地理学报, 2022, 77(9): 2236-2248 doi: 10.11821/dlxb202209007

气候变化与农业地理

秦岭中部山地落叶阔叶林超级垂直带的发现与意义

张百平,1, 姚永慧,1, 肖飞2, 周文佐3, 朱连奇4, 张俊华4, 赵芳4, 白红英5, 王晶1,6, 余付勤1,6, 张兴航1,6, 刘俊杰1,6, 李佳宇1,6, 蒋娅1,6

1.中国科学院地理科学与资源研究所,北京 100101

2.中国科学院精密测量科学与技术创新研究院,武汉 430071

3.西南大学,重庆 400715

4.河南大学,开封 475004

5.西北大学,西安 710127

6.中国科学院大学,北京 100049

The finding and significance of the super altitudinal belt of montane deciduous broad-leaved forests in central Qinling Mountains

ZHANG Baiping,1, YAO Yonghui,1, XIAO Fei2, ZHOU Wenzuo3, ZHU Lianqi4, ZHANG Junhua4, ZHAO Fang4, BAI Hongying5, WANG Jing1,6, YU Fuqin1,6, ZHANG Xinghang1,6, LIU Junjie1,6, LI Jiayu1,6, JIANG Ya1,6

1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

2. Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China

3. Southwest University, Chongqing 400715, China

4. Henan University, Kaifeng 475004, Henan, China

5. Northwest University, Xi'an 710127, China

6. University of Chinese Academy of Sciences, Beijing 100049, China

通讯作者: 姚永慧(1975-), 女, 湖北安陆人, 博士, 副研究员, 主要从事山地遥感与垂直带谱研究。E-mail: yaoyh@lreis.ac.cn

收稿日期: 2022-01-5   修回日期: 2022-07-29  

基金资助: 国家科技基础资源调查专项(2017FY100900)

Received: 2022-01-5   Revised: 2022-07-29  

Fund supported: National Scientific and Technological Basic Resources Investigation Project(2017FY100900)

作者简介 About authors

张百平(1963-), 男, 河南博爱人, 博士, 研究员, 主要从事自然地理与GIS应用研究。E-mail: zhangbp@lreis.ac.cn

摘要

山地垂直带谱是气候和植被水平地带变化和更替的缩影,垂直带的带幅、带间过渡方式、带内结构和垂直带组合方式都表现出高度的异质性和复杂性。本文发现在中国南北过渡带中部太白山发育了世界上最宽的山地垂直带——山地落叶阔叶林垂直带。该垂直带从基带到典型垂直带再到先锋性垂直带皆为山地落叶阔叶林,3种本来可以独立存在的垂直带,连续分布形成了包含3个栎林亚带、2个桦林亚带的“三层五亚带”超级垂直带,远远超过正常情况下山地垂直带1000 m的阈值,且其上限达到了海拔2800 m。它的形成与秦岭所处的过渡性地理位置、秦岭中部垂直带谱的完整性、丰富的落叶木本植物种群及其形成的强大群落竞争优势等因素紧密相关。超级垂直带的发现有多方面的意义:它是中国南北过渡带又一重要的标志性自然地理特征;它表明山地垂直带在特殊的山地环境中可以具有非常复杂的内部结构和宽大带幅,这扩展了我们对山地垂直带谱结构及机理认识的广度,对于创建山地垂直带谱结构理论具有十分重要的意义;超级垂直带的发现,也说明中国南北过渡带还有很多科学内容有待我们去探索和发现,希望本文能起到抛砖引玉的作用,引起学界对超级垂直带形成的气候和生物多样性因素、地理过渡带的结构和生态效应等重大问题进行深入研究。

关键词: 超级垂直带; 中国南北过渡带; 秦岭; 垂直带谱结构; 带幅

Abstract

Mountain altitudinal belts are the miniature of horizontal differentiation and succession of climatic and vegetational zonation. However, altitudinal belts' vertical range, transition model, inner structure and combining pattern vary from place to place. In Mt. Taibai of the central section of China's north-south transitional zone, we have found an altitudinal belt with the largest range in the world, namely, the montane deciduous broad-leaved forest, which extends continuously from the mountain base to about 2800 m, including basal oak belt, typical oak belt of two sub-belts and cold-tolerant pioneer birch belt of two sub-belts, which could otherwise develop independently. Characterized by a "three layers and five sub-belts" structure, this "super altitudinal belt" is much vertically broader than the threshold of 1000 m for normal altitudinal belts. Its formation is closely related with its transitional geographic location, integral spectrum of altitudinal belts in central Qinling Mountains, rich and diverse species of deciduous woody plants, and their strong competitiveness. The finding of the super altitudinal belt has multiple significance: Its existence is another significant physio-geographic feature of China's north-south transitional zone; it shows that an altitudinal belt may have rather complex inner structure and broad vertical range in some special mountain environment. This broadens our understanding of altitudinal belt structures and their mechanisms, and is of great significance for developing structural theory for montane altitudinal belts. This finding also demonstrates that there are many big questions for us to explore and study in the north-south transitional zone, and it is expected that our finding could trigger in-depth study of local climate and biodiversity responsible for the formation of this super belt, and of the complex structure and ecological effect of China's north-south transitional zone.

Keywords: super altitudinal belt; China's north-south transitional zone; Qinling Mts.; spectrum structure of altitudinal belts; vertical range of altitudinal belts

PDF (3374KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张百平, 姚永慧, 肖飞, 周文佐, 朱连奇, 张俊华, 赵芳, 白红英, 王晶, 余付勤, 张兴航, 刘俊杰, 李佳宇, 蒋娅. 秦岭中部山地落叶阔叶林超级垂直带的发现与意义. 地理学报, 2022, 77(9): 2236-2248 doi:10.11821/dlxb202209007

ZHANG Baiping, YAO Yonghui, XIAO Fei, ZHOU Wenzuo, ZHU Lianqi, ZHANG Junhua, ZHAO Fang, BAI Hongying, WANG Jing, YU Fuqin, ZHANG Xinghang, LIU Junjie, LI Jiayu, JIANG Ya. The finding and significance of the super altitudinal belt of montane deciduous broad-leaved forests in central Qinling Mountains. Acta Geographica Sinica, 2022, 77(9): 2236-2248 doi:10.11821/dlxb202209007

1 引言

山地虽然只占世界陆地面积的25%,却拥有全球87%的物种;但由于山地生境的多维变化及高度异质性,山地生物多样性格局的研究,总是留下巨大残差[1]。山地植被可以发生连续的变化[2-3],但更多的是不连续的变化或更替,Daubenmire[4]甚至认为所谓的植被连续变化是操控数据的人工产品。尤其在热带山地,不单单是乔木,群落里的各层片(乔木层、灌木层、草本层、藤本植物和附生植物)都可以表现出强烈的垂直地带性[5-6],导致植被类型发生多次更替,形成复杂的山地垂直带谱。带谱可以在数千米的垂直高度上浓缩从热带到两极数千千米的气候与植被类型更替。例如,喜马拉雅东端的南迦巴瓦峰自下而上发育了8~9个垂直带[7-9],基本上反映了欧亚大陆东部自赤道至北极圈的植被类型更替。山地垂直带谱蕴含了极为丰富的地理和生物多样性变化的信息,具有“方寸之间尽显大千世界”的作用,可以作为研究山地气候和植被复杂变化的“精巧模板”[10],用来深刻揭示山地生物多样性空间格局。

