交换的重要变量,指示了干旱的演变特征。为揭示中国旱作农田土壤湿度的变化特征及其气象驱动要素,本文利用站点数据研究了1992—2018年中国旱作农田土壤湿度变化趋势的时间和空间特征,采用相关性、敏感性分析等方法探究了土壤湿度的驱动机制。结果表明:2001年中国旱作农田土壤湿度的变化趋势发生转折,土壤湿度年际变化普遍由下降趋势变为上升趋势,主要由夏季和秋季土壤湿度主导。而且土壤湿度的变化存在空间异质性,2001年后东北地区的土壤湿度在显著增加,而西南地区在显著下降。降水量和蒸散发的时空变化是土壤湿度趋势发生时空变化的主要原因,二者存在协同作用,北方地区由降水主导,南方地区由蒸散发主导。

关键词: 土壤湿度; 旱作农田; 时间趋势; 空间分异; 气象因子

Abstract

Soil moisture is an important variable that affects water-heat exchange between land and air, indicating the evolutionary characteristics of drought. In order to reveal the characteristics of soil moisture in dry cropland across China and its meteorological driving factors, this paper uses site data to study the spatial and temporal characteristics of soil moisture change trends in dry cropland across the country from 1992 to 2018, and uses correlation and sensitivity analysis methods to explore the driving mechanism of soil moisture. The results showed that the soil moisture in dry cropland across China tended to change from decreasing to increasing in 2001, which was dominated by soil moisture in summer and autumn. In addition, there is spatial heterogeneity in the change of soil moisture. Since 2001, the soil moisture in the northeast region has increased significantly, while that of the southwest region has decreased significantly. The spatiotemporal variation of precipitation and evapotranspiration is the main reason for the spatiotemporal variation of soil moisture, and the two factors have a synergistic effect. The northern region is dominated by precipitation, while the southern region is dominated by evapotranspiration.

Keywords: soil moisture; dry croplands; temporal trend; spatial pattern; meteorological factors

PDF (4652KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

庄慧敏, 张朝, 程飞, 张亮亮, 何邦科. 1992—2018年中国旱作农田土壤湿度的时空模式及气象驱动因素. 地理学报, 2022, 77(9): 2308-2321 doi:10.11821/dlxb202209012

ZHUANG Huimin, ZHANG Zhao, CHENG Fei, ZHANG Liangliang, HE Bangke. Spatiotemporal pattern of soil moisture and its meteorological driving factors in dry croplands across China from 1992 to 2018. Acta Geographica Sinica, 2022, 77(9): 2308-2321 doi:10.11821/dlxb202209012

1 引言

土壤湿度(Soil Moisture, SM)是衡量陆地土壤干湿状况的重要指标,通常用体积含水量表示,即单位土体中水的体积[1]。土壤湿度通过影响水循环中的蒸发、径流、蓄渗等环节来调节地表与大气之间的水循环和能量平衡[2-3],并且直接影响植物的可利用水分,进而影响植物的生产力和作物产量;因此土壤湿度对农业有着重要影响,常被用作农业干旱的一个重要监测指标[4-6]。农田根据水分条件的差异可分为旱作农田和水田,中国水田一般具备良好的灌溉条件,土壤湿度长期处于饱和状态[7],而旱作农田由于受季风等气候因素的影响,易遭受干旱灾害[8]。且中国旱作农区的土地资源丰富,在农业生产中占重要地位[9]。自20世纪下半叶以来中国经常遭受严重的干旱,尤其是1990年之后[10]。因此,探索全球变暖背景下中国旱作农田土壤湿度时空分异规律及其驱动因素,对于理解气候变化和土壤湿度的相互作用机制,摸清中国干旱的发生发展状况至关重要。

以往大量研究显示中国土壤湿度在20世纪有变干的趋势[10],但是在21世纪以来,土壤湿度的变化出现地区差异,例如中国东部和北部土壤湿度呈增加的趋势,而西南地区呈下降的趋势[11-13]。学者们将这个变化的可能原因归于东亚地区气候变暖停滞[14],但具体的原因仍需进一步探究。此外,已有研究多聚焦特定区域土壤湿度的时空变化特征及趋势,缺少对全国土壤湿度变化的整体把握,且多研究长时间段内的单一趋势,对中国干旱的变化分析不足。同时大尺度土壤湿度的研究多利用遥感技术、模型等方法反演土壤湿度数据[15-16];但是这些方法反演出的数据仍存不确定性和局限性,在短期内无法替代实测数据[13]

土壤湿度驱动因素的研究表明土壤湿度变化主要受降水的影响,降水作为土壤湿度最主要的输入来源,与土壤湿度存在显著的正相关,但二者之间的耦合强度存在不确定性[17]。此外土壤湿度也受温度变化的影响,温度通过影响蒸散发过程影响土壤湿度的耗散,同时蒸散发过程也受到土壤湿度大小的影响[18]。土壤湿度还受其他环境因素(如土壤质地、植被和地形)的辅助影响[19]。当前,一方面全球温暖化导致的持续升温可能造成土壤湿度的消耗,另一方面大气环流的变化也会改变降水的时空分布,特别是近年来中国降水格局的改变可能对土壤湿度产生影响。鉴于影响土壤湿度因素的多样性和复杂性及其对农业生产的重要性,亟需理清中国土壤湿度最新的演变规律及驱动机制。

本文基于1992—2018年中国农气站土壤湿度监测数据,采用分段线性回归模型和Sen+MK趋势分析等多种统计分析方法,研究了中国旱地农田土壤湿度变化的时空模式,定量分析了关键气象因子对土壤湿度变化的贡献,识别了区域土壤湿度变化主导因子。本文将有望加深我们对干旱演变的认识,对科学应对干旱灾害,采取合理有效的措施改善生态环境,积极应对气候变化具有重要参考意义。

2 数据与方法

2.1 数据来源及处理

土壤湿度数据来自于国家气象科学数据共享服务平台(http://data.cma.cn/)提供的农作物生长发育和农田土壤湿度旬值数据集。该数据集的固定观测地段没有直接进行灌溉,所以土壤湿度不受灌溉影响,可以反映农田系统的自然状态[20]。本文选取1992—2018年全国时间连续性强(含超过10 a数据)、位置代表性较好的219个旱作农田站点(种植作物主要为小麦、玉米等)(图1),对农作物影响最大的表层土壤湿度(10 cm深度)开展研究。为比较不同地点的土壤湿度绝对变化量,首先将相对含水量换算为体积含水量[21],再计算各站点土壤湿度的年平均值以及不同季节的多年平均值。农业生态区的划分根据资源环境科学与数据中心提供《中国九大农业区划》,华南区由于数据较少暂不纳入研究范围。

图1

图1   中国九大农业区划及旱作农田土壤相对湿度研究站点分布

注:基于自然资源部标准地图服务网站GS(2019)1823号标准地图制作,底图边界无修改,后图同。

Fig. 1   Distributions of research sites for relative SM in dry croplands across China


气象数据来自国家气象信息中心1992—2018年全国气象观测站及自动站的日值数据(http://data.cma.cn/),包括日平均气温(℃)、降水量(mm)、日照时数(h)、相对湿度(%)和风速(m/s)等气象观测数据。选取与土壤湿度观测站点最临近的219个站点的日平均温、降水量、风速计算各个站点的年均温、年降水量、年均风速,作为土壤湿度的影响因素进行分析。

由于连续、准确的蒸散观测数据获取困难,因此选择使用潜在蒸发量(Potential Evapotranspiration, PET)作为气象因子之一进行分析。本文使用世界粮农组织(FAO)1998年修正的彭曼—蒙蒂斯(Penman-Monteith)模型进行计算[22]。该公式从能量平衡和空气动力学理论出发,物理学意义明确,能反映气候要素的综合影响。选取219个气象站点的日最高气温、日最低气温、日均温、相对湿度、风速及日照时数6个气象要素的逐日数据,使用模型计算得到站点的每日潜在蒸发量,进而计算站点的年蒸散量。

2.2 研究方法

2.2.1 分段线性回归模型

传统的单线性模型不能对趋势的变化进行充分的描述,因此,本文采用分段线性回归模型(Piecewise Linear Regression Model)[23]量化土壤湿度时间序列的潜在转折点。该方法采用差分进化算法,能检测时间序列长期趋势发生显著变化的时间节点,并进行分段拟合。目前,该方法已得到广泛的使用[24]。对于时间序列y(例如,全国年平均土壤湿度),具有一个转折点的连续分段线性回归模型可以描述为:

y=β0+β1t+ε,tTPβ0+β1t+β2t-TP+ε,t>TP

式中:t为年份;TP为检测到的转折年份;β0β1β2为回归系数,由最小二乘法得到;ε为回归的残差;转折点前的趋势为β1,转折点后的趋势为β1+β2

本文首先计算全国年平均土壤湿度时间序列,并进行分段线性回归;随后为保证结果的客观性,随机采样40%的研究站点来进行分段线性回归,重复300次,基于300次随机采样结果,统计转折年份(Turning Point, TP)的概率密度分布以及由TP分割的各时段内土壤湿度趋势系数的概率密度分布。

2.2.2 Theil-Sen Median趋势分析与Mann-Kendall检验

在不同时段内,进一步利用Theil-Sen Median趋势分析与Mann-Kendall检验相结合的方法得到土壤湿度和气象因子的年际趋势。即先使用Theil-Sen Median趋势分析计算趋势值,然后使用Mann-Kendall非参数检验方法判断趋势显著性[25]

Theil-Sen Median趋势分析是一种稳健的非参数统计的趋势计算方法,可以减少数据异常值的影响,其计算公式为:

Slope=MedianYj-Yij-i,i<j

式中:YiYj分别为第i年和第j年的土壤湿度年均值或者气象因子的年均值,Slope>0时,Y呈增加趋势,反之则呈下降趋势。

Mann-Kendall是一种非参数统计检验方法,用来判断趋势的显著性,它无需样本服从一定的分布,也不受少数异常值的干扰。计算公式如下:

Z=S-1sS,S>00,S=0S+1sS,S<0
S=j=1n-1i=j+1nsgn(Yj-Yi)
sS=n(n-1)(2n+5)/18

式中:n表示时间序列的长度;sgn是符号函数;S是Mann-Kendall检测需要构建的统计量;sSS的方差;Z是标准正态变量,在给定显著性水平α下,当Z>u1-α/2时,表示研究序列在α水平上存在显著的变化。本文判断在90%置信水平下的时间序列变化趋势的显著性。

2.2.3 相关性分析

本文计算了站点尺度上的土壤湿度年均值与气象因子年均值的相关系数,来测度土壤湿度趋势变化与气候要素之间的相互关系。具体计算方法如下:

r=i=1N(Xi-X¯)(Yi-Y¯)i=1N(Xi-X¯)2i=1N(Yi-Y¯)2

式中:XYX¯Y¯分别表示两个变量及变量的平均值;r为变量XY的相关系数;N为样本量。当p < 0.05时,认为相关性显著。

2.2.4 标准回归系数法

本文利用标准系数法计算了各站点土壤湿度对降水量、温度、风速、蒸散发4种气象因子的标准系数,来得到各个因子对土壤湿度变化的贡献性。公式如下:

SMt˜=a×Pt˜+b×Tt˜+c×Wt˜+d×Et˜+e
CRa=aa+b+c+d

式中:SMt˜Pt˜Tt˜Wt˜Et˜分别为站点第t年的年均土壤湿度、年降水量、年均温度、年均风速、年潜在蒸散发标准化后的数值;CRa代表降水量对土壤湿度年际变化的贡献率,温度、风速、潜在蒸散的贡献率采用相同方法计算。本文判断在90%置信水平下的标准回归方程的显著性,并依据残差趋势分析[25],分析拟合方程残差的显著性,如果残差表现为随机波动,没有明显的趋势信号,说明土壤湿度的趋势仅受选取气候因子的显著影响;如果残差存在显著趋势则表明土壤湿度变化也受到人类活动等其他要素的影响。本文98%站点残差趋势不显著,说明了所选取的气象驱动因子的合理性。

3 结果分析

3.1 土壤湿度变化趋势分析

3.1.1 土壤湿度的时间变化特征

图2给出了中国旱作农田年平均土壤湿度序列及其趋势变化的统计特征,结果显示2001年土壤湿度的年际变化趋势发生转折:即土壤湿度在1992—2001年呈不显著的减小趋势(-0.0004 m3 m-3 a-1),但2001年后呈显著的增加趋势(0.0021 m3 m-3 a-1)。为了排除转折点是由少数站点土壤湿度的剧烈变化导致的可能性,本文重复了300次实验,每次随机重采样40%的研究站点(图2a)。子样本的统计估计显示,转折点在2001年左右(图2b),转折点前的土壤湿度变化率为负(-0.0005 m3 m-3 a-1),转折点后的变化率为正(0.0019 m3 m-3 a-1)(图2c),这与基于全局样本得到的转折点和变化率基本相同(图2a)。这表明中国土壤湿度在20世纪90年代呈干燥趋势,但在21世纪初转为湿润趋势,这与前人研究结果吻合,例如Kong等通过研究东亚地区土壤湿度的变化趋势,发现中国东北和东南地区的土壤湿度在2005年由下降转为上升趋势[14]。基于上述趋势分析的结果,划分1992—2001年和2001—2018年两个时间段,进一步对比研究土壤湿度趋势的变化规律。

图2

图2   1992—2018年中国旱作农田年均土壤湿度及其趋势转变特征

Fig. 2   Annual mean SM and its trend change in dry croplands across China during 1992-2018


3.1.2 土壤湿度的空间变化特征

图3所示,从站点尺度仍可清晰地发现2001年前后土壤湿度趋势发生了显著的变化。在1992—2001年间61%站点的土壤湿度趋势呈红色,也就是土壤变干旱的趋势(图3a);而在2001—2018年间63%站点土壤湿度趋势呈绿色,即变湿润(土壤湿度增加)趋势(图3b),该结果与全国尺度的研究结果一致(图2)。