由于气候的纬向温度分异、离海洋远近引起的干湿变化以及山体高度和坡向的不同,无论是单个垂直带还是带谱结构(垂直带数量、垂直带类型、各垂直带上下界限高度、垂直带的宽度或带幅、相邻垂直带之间的过渡方式、带内结构或带内优势物种的变化等)都表现出极其复杂的空间和时间变化,致使有限的垂直带类型组合成无限的垂直带谱。对于山地垂直带谱结构的认识,人们首先注意到与气候区的联系。黄锡畴根据前苏联弗里特兰特和索恰瓦关于带谱结构的纲、亚纲、型、变型4级分类体系,将欧亚大陆温带山地的垂直带谱结构类型化分成3个亚纲(大西洋沿岸垂直带结构亚纲、大陆垂直带结构亚纲、太平洋沿岸季风区垂直带结构亚纲),每个亚纲包含若干型,例如大西洋沿岸亚纲包括了阿尔卑斯、南喀尔巴阡、北高加索西段等结构型[11]。张新时将中国山地植被垂直带分成7个生态地理类型:寒温带针叶林—冻原型、温带落叶阔叶林—亚高山草甸型、东亚亚热带常绿阔叶林—高山草甸型、北热带山地雨林—季雨林型、温带草原型、温带荒漠与极端荒漠型、青藏高原型。这实际上是基于气候区的划分,着重基带类型和上层主要垂直带的组合特征[7]。Miehe等以巴基斯坦境内喀喇昆仑山研究为例,不仅比较精确地描述了各垂直带随坡向的连续变化规律,还将山地植被格局分为亚湿润到半湿润型(Sub- to semi-humid)、半干旱到亚干旱型(Semi- to sub-arid)、真干旱型(Eu-arid)和极干旱型(Perarid)4类,并提供了每一类所对应的气候条件[12];Zheng也强调了湿润条件,特别是高原气候的影响,将喀喇昆仑山的垂直带谱分成干湿程度不同的6类[13]。彭补拙等将中国山地垂直带分成季风性带谱系统和大陆性带谱系统两大类、7个结构类型组及更细的18个结构类型[8],这与Zheng的分类基本一致[13]。更有甚者,采用6种方法(植物群落学分类、去趋势对应分析、聚类分析、简约分析、基于结构的分类和物种周转格局)来划分山地植被带[14]

上述这些传统研究工作都是基于地理区域气候的山地垂直带谱基本结构的划分和概括,其最主要的贡献是提供了不同气候区域可能出现的垂直带分布高度和组合信息,有些还建立了比较简单的气候—带谱关系,特别是关注了水分条件与带幅及带谱结构的紧密关系[12]。但这些研究仅仅概括了气候区内发育的基本垂直带类型,未能反映山地垂直带谱结构的复杂性和形成机理,特别是对于垂直带带幅的复杂空间变化,完全没有涉及。带幅是地理地带性因素和区域因素综合作用的结果,是山地垂直带谱结构特征的核心内容和关键参数之一,是进行山地垂直带谱结构定量分析的重要切入点。本文重点剖析秦岭中部山地落叶阔叶林带的超宽带幅及其复杂的内部结构,认为它是中国南北过渡带的特有现象,对其深入和系统的研究能够为建立山地垂直带谱结构理论提供更加坚实的科学基础。

2 秦岭中部山地落叶阔叶林“超级垂直带”及其结构

典型山地(山麓海拔较低、山顶高度超过区域气候林线的山地)植被垂直带的带幅通常只有数百米,而且变化十分复杂[15-16];热带山地研究表明,大部分物种在山区的生态幅度是6 ℃左右[17];根据常用的气温垂直递减率(海拔每升高100 m,气温下降0.6 ℃)计算,典型垂直带的带幅都应该在1000 m以内。因而,1000 m可以看作是带幅的阈值。这与世界上最完整而典型的山地垂直带谱所展现的各种垂直带带幅非常吻合,南迦巴瓦峰[18]、贡嘎山[19]、乞力马扎罗[20]等山地的垂直带谱(图1~图4)都是很好的证明。但在高原或大型山体内部,可以发现超过1000 m的案例。例如,非洲埃塞俄比亚高原北部山地上的欧石楠林[6]图5);北美落基山脉常绿针叶林带幅约为1250 m[21]图6);中国横断山区也有亚高山针叶林超过1000 m的案例。在世界范围内的落叶阔叶林带上[22],欧洲阿尔卑斯山落叶阔叶林带幅不足1000 m;日本富士山落叶阔叶林带幅不足900 m[23];暖温带山地落叶阔叶林带幅超过1000 m,这是由于水平地带和其上的第一个典型垂直带均为落叶阔叶林带且两者相连所致;在秦岭中部太白山南北坡则出现了更为极端的情况,落叶阔叶林从海拔500~600 m的基带向上一直分布到海拔2800 m[24],山地落叶阔叶林带发育的非常宽广,垂直高差达到2300 m左右。如果包括基带的高度,就达到2800 m,接近3000 m。这是目前世界上发现的带幅最宽、结构最复杂的山地落叶阔叶林带,本文称之为“超级垂直带”。这在世界山地垂直带体系中也是独一无二的。

图1

图1   典型山地垂直带谱结构

Fig. 1   Typical spectra of montane altitudinal belts


图2

图2   非洲乞力马扎罗山地垂直带谱

Fig. 2   Altitudinal belts of Mt. Kilimanjaro in Africa


图3

图3   天山垂直带谱[25]

Fig. 3   Spectra of altitudinal belts in Tianshan Mountains[25]


图4

图4   非洲喀麦隆山和鲁文佐里的带幅趋同

Fig. 4   Spectra of altitudinal belts of Mt. Cameroon and Mt. Rwenzori in Africa


图5

图5   非洲埃塞俄比亚高原北部山地垂直带谱结构特征

Fig. 5   Spectra of altitudinal belts of Mt. Simien in northern Ethiopia


图6

图6   美洲、欧洲、日本带代表性山地垂直带谱

Fig. 6   Typical spectra of montane altitudinal belts in America, Europe and Japan


2.1 3层结构

山地垂直带可以分为基带、典型垂直带、过渡性垂直带和仍处于演化阶段的先锋性垂直带。在任何垂直带谱中,它们都处于不同的相对高度上,具有不同的性质,并且都可以独立存在。但在秦岭太白山北坡,以栓皮栎(Quercus variabilis)为代表的基带,以锐齿槲栎(Quercus aliena var. acutiserrata)、蒙古栎(Quercus mongolica,北坡)为代表的典型垂直带,和以红桦(Betula albosinensis)、糙皮桦(Betula utilis)为代表的具有先锋性质的桦林,他们均为山地落叶阔叶林,但直接衔接在一起,形成了具有3层结构的超级垂直带(图7)。这3层落叶阔叶林(基带、典型垂直带、先锋性垂直带)本来都是可以独立存在的,但在秦岭中部却奇妙地衔接在一起,形成了独特的远超普通山地垂直带1000 m阈值的超级垂直带。基带和典型垂直带都是落叶阔叶林的情况,在暖温带山地,特别是在秦岭相当普遍。但在典型垂直带之上再发育具有先锋或过渡性质的桦林,仅在秦岭中部太白山周围存在。这就形成了秦岭中部最为独特的超级垂直带。

图7

图7   秦岭中部(太白山北坡)山地落叶阔叶林超级垂直带的3层5亚带结构

Fig. 7   The 3-layer and 5-sub-belt spectrum structure of the "super altitudinal belt" of montane deciduous broad-leaved forest in the northern flank of Mt. Taibai in central Qinling Mts.