图3

图3   1992—2018年中国旱作农田土壤湿度年际变化趋势

Fig. 3   Trend of SM in dry croplands across China during 1992-2018


表1   1992—2001年及2001—2018年中国不同区域旱地农田土壤湿度变化趋势

Tab. 1  Trend of SM in different regions in dry croplands across China during 1992-2001 and 2001-2018

时段地区趋势(m3 m-3 a-1)
MeanN(I)N(D)Mean(S)N(SI)N(SD)
1992—2001年东北平原区-0.00441431-0.011214
北方干旱半干旱区-0.00221528-0.0054312
黄淮海平原区-0.00161732-0.005918
黄土高原区-0.0026820-0.000823
青藏高原区0.0004760.000032
长江中下游地区-0.00051411-0.008022
四川盆地及周边地区0.001643-0.000211
云贵高原区0.0021610.005120
全国-0.002085132-0.00461532
2001—2018年东北平原区0.004134110.0060193
北方干旱半干旱区0.001324200.0025107
黄淮海平原区0.001634150.0028124
黄土高原区0.00242170.003871
青藏高原区0.000067-0.000134
长江中下游地区-0.00031015-0.001135
四川盆地及周边地区-0.001734-0.003312
云贵高原区0.000743-00
全国0.0017136820.00285526

注:Mean趋势均值;N(I)呈增加趋势的站点数量;N(D)呈减小趋势的站点数量;Mean(S)趋势显著站点的趋势平均值;N(SI)呈显著增加趋势的站点数量;N(SD)呈显著减小趋势的站点数量。

新窗口打开| 下载CSV


土壤湿度的变化趋势呈现一定的空间差异性。1991—2001年东北地区、北方干旱半干旱地区、黄淮海平原区、黄土高原区干燥趋势明显;而中国西南地区如青藏高原区、四川盆地及周边地区、云贵高原的站点呈现湿润趋势。而2001—2018年出现了几乎相反的变化模式,东北地区、北方干旱半干旱地区、黄淮海平原区、黄土高原区的站点土壤湿度呈现增加的趋势;而青藏高原区、云贵高原湿润趋势减弱,长江中下游地区、四川盆地及周边地区则变得干燥。这种明显变化主要以中国的秦岭—淮河一线为界,在2001年之后南北方的土壤湿度趋势发生逆转,北方大部分地区土壤湿度由干变湿,南方大部分地区由湿变干,该发现与已有的用SPEI等天气干旱指数分析中国干旱演变基本一致,在21世纪后中国的东北部更湿润,西南部更加干旱[26]。上述南北方土壤湿度的不同变化暗示着土壤湿度的变化可能源于区域气候的差异[27]

3.1.3 季节土壤湿度变化趋势

土壤湿度在不同季节对气候因子有不同的响应,为探究土壤湿度年际变化趋势的主导成分,进一步分析季节平均土壤湿度的年际趋势及贡献率(表2),结果表明不同季节土壤湿度趋势有所不同。1992—2001年春季土壤湿度、夏季土壤湿度和秋季土壤湿度呈减小的趋势(-0.0017 m3 m-3 a-1、-0.0067 m3 m-3 a-1、-0.0059 m3 m-3 a-1),在2001年后呈增加的趋势(0.0038 m3 m-3 a-1、0.0046 m3 m-3 a-1、0.0039 m3 m-3 a-1)。1992—2001年冬季土壤湿度呈增加的趋势(0.0049 m3 m-3 a-1),在2001年后呈减小的趋势(-0.0042 m3 m-3 a-1)。除冬季外,各个季节土壤湿度和与年均土壤湿度的趋势表现出一致性,其中夏秋两季土壤湿度对年际变化趋势贡献较大,且夏季土壤湿度对土壤湿度的年际变化率是最高的(46.56%、37.8%)。季节土壤湿度变化趋势说明夏秋两季的土壤湿度主导了年际土壤湿度的变化,使其在2001年前后趋势发生转折。这一结果可能是因为对于农业系统影响较大的气象因子,如降水和蒸散发,在夏秋两季波动较为明显,且农作物处于生长期,需水量会对土壤湿度产生较大影响,所以这两个季节的土壤湿度对气候和农业系统的变化是最敏感的[18]

表2   1992—2001年及2001—2018年中国旱作农田季节土壤湿度变化及其对年际土壤湿度变化的贡献

Tab. 2  Trend of seasonal SM and its contribution to annual SM change in dry croplands across China during 1992-2001 and 2001-2018

时段季节Mean(S)(m3 m-3 a-1)贡献率(%)N(I)N(D)N(SI)N(SD)
1992—2001年-0.001712.05105108814
-0.006746.5683109718
-0.005941.397899718
0.0049-693593
2001—2018年0.003830.68135824123
0.004637.80132703811
0.003931.52126672611
-0.0042-5257611

注:表中符号的意义同表1

新窗口打开| 下载CSV


3.2 气象因子时空变化特征

为了进一步探究影响土壤湿度趋势变化的原因,本文选取与土壤湿度密切相关的气象因子(温度、降水、蒸散发、风速)在两个时间段进行趋势分析。如图4所示,全国平均温度呈现持续的增加趋势,但是在2001年后各区域增温的趋势有所放缓,呈降温趋势的站点增多(图4a1、4a2),这与1998年开始的全球变暖停滞有关[28]。后一阶段增温的减缓有利于干旱的缓解,促进土壤湿度的增加。

图4

图4   1992—2018年中国不同气象因子的变化趋势

Fig. 4   Trends in climate factors (i.e., precipitation, temperature, wind and potential evapotranspiration) in China during 1992-2018


降水在2001年后发生较大的改变,在全国范围内由下降变为上升趋势,这与土壤湿度的趋势变化一致,前一时期降水减少,土壤湿度呈减小趋势;后一时期降水增多,土壤湿度呈增加趋势,这说明降水趋势可能控制着土壤湿度变化的方向[10]。具体来看,在1992—2001年东北平原区、北方干旱半干旱区、黄土高原地区、黄淮海平原的大多站点降水呈现减小的趋势,青藏高原区、四川盆地和周边地区、云贵高原区站点降水多呈上升趋势(图4b1)。但在2001—2018年降水趋势分布发生逆转,东北平原区、北方干旱半干旱区、黄土高原地区、黄淮海平原北部地区大多数站点降水呈增加趋势,而青藏高原、云贵高原、黄淮海平原南部地区大多站点降水增长趋势放缓,甚至呈减小趋势(图4b2)。降水与土壤湿度的趋势变化也表现出了较为一致的空间模式(图4b1、4b2),进一步说明降水趋势与土壤湿度的长期变化有很强的关系,土壤湿度趋势在2001年的变化可能与降水格局的改变有关[14]

风速在2001年前呈减小趋势的站点较多,且呈增加趋势的站点与呈减小趋势的站点交叉分布(图4c1),但是在2001年之后风速呈增加趋势的站点增多,且趋势分布出现东西差异,以祁连山为界,东部地区大多数站点呈现减小的趋势,而西部大部分站点呈现增加的趋势(图4c2)。与已有研究一致,中国西南地区风速在2000年以后转为增加趋势,而东北和东部沿海地区地表风速在近十几年保持减弱趋势[29]。风速的变化与气候系统内部变率以及人类活动有关,在东部地区,气温升高导致气压梯度力减弱,植被恢复和城镇化导致地面拖曳力增加,使得风速减小;而西南地区主要受到纬向西风增强的影响,地表风速增强[30]

潜在蒸散发是直接影响土壤湿度耗散的气候因素。2001年前大部分区域潜在蒸散发呈现增加的趋势,但是在2001年后的增加趋势有所减弱,特别是在东北平原、黄淮海平原的北部地区以及长江中下游平原的北部地区,超过一半站点的蒸散发呈减小的趋势(图4d1、4d2),这有利于土壤水分的保持。此外蒸散发在青藏高原区、四川盆地、云贵高原在2001年后呈增长趋势,这可能会加剧土壤水分的耗散(图4d1、4d2)。

综上,各个气象因子在2001年后趋势发生一定变化,且存在空间差异,这可能造成了土壤湿度趋势的改变和空间差异的变化。在2001年后中国北部和东部地区降水增多,土壤湿度的供给增多,同时增温趋势放缓,风速下降,蒸散发减弱,利于土壤湿度的保持,在各气象因子协同作用下促进土壤湿度增多。而西南方地区由于风速增加,蒸散发加剧,且降水减弱,可能导致土壤湿度下降。

3.3 气候变化对土壤湿度变化的相对影响

3.3.1 土壤湿度与气象因子的相关性

根据相关性分析结果(表3),我们发现1992—2018年在全国范围内旱作农田土壤湿度与降水呈显著的正相关(0.54);而与蒸散发显著负相关(-0.50);与风速的相关性较低(-0.36),但与风速显著相关的站点数最多;和温度的相关性最低(-0.16)。这说明全国范围内土壤湿度趋势的变化主要受到降水、蒸散发的影响,与前文分析一致。比较前后两个阶段土壤湿度与气象因子的相关性,在前一阶段,土壤湿度与降水的显著相关的站点最多,相关性较强;在后一阶段,与降水的相关性下降,与风速的显著相关的站点明显增多,相关性增强。这说明在后一阶段随着降水的增多,蒸散发过程对土壤湿度的影响在增大。

表3   1992—2018年中国旱作农田年均土壤湿度与气象因子的相关性

Tab. 3  Correlation between annual mean SM and meteorological factors in dry croplands across China during 1992- 2018

时段相关性显著相关站点数(个)
降水气温风速蒸散发降水气温风速蒸散发
1992—2018年0.54-0.16-0.36-0.5068277061
1991—2001年0.66-0.33-0.35-0.7259193533
2001—2018年0.58-0.15-0.44-0.6545244737

新窗口打开| 下载CSV


3.3.2 土壤湿度对气象因子的敏感性

为探究气象因子对土壤湿度的影响,我们总结了各区域土壤湿度对气象因子的敏感性(表4),并详细地列举了各站点土壤湿度的主要气象影响因子(图5)。结果显示大多数站点的主要影响因子是降水和蒸散发,这与上一节相关性分析一致,降水和蒸散发主导了土壤湿度趋势的变化,降水的变化方向主导了土壤湿度变化方向,同时蒸散对土壤湿度的变化也有重要影响。

表4   1992—2018年中国不同区域旱作农田土壤湿度对气候因子的敏感度

Tab. 4  Sensitivity of SM to climate factors in different regionsin dry croplands across China during 1992-2018

地区因子敏感性
降水气温风速蒸散发
北方干旱半干旱区0.310.220.130.34
东北平原区0.400.150.190.26
黄淮海平原区0.370.160.200.27
黄土高原区0.400.210.140.25
青藏高原区0.440.220.100.24
云贵高原区0.120.010.340.53
长江中下游地区0.220.280.170.32

新窗口打开| 下载CSV


图5

图5   1992—2018年中国旱作农田土壤湿度变化的主导因子

Fig. 5   Spatial distribution of dominant controls on SM changes in dry croplands across China during 1992-2018


在不同区域,土壤湿度对各个气象因子的敏感性有所不同。整体上北部地区对降水的变化更加敏感,而南部地区对蒸散发的变化更加敏感。具体来看,在东北地区、黄土高原、黄淮海北部平原区,降水是土壤湿度的主导因子,2001年降水由下降转为上升趋势,土壤湿度也就随之发生相似的转变,同时蒸散发在东部地区的减小起到协同作用。但在黄淮海平原区的南部,降水始终保持下降趋势,土壤湿度却转为上升趋势,这是因为南部区域主导因子较复杂,受到蒸散发降低以及人为因素,如灌溉水平提高的影响[31]。在北方干旱半干旱区,土壤湿度对蒸散发和降水量都具有较高的敏感性,2001年该地区的蒸散发和降水趋势都发生转折:蒸散发由上升变为下降趋势,降水由下降变为上升趋势,在降水和蒸散发的协同作用下,土壤湿度趋势也随之发生由下降到上升的显著转变(图3a3b)。

而在云贵高原、长江中下游地区,相比于降水,土壤湿度对蒸散发的变化更加敏感,这可能是因为南方区域受夏季风影响,降水量通常较为充足,降水不是限制土壤水的关键因素,但由于温度较高,蒸散发过程活跃,导致土壤水的耗散,因此蒸散发强度可能成为影响土壤湿度的主要因素。2001年云贵高原区由于蒸散发的增加,土壤湿度转为下降趋势,降水在西南地区增势的减缓或下降起到辅助作用;长江中下游地区蒸散发则明显减弱,土壤湿度的下降趋势有所减缓。

4 结论与讨论

土壤湿度的变化是陆气系统长期相互作用的结果。本文基于1992—2018年中国219个旱地农田农气站的土壤湿度观测数据,分析了1992—2018年中国旱地农田土壤湿度的长期趋势,揭示了土壤湿度变化的时空特征,并进一步探究土壤湿度演变的驱动机制,结果表明:

(1)在时间格局上,1992—2018年中国旱地农田土壤湿度在2001年发生了转折,在1992—2001年土壤湿度基本呈下降趋势,在2001—2018年则呈显著上升趋势。该趋势主要由夏季和秋季土壤湿度主导。

(2)在空间格局上,不同地区的土壤湿度演变模式有所不同。中国北部、东部地区土壤湿度由下降变为上升趋势;而西南部地区土壤湿度由上升变为下降趋势。

(3)降水和蒸散发的变化是土壤湿度趋势发生时空变化的主要原因,2001年后增温的减缓,降水的增多和蒸散发的减小,使得土壤湿度的补给增多,损失减小,从而有利于土壤湿度整体的增多。在大部分地区二者起到协同作用,但主导因子存在区域差异:北方地区由降水主导,南方地区由蒸散发主导。