2.2 5个亚带

太白山南、北坡存在的这种极为复杂的超级垂直带,不同坡向表现的有所不同,但都包含了5个亚带(图8)。北坡是典型的以栓皮栎为基带的暖温带垂直带谱,上接锐齿槲栎亚带、蒙古栎亚带、红桦亚带和糙皮桦亚带;南坡的基带则是含有小叶青冈(Quercus myrsinifolia)、岩栎(Quercus acrodonta)等常绿阔叶树种、以麻栎(Quercus acutissima)为主的落叶阔叶栎林,向上分别发育了典型的栓皮栎亚带、锐齿槲栎亚带、红桦亚带和糙皮桦亚带。比较可以发现,南坡缺失在北坡出现的蒙古栎亚带,但在底部发育了含常绿成分的落叶阔叶林。因而,南、北坡都是由5个亚带组成的落叶阔叶林带,都表现出复杂的带内结构,南坡更是展示了最为完整的垂直带谱结构,从最温暖的落叶阔叶林(含有常绿树种的落叶阔叶林)到抗寒性极强的秦岭红杉(Larix potaninii var. chinensis)构成的林线,再到其上的高山灌丛,形成了最复杂、最全面、最典型的暖温带山地垂直带谱。

图8

图8   秦岭太白山南、北坡山地植被垂直分布

Fig. 8   Altitudinal belts in the northern and southern flanks of Mt. Taibai in Qinling Mountains


3 秦岭“超级垂直带”的形成机理

3.1 中国南北过渡带上丰富的落叶木本植物,为超级垂直带的发育提供了必要的物种和强大的竞争优势

全球落叶木本植物主要分布在欧洲、北美东部以及亚洲的中国和日本[26],但因所在气候区与植物区系的差异,山地落叶阔叶林分布的高度、物种丰富度和优势种并不相同[27]。与世界同纬度地区相比,以秦巴山地为主体的中国南北过渡带具有最为丰富的落叶木本植物。处于秦巴山地东南角的神农架世界自然遗产地,落叶木本植物有77科245属874种,是全球落叶木本植物最丰富的地区[28]。据统计,太白山及附近的若干自然保护区内落叶木本植物也在800种左右。相比较而言,日本的Ogawa森林保护区是日本温带落叶树种最多的地区, 被誉为全球温带落叶木本植物最丰富的地区之一[29],其拥有的落叶木本植物不足200种。北美大雾山国家公园被认为是北美落叶木本植物种类最多的地区[30],落叶乔灌木也只有200种左右,欧洲更少[31]。它们都远远低于中国南北过渡带上的落叶木本植物种类数量。丰富的木本植物为秦岭中部山地落叶阔叶林带的下限和上限位置上都提供了必要的耐寒或耐热物种,从而具有较强的竞争优势,为山地落叶阔叶林带的垂直空间展布创造了优越条件,使得该带得以比较充分的发育。即使是在秦巴山地东南角、处于北亚热带南缘的神农架山地,带谱中的落叶阔叶林带幅也达到500 m(分布于1600~2100 m),这与中国南北过渡带是全球落叶木本植物最丰富的地区有极大关系[32],而其他亚热带山地几乎不形成落叶阔叶林垂直带。

3.2 桦林在落叶阔叶林上部的发育是秦岭中部超级垂直带形成的重要因素

落叶阔叶林是分布广泛的温带植被类型,分布区具有湿润半湿润的气候特点。每年至少有4个月气温达10 ℃以上,最热月平均气温为13~23 ℃,年平均气温一般为8~12 ℃。年降水量大约为500~1000 mm。山地桦林是最耐寒的落叶阔叶林,耐寒物种会使落叶阔叶林的连续分布具有更广泛的生态幅。它分布在山地或亚高山针叶林带附近,有些分布在针叶林之上,例如长白山的岳桦林(Betula ermanii)分布于1800~2000 m,巴基斯坦北部山地的糙皮桦林(Betula utilis)分布于3300~3700 m[12],它们都形成一个明显的独立垂直带。秦岭中部大面积分布的桦林很早就引起了植被研究者的注意。刘慎谔[33]在20世纪30年代考察太白山后认为“桦林平常多属过渡林(Transitory Forest),故桦林之为带(固定带),它山少见之”。后来的调查也发现,山地桦林为太白山森林植被中的独特群落,在秦岭山脉的其它山地没有分布[34]。最关键的是,这里的桦林分布在山地针叶林之下,与典型的山地落叶阔叶林直接相连,将山地落叶阔叶林带的范围向上扩展了大约500 m,为南北过渡带上超级垂直带的形成起到了重要作用。巴基斯坦北部山地桦林分布在密闭针叶林之上,海拔在3400~3750 m之间,气候条件大致为年降水量491.8 mm,年均温0.2 ℃[12],它与长白山岳桦林(Betula ermanii)一样是作为高山林线存在的,即森林的最上界。而秦岭中部的桦林,包括红桦(Betula albosinensis)和糙皮桦(Betula utilis),则位于山地针叶林之下,温暖指数只有60 ℃·月[35],远远低于落叶阔叶林水平地带北界的90 ℃·月,而接近中国温带针阔混交林水平地带的北界温度50 ℃·月[36]。该值虽然明显高于林线附近的温暖指数(15 ℃·月),但已经是落叶阔叶林连续分布最高上限的温度条件,这与该物种较高的耐寒程度有直接的关系。

3.3 过渡性强和变异性大的区域气候是产生较宽垂直带的重要因素

过去的研究表明,稳定的气候导致群落的边界清晰,而多变的敏感气候会导致生态过渡带较宽[37]。气候变化对中国自然区域界线变化的研究也表明,北亚热带和暖温带北界的变化最为显著,北移的幅度可以达到0.5~1.5个纬度[38]。秦岭正处于中国南北暖温带和亚热带过渡的区域,自然地理各要素本身就具有复杂性、敏感性和多样性[39],同时又是连接中国东部平原和西部青藏高原的大尺度生态廊道[40],因而具有多维过渡的性质,也就是多方向的较大摆动性。这不仅是中国南北过渡带发育较宽并引起南北分界线具体划在何处存在争议的原因,也是山地落叶阔叶林超级垂直带发育的重要因素之一。相对而言,中亚热带的山地气候比较稳定,垂直带发育比较密集和狭窄。例如福建武夷山主峰黄岗山,高差约1000 m,但发育了6个带[41]:基带常绿阔叶林(900~1400 m)以上的常绿落叶阔叶混交林、针阔叶混交林、温性针叶林、中山苔藓矮曲林、中山灌丛草甸等,带幅都在200 m以内,是一种非常极端的带谱结构,与秦岭中部的宽大垂直带形成极为鲜明的对比。

3.4 垂直带谱完整性与优势垂直带的意义

山体超过区域气候林线甚至雪线高度,就能够发育从基带到林线之间的所有垂直带,可称之为“完整带谱”,例如南迦巴瓦峰、贡嘎山、太白山、非洲的乞力马扎罗山等,各个垂直带能够在区域气候及地形产生的垂直变化作用下,得到比较充分和平衡的发育,相对较宽。在山体高度和水热条件都充分的情况下,带谱内各带宽度甚至出现趋同现象,大致在600~800 m之间,上部有些可达到1000 m。例如,具有中国甚至全世界最完整带谱的南迦巴瓦峰(图1)、非洲的喀麦隆山(非洲中部西海岸、4°N, 10°E)和鲁文佐里山(刚果与乌干达交接处),都属于此类(图4[6]。它们的山体高度都超过当地气候林线,降水量都在1500 mm以上;各垂直带都得到了比较充分的发育,但受到其上下相邻垂直带的竞争和挤压,最终形成一种比较平衡的结构。此类带谱就是理想状态下的基本山地垂直带谱结构,其特点是垂直带类型多且带幅发育相对均匀。太白山海拔高达3767 m,保证了区域气候林线(3400 m)[42]的发育。也就是说,太白山发育了完整的暖温带山地垂直带谱。如果山体没有达到可以发育区域气候林线的高度,则垂直带难以得到比较充分和平衡的发育,就会影响带谱结构,尤其是带幅,从而形成“残缺带谱”。绝大多数垂直带谱中,会出现一个或两个明显较宽的垂直带,可称为“优势垂直带”,带幅一般在800 m以上。优势垂直带出现在植物物种多样性最丰富的高度上,并发育与垂直带气候相适应的顶级群落(Climax Community)或典型群落(Typal Community),在其所处的垂直带谱中具有天然的物种优势和竞争强势,是形成优势带的根本原因。山地落叶阔叶林在秦岭中部的强势存在就是带谱完整性和优势垂直带共同作用的具体体现。