2001年后中国气候的改变可能与全球气候变暖的中断以及大气环流导致的中亚地区湿润区的形成有关[32]。在前一时段东亚经历了加速变暖,气候变暖最快的地区位于东亚东北地区,导致蒸汽压不足和蒸发需求增加,增强了地区的干燥[33-34]。然而,后一时间段东亚地区的变暖速度出现放缓[28]。气候的改变,带来了土壤湿度的变化,土壤湿度通过影响地表能量、水分的再分配,对气候系统产生反馈作用,例如土壤湿度的增加,可以促进蒸散发过程,使得降水进一步增多,形成正向循环,从而有效缓解干旱[18,35]。此外,从1999年以来中国开展了大规模的退耕还林、还草工程,大量研究表明这些工程加速了全国绿化的趋势,促进了植被的恢复[36]。恢复的植被能够通过提高水分利用效率和改善局地小气候调节地表水平衡[37],从而发挥土壤保持、水源涵养等生态效益[38],这也可能促进了中国土壤湿度长期趋势的转折。

与以往大多采用遥感反演数据的研究不同,本文基于站点的原始数据分析站点土壤湿度的趋势,得出的结果更加接近土壤湿度变化的真实情况,但是站点数据也存在数据分布不均匀、人为误差等方面的局限性。此外,本文探讨的降水、蒸散发、温度、风速只是影响土壤水分的代表气象因子,虽然在标准回归方程的残差分析中,论证了灌溉等其他要素对中国旱地农田的土壤湿度长期趋势并无显著影响,但土壤质地、地形和植被等因素对土壤湿度的非长期趋势变化可能存在重要影响,特别是当灌溉等人类活动影响水循环时,过程更加复杂,增加了结果的不确定性[39-40]。因此,以后的研究中还需采取更加多样的方法,考虑更多影响因子的综合作用。

参考文献

Legates D R, Mahmood R, Levia D F, et al.

Soil moisture: A central and unifying theme in physical geography

Progress in Physical Geography, 2011, 35(1): 65-86.

[本文引用: 1]

Seneviratne S I, Corti T, Davin E L, et al.

Investigating soil moisture-climate interactions in a changing climate: A review

Earth-Science Reviews, 2010, 99(3/4): 125-161.

DOI:10.1016/j.earscirev.2010.02.004      URL     [本文引用: 1]

McColl K A, Alemohammad S H, Akbar R, et al.

The global distribution and dynamics of surface soil moisture

Nature Geoscience, 2017, 10(2): 100-104.

DOI:10.1038/NGEO2868      [本文引用: 1]

Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture-a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces-plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

Zhu Q, Luo Y L, Xu Y P, et al.

Satellite soil moisture for agricultural drought monitoring: Assessment of SMAP-derived soil water deficit index in Xiang River Basin, China

Remote Sensing, 2019, 11(3): 362. DOI: 10.3390/rs11030362.

[本文引用: 1]

Martínez-Fernández J, González-Zamora A, Sánchez N, et al.

Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index

Remote Sensing of Environment, 2016, 177: 277-286.

DOI:10.1016/j.rse.2016.02.064      URL     [本文引用: 1]

Li Qin, Zhang Qiang, Huang Qingzhong, et al.

Nonparametric integrated agro-meteorological drought monitoring in China: New monitoring technique and applicability

Acta Geographica Sinica, 2018, 73(1): 67-80.

DOI:10.11821/dlxb201801006      [本文引用: 1]

Drought is one of the most catastrophic natural hazards which have severe impacts on human society and yet it is the least understood hazard. Monitoring drought in a reliable way plays a critical role in the early warning as well as the mitigation of drought hazard. Generally, the integrated agro-meteorological drought monitoring is one of the most popular drought monitoring methods and it is the key step to mitigate droughts effectively. However, the originally developed integrated drought monitoring index included nothing about evapotranspiration, and it does perform not well in reflecting impacts of evapotranspiration on occurrence of droughts. In this case, this study attempted to propose an improved version of the multivariate standardized drought index (MSDI) using standardized precipitation evapotranspiration index (SPEI) and standardized soil moisture index (SSI), i.e. modified multivariate standardized drought index (MMSDI). Based on the statistical records of drought-affected crop area in 7 geographical zones across China, this study tests the applicability of MMSDI in drought monitoring across China in 3-month and 6-month time scales, with comparison to the meteorological drought monitored by SPEI, agricultural drought monitored by SSI and integrated agro-meteorological drought monitored by MSDI. The result indicates that MMSDI can monitor meteorological drought and agricultural drought simultaneously. Furthermore, MMSDI has greater superiority than SPEI, SSI and MSDI in the veracity of drought monitoring. Besides, MMSDI can monitor droughts in bad conditions where meteorological drought and agricultural drought monitoring technique cannot be applied. Moreover, MSDI tends to overestimate the drought intensity and the size of drought-affected regions across China. In sum, MMSDI proposed in this study can be used to monitor and detect drought conditions in a more accurate way from perspectives of meteorological drought and agricultural drought. Meanwhile, drought conditions monitored by MMSDI are very close to in-situ observations and to the real-world observations of droughts in terms of drought-affected regions and related losses. In this sense, this study provides a theoretical foundation for large-scale drought monitoring across China, and provides practical regional case studies for related research in other regions of the world.

[李勤, 张强, 黄庆忠, .

中国气象农业非参数化综合干旱监测及其适用性

地理学报, 2018, 73(1): 67-80.]

DOI:10.11821/dlxb201801006      [本文引用: 1]

旱灾是对人类社会影响以及致损最大的灾种之一,如何进行可靠的旱灾监测是旱灾预警与旱灾防灾减灾的关键。气象干旱与农业干旱的综合干旱方法是目前干旱监测的主要方法之一。本文对多变量标准化干旱指数(MSDI)方法进行改进,以非参数化的方法计算标准化降水蒸散指数(SPEI)、标准化土壤湿度指数(SSI),提出改进的MSDI,即气象农业综合干旱指标(MMSDI)。在此基础上,用1979-2015年中国降水资料、蒸散发资料以及土壤湿度数据对不同时间尺度(3月尺度与6月尺度)分别研究气象干旱、农业干旱、气象农业综合干旱,用气象农业综合干旱分别与气象干旱、农业干旱和改进之前的气象农业综合干旱对比,并结合实际记录的干旱事件时空特征验证,结果证实MMSDI指数可以同时监测气象与农业干旱,且其监测结果准确度高于单一变量的气象(SPEI)或农业(SSI)干旱监测,MMSDI指数对气象农业综合干旱具有更好的监测效果,可考虑作为中国气象农业综合干旱监测及旱灾预警的重要理论依据。

Zhang Z, Wang P, Chen Y, et al.

Global warming over 1960-2009 did increase heat stress and reduce cold stress in the major rice-planting areas across China

European Journal of Agronomy, 2014, 59: 49-56.

DOI:10.1016/j.eja.2014.05.008      URL     [本文引用: 1]

Li Z Y, Zhang Z, Zhang L Y.

Improving regional wheat drought risk assessment for insurance application by integrating scenario-driven crop model, machine learning, and satellite data

Agricultural Systems, 2021, 191: 103141. DOI: 10.1016/j.agsy.2021.103141.

URL     [本文引用: 1]

Zhang L, Zhang Z, Luo Y, et al.

Optimizing genotype-environment-management interactions for maize farmers to adapt to climate change in different agro-ecological zones across China

Science of the Total Environment, 2020, 728: 138614. DOI: 10.1016/j.scitotenv.2020.138614.

URL     [本文引用: 1]

Cheng S J, Guan X D, Huang J P, et al.

Long-term trend and variability of soil moisture over East Asia

Journal of Geophysical Research: Atmospheres, 2015, 120(17): 8658-8670.

DOI:10.1002/2015JD023206      URL     [本文引用: 3]

Xu K, Yang D W, Yang H B, et al.

Spatio-temporal variation of drought in China during 1961-2012: A climatic perspective

Journal of Hydrology, 2015, 526: 253-264.

DOI:10.1016/j.jhydrol.2014.09.047      URL     [本文引用: 1]

Yao N, Li Y, Lei T J, et al.

Drought evolution, severity and trends in mainland of China over 1961-2013

Science of the Total Environment, 2018, 616/617: 73-89.

DOI:10.1016/j.scitotenv.2017.10.327      URL     [本文引用: 1]

Pan Hanxiong, Zhu Guofeng, Zhang Yu, et al.

Spatial and temporal variations of relative soil moisture in China's farmland

Acta Geographica Sinica, 2019, 74(1): 117-130.

DOI:10.11821/dlxb201901009      [本文引用: 2]

Based on the data of relative soil moisture obtained from 653 agricultural meteorological stations in China during the period of 1993-2013, the spatial and temporal differentiations of relative soil moisture in China's farmland were analyzed and discussed by using geostatistical methods. The results show that the relative soil moisture of China's farmland has fluctuated and increased since 1993, exceeding 60% in general. The distribution area has been expanding to the north and west with the summer monsoon since mid-April, and in late October, the region began to shrink to the east and south. The value of relative soil moisture increases with the increase of soil depth, and the distribution of farmland in high-value area increases with the increase of soil depth. The relative soil moisture of farmland increases fastest in summer and autumn, and the range of change decreases with the increase of soil depth. There is a strong positive correlation between relative soil moisture and precipitation. Relative soil moisture has a strong negative correlation with potential evaporation and temperature. The annual mean value of relative soil moisture in paddy field is higher than that in dry land, and the difference between the annual mean values of relative soil moisture of two types of farmland increases with the increase of soil depth.

[潘汉雄, 朱国锋, 张昱, .

中国耕地土壤相对湿度时空分异

地理学报, 2019, 74(1): 117-130.]

DOI:10.11821/dlxb201901009      [本文引用: 2]

以全国653个农业气象站1993-2013年耕地的土壤相对湿度数据为基础,运用地统计方法,分析中国耕地土壤相对湿度时空分异特征与规律。结果表明:自1993年以来全国耕地的土壤相对湿度呈现波动上升趋势。全国耕地的土壤相对湿度普遍大于60%,分布区域自4月中旬开始随夏季风推移不断向北向西扩大,自10月下旬开始向东、南方向缩小。耕地土壤相对湿度值随土壤深度的增加而增加。年际尺度上,耕地的土壤相对湿度在夏秋季上升速度最快,变化幅度随土层深度增加而变小。土壤相对湿度与降水量存在较强的正相关关系,与潜在蒸发量、气温普遍存在较强的负相关关系。土壤相对湿度与各气象要素的相关性随深度加深而减弱。春、夏、秋季气象因素对旱地土壤相对湿度影响较大,冬季气象因素对水田影响更大。

Kong X, Guan X, Cao C, et al.

Decadal change in soil moisture over East Asia in response to a decade-long warming hiatus

Journal of Geophysical Research: Atmospheres, 2019, 124(15): 8619-8630.

DOI:10.1029/2019JD030294      URL     [本文引用: 3]

Chen Y Z, Feng X M, Fu B J.

An improved global remote-sensing-based surface soil moisture (RSSSM) dataset covering 2003-2018

Earth System Science Data, 2021, 13(1): 1-31.

DOI:10.5194/essd-13-1-2021      URL     [本文引用: 1]

Wei Z S, Meng Y Z, Zhang W, et al.

Downscaling SMAP soil moisture estimation with gradient boosting decision tree regression over the Tibetan Plateau

Remote Sensing of Environment, 2019, 225: 30-44.

DOI:10.1016/j.rse.2019.02.022      URL     [本文引用: 1]

Koster R D, Dirmeyer P A, Guo Z, et al.

Regions of strong coupling between soil moisture and precipitation

Science, 2004, 305(5687): 1138-1140.

PMID:15326351      [本文引用: 1]

Previous estimates of land-atmosphere interaction (the impact of soil moisture on precipitation) have been limited by a lack of observational data and by the model dependence of computational estimates. To counter the second limitation, a dozen climate-modeling groups have recently performed the same highly controlled numerical experiment as part of a coordinated comparison project. This allows a multimodel estimation of the regions on Earth where precipitation is affected by soil moisture anomalies during Northern Hemisphere summer. Potential benefits of this estimation may include improved seasonal rainfall forecasts.

Deng Yuanhong, Wang Shijie, Bai Xiaoyong, et al.

Relationship between soil moisture and climate and its memory in Southwest China

Acta Ecologica Sinica, 2018, 38(24): 8688-8699.

[本文引用: 3]

[邓元红, 王世杰, 白晓永, .

西南地区土壤湿度与气候之间的互馈效应

生态学报, 2018, 38(24): 8688-8699.]

[本文引用: 3]

Ren Xiaoli, Lu Qianqian, He Honglin, et al.

Spatio-temporal variations of the ratio of transpiration to evapotranspiration in forest ecosystems along the North-South Transect of Eastern China

Acta Geographica Sinica, 2019, 74(1): 63-75.

DOI:10.11821/dlxb201901005      [本文引用: 1]

<p>The ratio of transpiration to evapotranspiration (T/ET) is a key parameter for quantifying water use efficiency of ecosystems and understanding the interaction between ecosystem carbon uptake and water cycling in the context of global change. The estimation of T/ET has been paid increasing attention from the scientific community in recent years globally. In this paper, we used the Priestly-Taylor Jet Propulsion Laboratory Model (PT-JPL) driven by regional remote sensing data and gridded meteorological data, to simulate the T/ET in forest ecosystems along the North-South Transect of Eastern China (NSTEC) during 2001-2010, and to analyze the spatial distribution and temporal variation of T/ET, as well as the factors influencing the variation in T/ET. The results show that: (1) The PT-JPL model is suitable for the simulation of evapotranspiration and its components of forest ecosystems in Eastern China, and has relatively good stability and reliability. (2) Spatial distribution of T/ET in forest ecosystems along NSTEC was heterogeneous, i.e., T/ET was higher in the north and lower in the south, with an averaged value of 0.69; and the inter-annual variation of T/ET showed a significantly increasing trend, with an increment of 0.007/yr (<i>p </i>< 0.01). (3) Seasonal and inter-annual variations of T/ET had different dominant factors. Temperature and EVI can explain around 90% (<i>p </i>< 0.01) of the seasonal variation in T/ET, while the inter-annual variation in T/ET was mainly controlled by EVI (53%, <i>p </i>< 0.05).</p>

[任小丽, 路倩倩, 何洪林, .