4 结论和讨论

秦岭中部太白山南、北坡的基带、优势垂直带和先锋性亚带均为落叶阔叶林,连续分布到海拔2800 m,形成具有3层结构、5个亚带的“超级垂直带”。这是目前世界上发现的带幅最宽的山地垂直带,是山地垂直带的一个极限案例。秦巴山地自然地理要素及综合体的多维过渡性、带谱的完整性、木本植物的多样性及其产生的竞争优势等多种因素的综合作用,是超级垂直带形成的主要原因。山地过渡性体现的维度越多,过渡性越复杂,过渡带就会越宽,在垂直方向上亦然。秦岭中部山地落叶阔叶林超级垂直带的发育和存在,是中国南北过渡带又一重要的标志性自然地理特征。

超级垂直带的发育表明了山地垂直带在山体高度合适、气候条件适中、物种丰富的背景下,垂直范围可以很大。但实际的山地垂直带带幅,绝大部分在400~800 m。这说明山地垂直带的发育受到相邻垂直带的挤压,或者说垂直带之间存在竞争,不同程度地压缩了垂直带的分布范围,相互之间达到了一种“挤压平衡”。也就是说,植物群落之间的竞争在垂直带谱结构形成中具有重要的作用。因而,研究垂直带谱结构,不仅仅要考虑垂直带的实际带幅、上下限及其与区域气候的关系,更要了解潜在带幅、植物竞争作用下达到的平衡状态下的带幅,才能全面系统地揭示山地垂直带谱结构及其形成机理。但如何确定植物竞争性的大小,特别是具有上下挤压关系的垂直带之间的竞争,还需要进一步探讨。

如前所述,秦岭中部山地落叶阔叶林从基带一直分布到2800 m。这就存在一个问题,基带与垂直带的界线如何划分?或者它们是否可以考虑为一个整体?秦岭北坡栓皮栎林被认为是基带的代表性优势种,是基带的重要标志,其上部分则认为是垂直带。基于这种传统认识,基带还是要清楚地划出,以便我们更深刻地认识山地垂直带谱的结构和复杂性。但这里的基带是亚带,而非独立的垂直带。太白山南北坡从基带到桦林,山地落叶阔叶林表现出连续分布,其群落组成虽然存在差异,但这属于带内结构分异问题,落叶阔叶林的完整性应该保持。

关于桦林在秦岭垂直带中的作用和地位,存在某些分歧。实地调查发现[34],太白山的桦林多为过熟林,林内更新状况较差,普遍不佳。从种群的年龄结构来看,桦林是一个消退种群,群落不稳定,将被云杉林、冷杉林取代[43-44];有些研究则认为桦林垂直分布区域就应被划作针叶林带[45];还有人将海拔2000~2650 m划分为松桦林亚带或山地针阔叶混交林带[46];与之相反,有人则认为桦林稳定,而将其单列划分为桦林带[45]。孢粉资料和群落学分析证实[43],桦林或以桦为优势的针阔叶混交林,地质时期和现代都可形成地带性(水平和垂直)森林,是凉温湿润气候的顶极植物群落。因此桦林可以作为暖温带落叶阔叶林和寒温带湿冷生针叶林的过渡地带,即凉温湿润气候的代表,其区系组成也是以典型落叶阔叶林和湿冷生针叶林的混合成分为特点。桦林稳定性在其他地区较弱,但在秦岭中部则比较稳定。从目前针叶树种在这一区域分布的广度上看, 称之为桦林带更为合适;而且为了使各植被带代表植被类型在分类级别上的一致,可以将该带称作中山落叶阔叶小叶林带[47]

从世界范围来看,桦林分布在山地针叶林附近,有些地方分布在针叶林之上,是形成林线的物种;有些地方则在针叶林之下。例如,白皮喜马拉雅桦(Betula utilis var. jacquemontii,与秦岭中部的糙皮桦同种)在巴基斯坦北部山地发育在山地针叶林之上,大约到海拔3700 m,是林线物种主要植物成分[12];在西伯利亚山地,扭桦(Betula tortuosa)至少在某些地方参与到了林线的形成[48-49];在斯堪的纳维亚山地,扭桦是先锋性的物种,所处高度上温度升高就会向上延伸[50];而在秦岭中部,红桦—糙皮桦并非高山林线的物种,而是发育在山地针叶林之下,与栎林直接衔接,这说明秦岭中部森林最上部有特殊的自然条件,针叶林比桦林更加适应这里的环境。桦林与针叶林的分布关系,除了植物物种本身的生态属性,环境的属性也十分重要,即满足桦林生长的温度和水分条件是否同步[51]

超级垂直带给予我们关于垂直带动态变化的启示。超级垂直带实质上就是垂直带的上、下界限扩展到或几乎扩展到极限的一种特殊情况。在气候变化的背景下,山地垂直带如何变化、超级垂直带上下界限附近的气候—植被关系,都会表明一种垂直带上升或下降的极限或可能性。换句话说,超级垂直带用扩展的“空间”来换取气候变化可能引起的垂直带或山地生态系统的动态变化。因而,超级垂直带涉及的科学问题还很广泛,值得我们去进一步深入研究。

超级垂直带的发现,对于山地垂直带谱结构理论的研究具有重要意义。它与Steenis提出的山地物种分布模型[52]一起,给人们展示了垂直带表象背后的内涵。山地垂直带的发育,既要有一定的海拔高度条件,也具有很大的潜力,但相邻垂直带之间群落中的物种竞争使得实际的垂直带宽度只能达到一种相互挤压后的相对平衡,形成我们可以看到的垂直带的实际分布。优势垂直带体现的是山地优势植被类型的强势表现,对其相邻垂直带都会产生挤压作用,对整个带谱结构具有较大影响。基带与典型垂直带之间,既存在实质的差异,又具有紧密的联系,在一定条件下出现趋同现象,进而连为整体。先锋性垂直亚带与典型垂直带,即使直接相接,也存在稳定性和归属问题,需要具体问题具体处理。山体高度与区域气候林线高度的相对关系影响带谱结构的完整性和带幅,秦岭太白山高于当地区域气候林线高度,形成暖温带山地完整垂直带谱结构的典范。超级垂直带的分析,使我们对于山地垂直带潜在与实际结构有了更加深刻的认识,并开拓了考虑问题的视野。这些认识都会有利于加快我们构建山地垂直带谱结构理论的步伐。

超级垂直带概念的提出,是对中国南北过渡带自然地理学性质科学认识的进一步深化;另一方面,更希望它的提出能够引申出更多的关于南北过渡带意义的研究,例如超级垂直带产生的气候基础、山地落叶阔叶林的生物多样性和特有性、秦岭山地垂直带动态变化、秦岭国家公园的生物—地理结构与科学保护等。以秦巴山地为主体的中国南北过渡带,需要认识、研究和挖掘的内容很多,科学突破的挑战仍然严峻,道路依旧漫长。超级垂直带概念的提出希望是一个新的“突破口”或“触发点”,从而推动中国南北过渡带的地理科学研究进入一个新的阶段,再上一个新的台阶。

参考文献

Rahbek C, Borregaard M K, Colwell R K, et al.

Humboldt's enigma: What causes global patterns of mountain biodiversity?

Science, 2019, 365(6458): 1108-1113.

DOI:10.1126/science.aax0149      PMID:31515383      [本文引用: 1]

Mountains contribute disproportionately to the terrestrial biodiversity of Earth, especially in the tropics, where they host hotspots of extraordinary and puzzling richness. With about 25% of all land area, mountain regions are home to more than 85% of the world's species of amphibians, birds, and mammals, many entirely restricted to mountains. Biodiversity varies markedly among these regions. Together with the extreme species richness of some tropical mountains, this variation has proven challenging to explain under traditional climatic hypotheses. However, the complex climatic characteristics of rugged mountain regions differ fundamentally from those of lowland regions, likely playing a key role in generating and maintaining diversity. With ongoing global changes in climate and land use, the role of mountains as refugia for biodiversity may well come under threat.Copyright © 2019, American Association for the Advancement of Science.

Whittaker R H.

Classification of natural communities

Botanical Review, 1962, 28(1): 1-239.

DOI:10.1007/BF02860872      URL     [本文引用: 1]

Whittaker R H.

Gradient analysis of vegetation

The Biological Reviews, 1967, 42(2): 207-264.

DOI:10.1111/j.1469-185X.1967.tb01419.x      URL     [本文引用: 1]

Daubenmire R.

Vegetation: Identification of typal communities

Science, 1966, 151(3708): 291-298.

PMID:17799976      [本文引用: 1]

Hemp A.

Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro

Plant Ecology, 2006, 184(1): 27-42.

DOI:10.1007/s11258-005-9049-4      URL     [本文引用: 1]

Bussmann R W.

Vegetation zonation and nomenclature of African Mountains: An overview

Lyonia, 2006, 11(1): 41-66.

[本文引用: 3]

Zhang Xinshi. The principle eco-geographic types of mountain vertical vegetation belt systems in China//Editorial Board of Vegetation Ecology Research. Research on Vegetation Ecology. Beijing: Science Press, 1994: 77-92.

[本文引用: 2]

[张新时. 中国山地植被垂直带的基本生态地理类型//植被生态学研究编辑委员会. 植被生态学研究. 北京: 科学出版社, 1994: 77-92.]

[本文引用: 2]

Peng Buzhuo, Chen Fu.

Progress in the study of mountain vertical zonation in China

Scientia Geographica Sinica, 1999, 19(4): 303-308.

[本文引用: 2]

[彭补拙, 陈浮.

中国山地垂直自然带研究的进展

地理科学, 1999, 19(4): 303-308.]

[本文引用: 2]

Li Bosheng.

The vertical spectra of vegetation in the Namjagbarwa region

Mountain Research, 1984, 2(3): 174-181.

[本文引用: 1]

[李渤生.

南迦巴瓦峰地区植被垂直带谱

山地研究, 1984, 2(3): 174-181.]

[本文引用: 1]

Nogués-Bravo D, Araújo M B, Romdal T, et al.

Scale effect and human impact on the elevational species richness gradients

Nature, 2008, 453(7192): 216-219.

DOI:10.1038/nature06812      URL     [本文引用: 1]

Huang Xichou. Structural types of temperate mountain vertical belts in the Eurasian Continent// The Geographical Society of China. Selected Papers of 1960 Geographic Symposium of China (Physical Geography). Beijing: Science Press, 1962.

[本文引用: 1]

[黄锡畴. 欧亚大陆温带山地垂直带结构类型//中国地理学会. 1960年全国地理学术会议论文选集(自然地理). 北京: 科学出版社, 1962.]

[本文引用: 1]

Miehe S, Miehe G. Vegetation patterns as indicators of climatic humidity in the Western Karakorum//Stellrecht I. Karakorum-Hindukush-Himalaya: Dynamics of Change, Part I. Köln: Rüdiger Koppe Verlag, 1998: 101-126.

[本文引用: 5]

Zheng D. A comparative study on the altitudinal belts in the Karakorum mountains//Stellrecht I. Karakorum-Hindukush-Himalaya: Dynamics of Change, Part I. Köln: Rüdiger Koppe Verlag, 1998: 127-144.

[本文引用: 2]

Bach K, Gradstein S R.

A comparison of six methods to detect altitudinal belts of vegetation in tropical mountains

Ecotropica, 2011, 17(1): 1-13.

[本文引用: 1]

Zhang Baiping, Yao Yonghui. Study on Mass Elevation Effect. Beijing: China Environment Science Press, 2015.

[本文引用: 1]

[张百平, 姚永慧. 山体效应研究. 北京: 中国环境科学出版社, 2015.]

[本文引用: 1]

Zhang Baiping, Tan Jing, Yao Yonghui, et al. The Geo-info-spectrum of Montane Altitudinal Belts. Beijing: China Environment Science Press, 2009.

[本文引用: 1]

[张百平, 谭靖, 姚永慧, . 山地垂直带信息图谱研究. 北京: 中国环境科学出版社, 2009.]

[本文引用: 1]

van Steenis C G G J.

On the origin of the Malaysian mountain flora

Bulletin du Jardin Botanique Buitenzorg III, 1935, 13: 289-417.

[本文引用: 1]

Li Bosheng, Li Lu.

Namjagbarwa: The most complete vertical spectra of vegetation in China

Forest & Humankind, 2015(2): 34-35.

[本文引用: 1]

[李渤生, 李路.

南迦巴瓦: 中国最完整的森林垂直带谱

森林与人类, 2015(2): 34-35.]

[本文引用: 1]

Yang Biao, Fan Min, Zhou Huaming.

Mt. Gongga: From evergreen broad-leaved forest to plant exclusion zone

Forest & Humankind, 2015(2): 66-71.

[本文引用: 1]

[杨彪, 范敏, 周华明.

贡嘎山: 从常绿阔叶林到植物禁区

森林与人类, 2015(2): 66-71.]

[本文引用: 1]

Hemp A.

Vegetation of Kilimanjaro: Hidden endemics and missing bamboo

African Journal of Ecology, 2006, 44(3): 305-328.

DOI:10.1111/j.1365-2028.2006.00679.x      URL     [本文引用: 1]

Peet R K.

Latitudinal variation in southern Rocky mountain forests

Journal of Biogeography, 1978, 5(3): 275-289.

DOI:10.2307/3038041      URL     [本文引用: 1]

Zhang B P, Zhao F.

Altitudinal belts:Global mountains, patterns, and mechanisms

//Wang Y Q. Terrestrial Ecosystems and Biodiversity. Boca Raton: CRC Press, 2020: 339-347.

[本文引用: 1]

Yoshino M M.

Altitudinal vegetation belts of Japan with special reference to climatic conditions

Arctic & Alpine Research, 1978, 10(2): 449-456.

[本文引用: 1]

Lei Mingde. Vegetation of Shaanxi. Beijing: Science Press, 1999.

[本文引用: 1]

[雷明德. 陕西植被. 北京: 科学出版社, 1999.]

[本文引用: 1]

Hu Ruji. Physical Geography of Tianshan Mountains, China. Beijing: China Environment Science Press, 2004.

[本文引用: 2]

[胡汝骥. 中国天山自然地理. 北京: 中国环境科学出版社, 2004.]

[本文引用: 2]

Yahner R H. Eastern Deciduous Forest:Ecology and Wildlife Conservation. Minnesota: University of Minnesota Press, 1995.

[本文引用: 1]

Box E O, Fujiwara K.