中国东部南北样带森林生态系统蒸腾与蒸散比值(T/ET)时空变化

地理学报, 2019, 74(1): 63-75.]

DOI:10.11821/dlxb201901005      [本文引用: 1]

植被蒸腾与蒸散的比值(transpiration/evapotranspiration, T/ET)表征了植被蒸腾对生态系统蒸散的贡献率,是准确量化生态系统水分利用效率的关键参数,对研究植被水分运移的生理生态机理以及碳水循环关系具有重要意义。基于站点数据验证PT-JPL模型(Priestly-Taylor Jet Propulsion Laboratory Model)模拟精度,集成遥感数据和气象栅格数据模拟中国东部南北样带森林生态系统2001-2010年T/ET,并分析其时空变化及影响因子。结果表明:① PT-JPL模型适用于中国东部森林生态系统蒸散及其组分模拟,具有较高的稳定性和可靠性;② 中国东部南北样带森林生态系统T/ET空间差异显著,整体呈南部低、北部高,主要由夏季T/ET空间格局主导;样带整体T/ET均值为0.69,2001-2010年呈显著缓慢上升趋势,增幅为0.007/yr(p p p

Zhang Lei, Lv Houquan, Wang Liangyu, et al.

Spatial-temporal characteristics of soil moisture in China

Acta Geographica Sinica, 2016, 71(9): 1494-1508.

DOI:10.11821/dlxb201609003      [本文引用: 1]

Using actual observed soil moisture data of 155 agro-meteorological stations across China, at dekadal scale from 1981 to 2010, this paper examined the spatial and temporal characteristics of soil moisture at each 10 cm depth from 0 to 50 cm, at regional and national scales. Annual trend and significant change point were detected through tendency analysis and Cramér-von Mises test methods. Since soil texture and crop types were approximately homogeneous in each climatic region, regional average variation of soil moisture could be observed in the analysis. Mean soil moisture was between 15% and 25% in most regions while it was above 25% in the northern part of Northeast China and southern part of Southwest China. At each depth, larger soil moisture was detected in Southwest China, Jianghuai, Northeast China, Jiangnan, Jianghan, Huanghuai and South China, while the smallest value was observed in Inner Mongolia. As soil deepening, except in Tibetan Plateau, increases in soil moisture were apparent, being a maximal magnitude in Southwest China. Obviously, as well as periodical characteristics, annual and seasonal difference of soil moisture emerged at each depth, corresponding well to regional precipitation, temperature, and water demand for planting crops. An obvious freezing-increasing-deceasing-increasing trend existed in Northeast China, Inner Mongolia and Xinjiang, a variation of deceasing-increasing-fluctuating in North China, Huanghuai, and eastern Northwest China, a multiple fluctuation in Jianghuai, Jianghan and Jiangnan, and a deceasing-increasing-deceasing trend in South China and Southwest China, while an increasing-deceasing trend was found in the Tibetan Plateau. Soil moisture at a greater depth was higher than that at superficial layers. Annual soil moisture varied at each depth, but the mean value decreased from 1981 to 2010. Such annual variation could be well explained by corresponding temperature and precipitation. Consequently, soil moisture tended to decrease in response to temperature increase, following climate change. Apart from climatic factors, soil texture and crop type, as well as human activity, can have influence on soil moisture, which is needed to be studied further. Soil moisture decreased in Xinjiang, South China, North China, Tibetan Plateau, Northeast China and Huanghuai among which Xinjiang was most remarkable with a velocity above -2.3%?(10a)-1. Except in Jianghuai, a significant change of soil moisture was detected, mainly during two periods, i.e. from the late 1980s to early 1990s, and late 1990s.

[张蕾, 吕厚荃, 王良宇, .

中国土壤湿度的时空变化特征

地理学报, 2016, 71(9): 1494-1508.]

DOI:10.11821/dlxb201609003      [本文引用: 1]

基于中国155个农业气象观测站1981-2010年逐旬土壤湿度资料,分析了全国和12个气候区域0~50 cm逐层的土壤湿度时空分布规律,采用趋势分析和Cramér-von Mises(CVM)方法探究了土壤湿度的变化趋势及突变性。结果表明:西南、江淮、东北、江南、江汉、黄淮和华南地区各层土壤湿度均高于全国平均值,内蒙古地区最低;随着深度增加,西南地区土壤湿度增加最明显,仅青藏高原地区土壤湿度减小。不同区域0~50 cm各层土壤湿度年变化和季节变化差异明显,并具有阶段性特征,大部地区深层土壤湿度高于浅层;总体上,新疆、华南、华北、青藏高原、东北、黄淮地区1981-2010年土壤湿度减小趋势显著,其中新疆地区减小最为明显。除江淮地区外,各区域土壤湿度均存在较为明显的年际差异,突变时段主要集中在20世纪80年代后期至90年代初期、90年代后期两个时间段。

Xiong Shungui. Basic Soil Science. Beijing: China Agricultural University Press, 2001.

[本文引用: 1]

[熊顺贵. 基础土壤学. 北京: 中国农业大学出版社, 2001.]

[本文引用: 1]

Allen R G, Pruitt W O, Wright J L, et al.

A recommendation on standardized surface resistance for hourly calculation of reference ET0 by the FAO 56 Penman-Monteith method

Agricultural Water Management, 2006, 81(1-2): 1-22.

DOI:10.1016/j.agwat.2005.03.007      URL     [本文引用: 1]

Toms J D, Lesperance M L.

Piecewise regression: A tool for identifying ecological thresholds

Ecology, 2003, 84(8): 2034-2041.

DOI:10.1890/02-0472      URL     [本文引用: 1]

Zeng Z Z, Ziegler A D, Searchinger T, et al.

A reversal in global terrestrial stilling and its implications for wind energy production

Nature Climate Change, 2019, 9(12): 979-985.

DOI:10.1038/s41558-019-0622-6      URL     [本文引用: 1]

Wessels K J, van den Bergh F, Scholes R J.

Limits to detectability of land degradation by trend analysis of vegetation index data

Remote Sensing of Environment, 2012, 125: 10-22.

DOI:10.1016/j.rse.2012.06.022      URL     [本文引用: 2]

Li X, He B B, Quan X W, et al.

Use of the standardized precipitation evapotranspiration index (SPEI) to characterize the drying trend in Southwest China from 1982-2012

Remote Sensing, 2015, 7(8): 10917-10937.

DOI:10.3390/rs70810917      URL     [本文引用: 1]

Zhang K, Wang Q Q, Chao L J, et al.

Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China

Journal of Hydrology, 2019, 574: 903-914.