Warm-temperate deciduous forests:concept and global overview

//Box E O, Fujiwara K. Warm-Temperate Deciduous Forests around the Northern Hemisphere. New York: Springer, 2015: 7-26.

[本文引用: 1]

Xie Zongqiang, Shen Guozhen, Zhou Youbing, et al.

The outstanding universal value and conservation of the Shennongjia World Natural Heritage Site

Biodiversity Science, 2017, 25(5): 490-497.

DOI:10.17520/biods.2016268      [本文引用: 1]

World Natural Heritage site is recognized globally as the pinnacle of natural protected areas that are the cornerstones of biodiversity conservation. The World Natural Heritage of Shennongjia represents one of the worldwide biodiversity hotspots. But, until now, it has not been clear how outstanding the universal value of Shennongjia is worldwide, and this study presents one of the most compelling challenges to conservation efforts. Here, we compiled literature and conducted additional field surveys in the Shennongjia region to illustrate the outstanding universal value of Shennongjia World Natural Heritage Site using World Heritage criteria (ix) and (x), following the operational guidelines for the implementation of the World Heritage Convention. Results show that the heritage of Shennongjia offers an outstanding example of the ongoing ecological processes occurring in the development of intact subtropical mixed broad-leaved evergreen and deciduous forests in the Northern Hemisphere. This region presents a typical example of mountain altitudinal biological zones in the Oriental Deciduous Forest Biogeographical Province. Shennongjia is also a vital origin location for global temperate flora, and harbors the highest concentration of global temperate genera of trees. Moreover, the heritage of Shennongjia displays exceptional biodiversity and is a key habitat for numerous relic, rare, endangered and endemic species. The richness of deciduous woody species in Shennongjia is the highest in the world. Our study provides great insight into protecting, monitoring and managing the outstanding world heritage in the Northern Hemisphere.

[谢宗强, 申国珍, 周友兵, .

神农架世界自然遗产地的全球突出普遍价值及其保护

生物多样性, 2017, 25(5): 490-497.]

DOI:10.17520/biods.2016268      [本文引用: 1]

自然保护地是生物多样性及其生物生态过程保护的最有效手段, 世界自然遗产地是全球最具有保护价值的自然保护地。神农架世界自然遗产地以其丰富的动植物多样性和独特的生物生态过程, 维持着北亚热带山地生态系统的功能和稳定性。目前, 尚缺乏对神农架世界自然遗产地全球突出普遍价值的深入研究和论证, 仍不清楚其突出普遍价值及其在全球的代表性。本研究在收集整理神农架历史文献资料的基础上, 基于对神农架地区长达近20年的调查研究和数据积累, 依据“实施《世界遗产公约》操作指南”, 从动植物多样性及其栖息地、生物群落及其生物生态学过程等方面, 分析论证了神农架世界自然遗产地的全球突出普遍价值。神农架保存了完好的原始常绿落叶阔叶混交林, 典型代表并展示了北半球常绿落叶阔叶混交林生态系统的生物生态学过程, 拥有北亚热带典型的山地垂直自然带谱, 在东方落叶林生物地理省具有唯一性和代表性; 是温带植物区系分化、发展和集散的重要地区和世界上落叶木本植物最丰富的地区, 突出反映了北亚热带生物群落的生物进化与演替的进程; 是众多古老孑遗物种的避难所, 也是国际珍稀濒危物种和中国特有种的重要栖息地。研究结果表明, 神农架世界自然遗产地在生物多样性、生态系统类型、生物演化等方面为全球同纬度杰出代表。本研究明确了神农架世界自然遗产地在全球背景下的突出普遍价值, 为科学合理地监测和保护全球同纬度地区北亚热带生物多样性和生态系统功能提供了科学依据。

Nakashizuka T, Matsumoto Y. Diversity and Interaction in A Temperate Forest Community:Ogawa Forest Reserve of Japan. Berlin: Springer, 2002.

[本文引用: 1]

Sayre A P. Temperate Deciduous Forest. New York: Twenty-First Century Books, 1994.

[本文引用: 1]

Braun E L. Deciduous Forests of Eastern North America. New York: Macmillan, 1950.

[本文引用: 1]

Shen Zehao, Hu Huifeng, Zhou Yu, et al.

Altitudinal patterns of plant species diversity on the southern slope of Mt. Shennongjia, Hubei, China

Biodiversity Science, 2004, 12(1): 99-107.

DOI:10.17520/biods.2004012      [本文引用: 1]

The southern slope of Mt. Shennongjia has long been viewed as an important boundary for China's vegetation regional division. In order to explore the altitudinal patterns of plant species diversity in this area, we sampled 50 plots along an altitudinal gradient on the southern slope. Species richness, intensity of flora differentiation, floristic composition and life forms were analyzed. Quantitative classification and DCA ordination were also applied to the sample plots. Major results were: (1) the vertical vegetation spectrum was evergreen broadleavee forest (below 900-1000 m a.s.l.), mixed deciduous and evergreen broadleaved forest (1000-1700 m), deciduous forest (1600-2100 m), mixed coniferous and deciduous forest (2000-2400 m), and subalpine coniferous forest (above 2300 m a.s.l.). (2) Evergreen and deciduous broadleaved tree species were almost equivalent in quantity and importance values in the basal vegetation zone. (3) The altitudinal pattern of plant species diversity showed a unimodal pattern, peaking at 1400-1500 m a.s.l. Mixed forest types have relatively higher α diversity and more intensive flora differentiation than the other types. (4) Temperate plants dominated the flora. With an increase of elevation, the number of cosmopolitan genera increased, while subtropical types and East Asian types decreased. Chinese endemic genera were limited to the area below 2000 m a.s.l. (5) Species richness of pteridophytes decreased with increasing elevation, while that of woody plants peaked in mixed evergreen and deciduous forest. Species richness of herbaceous did not correlate with elevation.

[沈泽昊, 胡会峰, 周宇, .

神农架南坡植物群落多样性的海拔梯度格局

生物多样性, 2004, 12(1): 99-107.]

DOI:10.17520/biods.2004012      [本文引用: 1]

神农架南坡在我国植被区划中具有十分重要的意义。在神农架南坡沿海拔梯度设置50个样方进行植物物种多样性调查,通过对样方的数量分类和DCA排序,结合物种丰富度、区系分化强度、区系成分和生活型神农架, 垂直, 植被带谱, 多样性, 区系成分, 生活型构成等方面的分析,研究神农架南坡植物物种多样性的垂直格局。结果表明: (1)神农架南坡的植被垂直带谱为: 海拔900-1000 m以下为常绿阔叶林; 1000-1700 m为常绿落叶阔叶混交林; 1600-2100 m为落叶阔叶林; 海拔2000-2400 m为针阔叶混交林; 海拔2300 m以上为暗针叶林。(2)植被基带群落中,在物种数量、区系成分和重要值方面,常绿和落叶阔叶树种所占的比例都相差无几。(3)植物多样性的垂直格局基本符合“单峰”模式。峰值出现在海拔1400-1500 m; 但混交林类型的多样性和区系分化强度较高。(4)在植物区系中,温带成分处于主导地位; 世界广布属的比例随海拔上升而增加; 而中国特有属仅见于海拔2000 m以下。亚热带成分和东亚区域性区系成分都随海拔上升而减少,峰值都位于山地常绿落叶阔叶混交林。(5)蕨类植物丰富度随海拔上升而减小; 草本植物丰富度与海拔高度之间没有呈现显著的相关关系; 木本植物丰富度总体沿海拔梯度减少,但峰椎处于常绿落叶阔叶林带。针阔混交林样方的平均木本物种数也超过落叶阔叶林带。

Liu Shen'e. Zonation of forest plant in Mt. Taibai//Yu Ba. Selected Papers of Liu Shen'e. Beijing: Science Press, 1985: 74-85.

[本文引用: 1]

[刘慎谔. 太白山森林植物之分带//于拔.刘慎谔文集. 北京: 科学出版社, 1985: 74-85.]

[本文引用: 1]

Fu Zhijun, Guo Junli.

The characters of community on the vegetation of the Taibai Mountain in the Qinling

Journal of Baoji Teacher College (Natural Science), 1992(1): 70-75.

[本文引用: 2]

[傅志军, 郭俊理.

秦岭太白山植被的群落特征

宝鸡师范学院(自然科学版), 1992(1): 70-75.]

[本文引用: 2]

Wang J, Zhang B P, Yao Y H.

The spatial pattern of the upper limit of montane deciduous broad-leaved forests and its geographical interpretation in the east monsoon realm of China

Forests, 2021, 12(9): 1225. DOI: 10.3390/f12091225.

[本文引用: 1]

Fang Jingyun.

Re-discussion about the forest vegetation zonation in eastern China

Acta Botanica Sinica, 2001, 43(5): 522-533.

[本文引用: 1]

[方精云.

也论我国东部植被带的划分

植物学报, 2001, 43(5): 522-533.]

[本文引用: 1]

Beals E W.

Vegetational change along altitudinal gradients: Studies in Ethiopia show that discreteness of zonation varies with steepness of slope

Science, 1969, 165(3897): 981-985.

PMID:17791022      [本文引用: 1]

Sha W Y, Shao X M, Huang M.

Climate warming and its impact on natural regional boundaries in China in the 1980s

Science in China Series D: Earth Sciences, 2002, 45(12): 1099-1113.

DOI:10.1360/02yd9107      URL     [本文引用: 1]

Zhang Baiping.

Ten major scientific issues concerning the study of China's north-south transitional zone

Progress in Geography, 2019, 38(3): 305-311.

DOI:10.18306/dlkxjz.2019.03.001      [本文引用: 1]

Since the Qinling-Huaihe line was delimited as the boundary between north and south China in 1958, discussions on the local position of the line, criteria for dividing temperature zones, the line's environmental effect, among others, are ongoing. The National Basic Resources Investigation Program "Integrated Scientific Investigation of the North-South Transitional Zone" launched in 2017, introduced the concept of north-south transitional zone (Qinling-Daba Mountains) and planned to explore the north-south dividing line from the perspective of transitional zone, so as to strengthen and make some breakthroughs in the study of the north-south division. The Qinling-Daba Mountains are the main body of China's north-south transitional zone, with multi-dimensional zonal structures and high degree of environmental complexity, biological diversity, and climatic sensitivity. The following 10 scientific issues need to be dealt with in the years to come: 1) The relationship between the north-south dividing line and the north-south transitional zone; 2) improvement of criteria for identifying subtropical and warm-temperate zones; 3) integral north-south series and variation of vegetation and soil types; 4) relationship between global warming and spatial change of key bioclimatic criteria; 5) decomposition and integration of multi-dimensional zonal structures in the Qinling-Daba Mountains; 6) pattern and mechanism of biological diversity and endemics; 7) the corridor effect of the Qinling-Daba Mountains; 8) regional environmental effect of the Qinling-Daba Mountains and implications for the national ecological security; 9) significance and position of the Qinling-Daba Mountains for the history and development of China; and 10) significance of the geographic structure of Western Qinling Mountains for the origin of the Chinese civilization. These key issues are not only the results of previous research, but also the starting point for further exploration and study in the future. They are intended to inspire and encourage an in-depth study of China's north-south dividing line or transitional zone, and to provide new perspectives and framework for the exploration of physio-geographic theories, biodiversity, and ecological security, and even the birthplace of the earliest Chinese civilization.

[张百平.

中国南北过渡带研究的十大科学问题

地理科学进展, 2019, 38(3): 305-311.]

DOI:10.18306/dlkxjz.2019.03.001      [本文引用: 1]

秦岭-淮河一线在60 a前被科学地确定为中国南北分界线。此后中国地学科学家一直在探索分界线的具体位置和划分指标改进问题;随着数据的积累和认识的加深,还发现了一些新的科学问题。2017年启动的国家科技基础资源调查专项“中国南北过渡带综合科学考察”将秦岭-大巴山定义为中国南北过渡带的主体,拟全面系统地调查和研究其自然地理要素与资源问题,从而实现中国南北分界线研究的全面深化和突破。秦岭-大巴山具有多维地带性结构,表现出高度的过渡性、复杂性、多样性和敏感性。目前面临和需要研究的主要科学问题包括:① 南北分界线与南北过渡带的关系?② 暖温带与亚热带划分指标如何改进?③ 植被-土壤在南北方向上的渐变序列及其形成机理?④ 全球变化与地区关键生物气候指标空间变动的关系?⑤ 秦巴山地的多维地带性结构如何分解与综合?⑥ 秦巴山区生物多样性、特有性的格局与机理?⑦ 秦巴山地东西向廊道效应?⑧ 秦巴山地的区域环境效应及对国家生态安全的意义?⑨ 秦巴山地在中国历史发展中的特殊意义?⑩ 西秦岭的地理结构与华夏文明起源的关系?这些问题既是过去研究工作和认识的总结,也是未来一段时间内需要关注和研究的重点。希望这样的归纳和梳理对于中国南北过渡带和南北分界线的科学研究具有一定的启发和促进作用,为中国自然地理学理论发展、生物多样性和生态安全研究,甚至为华夏文明起源的研究提供新的视角和框架。

Yu Fuqin, Zhang Baiping, Wang Jing, et al.

Suggestions for the Qinling National Park construction based on experiences of international large-scale ecological corridors

Journal of Natural Resources, 2021, 36(10): 2478-2490.

DOI:10.31497/zrzyxb.20211003      URL     [本文引用: 1]

[余付勤, 张百平, 王晶, .

国外大尺度生态廊道保护进展与秦岭国家公园建设

自然资源学报, 2021, 36(10): 2478-2490.]

[本文引用: 1]

Yuan Rongbin, Ye Cen, Chen Haiying, et al.

Huanggang Mountains: Six altitudinal belts in a vertical range of 1000 m

Forest & Humankind, 2015(2): 56-59.

[本文引用: 1]

[袁荣斌, 叶岑, 陈海婴, .

黄岗山: 1 km高差, 6个植被带

森林与人类, 2015(2): 56-59.]

[本文引用: 1]

Zhao Fang. Quantification of mass elevation effect based on theoretical distribution of altitudinal belts[D]. Beijing: Institute of Geographic Sciences and Natural Resource Research, CAS, 2015.

[本文引用: 1]

[ 赵芳. 基于理想状态山地垂直带界限分布的山体效应定量化研究[D]. 北京: 中国科学院地理科学与资源研究所, 2015.]

[本文引用: 1]

Zhu Zhicheng.

Stability of the Betula forest in Mt. Taibai of the Qinling Mountain range

Journal of Wuhan Botanical Research, 1991, 9(2): 169-175.

[本文引用: 2]

[朱志诚.

秦岭太白山桦林的稳定性

武汉植物学研究, 1991, 9(2): 169-175.]

[本文引用: 2]

Fu Zhijun, Guo Junli.

Preliminary study of Betula Albo-Sinensis forest in Mt. Taibai

Acata Phytoecologica Sinica, 1994, 18(3): 261-270.

[本文引用: 1]

[傅志军, 郭俊理.

太白山红桦林的初步研究

植物生态学报, 1994, 18(3): 261-270.]