DOI:10.1016/j.jhydrol.2019.04.087      [本文引用: 1]

Little measurement-based soil moisture information is available for the humid to semi-humid transitional zones in China. Anhui Province is a representative area of these zones and spans several hydroclimatic and geomorphological zones. To overcome shortage of observational soil moisture information in this area, we collected and compiled a multi-layer daily soil moisture record from 2012 to 2016 across Anhui Province based on the observations of a soil moisture-observing network composed of 85 sites. We then analyzed the vertical and spatiotemporal variability of soil moisture across this region. Primary findings are: (a) soil moisture in this region has apparent vertical gradients and increases with soil depth; (b) substantial soil moisture spatial variability appears in the shallow soil layers (depth <= 40 cm) with the highest values in the middle part of this region, but soil moisture in the deep layers (depth > 40 cm) shows low spatial variability; (c) seasonality of soil moisture across this region is complicated and has fluctuations with July as the wettest month in most of the province; (d) inter-monthly fluctuation of soil moisture is larger in the upper soil layers than in the lower layers; and (e) antecedent accumulated rainfall is a major factor influencing soil moisture throughout this region with soil moisture in the upper layers more sensitive to immediate weather conditions and soil moisture in the lower layers showing lagged responses to the weather conditions. This study can not only reveal the spatiotemporal and vertical characteristics of soil moisture across this region, but also provide a useful reference dataset for the other soil moisture modeling and retrieval studies.

England M H, McGregor S, Spence P, et al.

Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus

Nature Climate Change, 2014, 4(3): 222-227.

DOI:10.1038/nclimate2106      URL     [本文引用: 2]

Feng Y C, Que L J, Feng J M.

Spatiotemporal characteristics of wind energy resources from 1960 to 2016 over China

Atmospheric and Oceanic Science Letters, 2020, 13(2): 136-145.

DOI:10.1080/16742834.2019.1705753      URL     [本文引用: 1]

Yang Qing, Li Mingxing, Zu Ziqing, et al.

Are surface wind speeds still weakening in China?

Scientia Sinica: Terrae, 2021, 51(7): 1028-1042.

DOI:10.1360/SSTe-2020-0228      URL     [本文引用: 1]

[杨庆, 李明星, 祖子清, .

中国区域的地表风速还在减弱吗?

中国科学: 地球科学, 2021, 51(7): 1028-1042.]

[本文引用: 1]

Yu H Q, Zhang Q, Xu C Y, et al.

Modified palmer drought severity index: Model improvement and application

Environment International, 2019, 130: 104951. DOI: 10.1016/j.envint.2019.104951.

URL     [本文引用: 1]

Guan X D, Huang J P, Guo R X.

Changes in aridity in response to the global warming hiatus

Journal of Meteorological Research, 2017, 31(1): 117-125.

DOI:10.1007/s13351-017-6038-1      URL     [本文引用: 1]

Cheng S J, Huang J P.

Enhanced soil moisture drying in transitional regions under a warming climate

Journal of Geophysical Research: Atmospheres, 2016, 121(6): 2542-2555.

DOI:10.1002/2015JD024559      URL     [本文引用: 1]

Sheffield J, Wood E F.

Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle

Journal of Climate, 2008, 21(3): 432-458.

DOI:10.1175/2007JCLI1822.1      URL     [本文引用: 1]

Han G L, Wang J L, Pan Y Y, et al.

Temporal and spatial variation of soil moisture and its possible impact on regional air temperature in China

Water, 2020, 12(6): 1807. DOI: 10.3390/w12061807.

[本文引用: 1]

Piao S L, Yin G D, Tan J G, et al.

Detection and attribution of vegetation greening trend in China over the last 30 years

Global Change Biology, 2015, 21(4): 1601-1609.

DOI:10.1111/gcb.12795      URL     [本文引用: 1]

Deng C L, Zhang B Q, Cheng L Y, et al.

Vegetation dynamics and their effects on surface water-energy balance over the Three-North Region of China

Agricultural and Forest Meteorology, 2019, 275: 79-90.

DOI:10.1016/j.agrformet.2019.05.012      URL     [本文引用: 1]

Gao Jixi, Liu Xiaoman, Wang Chao, et al.

Evaluating changes in ecological land and effect of protecting important ecological spaces in China

Acta Geographica Sinica, 2021, 76(7): 1708-1721.

DOI:10.11821/dlxb202107010      [本文引用: 1]

It is important to quantitatively analyze the effects of protecting important ecological spaces in China to ensure national ecological security. By considering changes in the ecological land, this study examines the effects of protecting three types of important natural ecological spaces in China. The results show that: (1) In 2018, the ratio of ecological land to important natural ecological spaces accounted for 92.64%. This land had a good ecological background that reflects the developmental orientation of important ecological spaces. (2) From 1980 to 2018, the area of ecological land in important ecological spaces shrank but the rate of reduction was lower than the national average, which shows the positive effect of regulating construction in natural ecological spaces. The restorative effects of ecological projects to convert farmland into forests and grasslands have been prominent. The expanded ecological land is mainly distributed in areas where such projects have been implemented, and the reduced area is concentrated in grain-producing regions of the Northeast China Plain and agricultural oases of Xinjiang. In the future, the government should focus on strengthening the management and control of these areas. (3) The area ratio of ecological land was the highest in national nature reserves. The rate of reduction in its area was the lowest and the trend of reduction was the smallest in national nature reserves, which reflects differences in the status of ecological protection among different spaces. (4) The ratio of ecological land to important ecological spaces was higher than that in the surrounding external space, and the rate of reduction in it was lower. Thus, the effects of internal and external protection had clear differences in terms of gradient.

[高吉喜, 刘晓曼, 王超, .

中国重要生态空间生态用地变化与保护成效评估

地理学报, 2021, 76(7): 1708-1721.]

DOI:10.11821/dlxb202107010      [本文引用: 1]

定量分析重要生态空间建立前后的生态保护成效,对于保障国家生态安全具有重要意义。本文以生态用地为切入点,从时间和空间双重角度,评估了中国重要生态空间构建的生态保护效果,以期能为国土空间分类分区管控提供科学依据。结果表明:① 2018年重要生态空间以生态用地为主导,具有良好的生态本底,体现了重要生态空间的发展定位和重要地位; ② 1980&#x02014;2018年,重要生态空间内生态用地呈收缩趋势,但面积减少率低于全国平均水平,定量反映了重要生态空间的构建对生态的积极保护成效,总体来说生态用地变化基本处于稳定状态,扩大区域主要分布在退耕还林还草生态保护工程实施区,缩小区域集中在东北平原的粮食主产区和新疆绿洲农业地区,今后要重点加强管控;③ 3类重要生态空间内部生态保护成效有差异,国家级自然保护区生态用地面积比例最高,生态用地面积减少率最小、减少趋势最不明显、变化最为稳定,生态保护效果最好;④ 重要生态空间内生态用地面积比例高于周边外部区域,面积减少率低于外部区域,内、外保护成效具有明显梯度差异,说明重要生态空间的构建对生态保护的意义重大。

Gu H, Zhang Q, Li J F, et al.

Attribution of global soil moisture drying to human activities: A quantitative viewpoint

Geophysical Research Letters, 2019, 46(5): 2573-2582.

DOI:10.1029/2018GL080768      URL     [本文引用: 1]

Tao F L, Yokozawa M, Hayashi Y, et al.

Changes in agricultural water demands and soil moisture in China over the last half-century and their effects on agricultural production

Agricultural and Forest Meteorology, 2003, 118(3): 251-261.

DOI:10.1016/S0168-1923(03)00107-2      URL     [本文引用: 1]

/