[本文引用: 1]

红桦(Betula albo-sinensis)林是太白山森林植被的重要类型,在山地植被垂直带谱中成为落叶阔叶林带的一个亚带,南坡分布于海拔1950—2650m,北坡分布于海拔2200—2750m。 太白山红桦林可分为7个类型: Ⅰ红桦+辽东栎林,Ⅱ红桦+辽东栎+华山松林,Ⅲ红桦 +华山松林,Ⅳ红桦纯林,Ⅴ红桦+华山松+牛皮桦林,Ⅵ红桦+牛皮桦+巴山冷杉林,Ⅶ红桦 +牛皮桦林。随着海拔高度的升高,红桦林各类型依次有规律的分布,但红桦始终占据优势地位,并有着相对稳定的结构组成。红桦林以高大粗壮的红桦个体为主,林内更新苗较少,天然更新状况普遍不良。优势种群(红桦)年龄分析表明,红桦种群为衰退种群。红桦种群的衰退特征反映出红桦林的消退发展趋势。 目前本区红桦林多属成熟林或过熟林,应加强人工更新。

Geography Department of Shaanxi Normal University. The Annals of Geography:Ankang District of Shaanxi. Xi'an: Shaanxi People's Press, 1986: 364-379.

[本文引用: 2]

[陕西师范大学地理系. 陕西安康地区地理志. 西安: 陕西人民出版社, 1986: 364-379.]

[本文引用: 2]

Liu Huaxun.

The vertical zonation of mountain vegetation in China

Acta Geographica Sinica, 1981, 36(3): 267-279.

DOI:10.11821/xb198103003      [本文引用: 1]

On account of vast territory and complex physico-geographical conditions as well aagreat human impacts, the distribution of mountain vegetation in China is very compli-cated. Yet, law of zonation still holds true. The structure and character of mountainvegetation change along two directions, i.e., from south to north and from east to west.In the eastern part of China altitudinal vegetation-belt spectrums change mainlyfrom south to north.1. Warmth-like types of altitudinal vegetation-belt spectrums being replaced bycold-resistant types with alternation of basic vertical vegetational belts from evergreenbroad-leaved forests to deciduous needle-leaved forests.2. Diminution of number of altitudinal belts and simplification of their structures.3. Lowering down of altitudes of altitudinal vegetational belts. On mountains inwestern part of subtropical zone lies the highest altitude of timberline in the world, witha maximum altitude of over 4,400 m above the sea level. It lowers down towards northby over 100 m per degree of latitude.4. Occurrence of dominant belts in vertical profiles of mountain vegetation de-pends upon the nature of horizontal zones. The dominant belts in typical geographicalzones are certainly the basic vertical vegetational belts. And in transitional zones theyoccur above the basic vertical belts.While in the arid and semi-arid western part of China, changes of altitudinal vege-tation-belt spectrums are quite different. They take place chiefly from east to west. Itis worthwhile mentioning that structures of vegetation-belt spectrums are very simpli-fied, steppes and deserts occupy the dominant position on mountains and all altitudinalvegetational belts ascend in this direction.

[刘华训.

我国山地植被的垂直分布规律

地理学报, 1981, 36(3): 267-279.]

DOI:10.11821/xb198103003      [本文引用: 1]

地球上植被的大型分布,明显地呈现地带性变化。平地上表现为水平地带性,包括纬度地带性和干燥度地带性;山地上表现为垂直(地)带性,就是所谓“三维空间”分布现象。我国地广山多,自然条件复杂,研究山地植被的分布规律不但具有理论意义,而且也富有实践意义。

Yue Ming, Dang Gaodi, Gu Tianqi.

Vertical zone spectrum of vegetation in Foping national nature reserve and the comparison with the adjacent areas

Journal of Wuhan Botanical Research, 2000, 18(5): 375-382.

[本文引用: 1]

[岳明, 党高弟, 辜天琪.

佛坪国家级自然保护区植被垂直带谱及其与邻近地区的比较

武汉植物学研究, 2000, 18(5): 375-382.]

[本文引用: 1]

Sedelnikov V P.

Alpine Vegetation of the Altai-Sayan Mountain Region

Novosibirsk: Nauka, 1988.

[本文引用: 1]

Petrov I A, Golyukov A S, Shushpanov A S, et al.

The impact of climate change on Betula tortuosa Ledeb. Radial increment on the eastern macroslope of Kuznetsk Alatau

BIO Web of Conferences, 2019, 16: 00025. DOI: 10.1051/bioconf/20191600025.

URL     [本文引用: 1]

Kullman L.

Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973-2005: Implications for tree line theory and climate change ecology

Journal of Ecology, 2007, 95(1): 41-52.

DOI:10.1111/j.1365-2745.2006.01190.x      URL     [本文引用: 1]

Wang Xiaodong, Liu Huiqing.

Water and heat changes of Betula ermanii treeline on northern slope of Changbai Mountains

Progress in Geography, 2011, 30(3): 313-318.

DOI:10.11820/dlkxjz.2011.03.008      [本文引用: 1]

The treeline of <em>Betula ermanii</em> population had an obviously expanding trend on the northern slope of the Changbai Mountains in recent 50 years. In order to examine the changing mechanism of treeline, in this study, based on the data from Tianchi meteorological station (2624 m altitude) regarded as a referencing site (1953-2007) and the air temperature field measurement, using two eco-climatic preferences which were warmth index (WI) and humid index (HI), the ecotone boundary between <em>Betula ermanii</em> and tundra on the northern slope of the Changbai Mountains was determined by assurance ratio. The results were calculated by using the thresholds at 16 ℃&middot;month and 68.8 mm/℃&middot;month, and they showed that the two treelines were at 1975-2460 m and 1584-2231 m respectively. The interaction influence of WI and HI changes on treeline was not significant (p>0.05). There was a significant negative correlation between WI and HI change (p<0.01). In addition, there was a negative correlation between two treelines changes (r = -0.11<0). The results of correlation and interaction analysis indicated that the two treelines were unable to reach their potential height due to the asynchronous changes of heat and water. Therefore, the range of <em>Betula ermanii</em> treeline was estimated to be 1975-2231 m. The wavelike rise in <em>Betula ermanii</em> treeline (slope was positive, R<sup>2</sup> <0.8) was discussed by trend and wavelet analyses. The fluctuation process was simple in lower treeline (the characteristic of catastrophe point). However, the complex fluctuation process in upper treeline indicated that fluctuation of treeline shift increased owing to large stresses.

[王晓东, 刘惠清.

长白山北坡岳桦林线变动的水热条件分析

地理科学进展, 2011, 30(3): 313-318.]

DOI:10.11820/dlkxjz.2011.03.008      [本文引用: 1]

近50 年来长白山北坡林线种群呈现明显的扩张态势。为揭示林线变动机制,本文以长白山天池气象站的气象数据(1953-2007 年)为基础,结合野外的气温观测,以温暖指数(WI)及湿润指数(HI)为生态气候指标,以16℃&middot;月和68.8 mm/℃&middot;月为阈值,通过数据保证率的计算推测55 年来长白山北坡岳桦林线的水热条件变化。结果表明:以WI 和HI 指标确定的林线位置分别在1975 ~ 2460 m和1584 ~ 2231 m。WI 与HI 变化对林线高度变动影响的交互作用不显著(p>0.05),WI 与HI 变化呈显著负相关(pr=-0.11<0),交互作用和相关分析结果显示水热条件的不同步变化使岳桦林线上侵不能达到各自的潜在高度,林线位置波动在1975 ~ 2231 m。林线上缘波动的复杂程度高于下缘,波动幅度与胁迫力的大小呈正相关。

van Steenis C G G J.

An attempt towards an explanation of the effect of mountain mass elevation

Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 1961, 64: 435-442.

[本文引用: 1]

/