地理学报, 2022, 77(7): 1701-1712 doi: 10.11821/dlxb202207009

黑土地保护与利用

玉米秸秆还田和有机配施提高黑土酸中和容量

姜勇,1,4, 张勇勇1, 李天鹏1, 王汝振1, 王聪1, 张玉革2, 高洪军3, 朱平3, 李慧,1

1.中国科学院沈阳应用生态研究所,沈阳 110016

2.沈阳大学环境学院,沈阳 110044

3.吉林省农业科学院农业环境与资源研究所,长春 130033

4.河北大学生命科学学院,保定 071002

Corn stalk return and manure amendment improve acid neutralizing capacity of a black soil in Northeast China

JIANG Yong,1,4, ZHANG Yongyong1, LI Tianpeng1, WANG Ruzhen1, WANG Cong1, ZHANG Yuge2, GAO Hongjun3, ZHU Ping3, LI Hui,1

1. Institute of Applied Ecology, CAS, Shenyang 110016, China

2. College of Environment, Shenyang University, Shenyang 110044, China

3. Institute of Agriculture Environment and Resources, Jilin Academy of Agricultural Sciences, Changchun 130033, China

4. School of Life Sciences, Hebei University, Baoding 071002, Hebei, China

通讯作者: 李慧(1977-), 博士, 研究员, 研究方向为土壤生态学。E-mail: huili@iae.ac.cn

收稿日期: 2021-11-4   修回日期: 2022-04-6  

基金资助: 中国科学院战略性先导科技专项(XDA28060304)
国家自然科学基金项目(31870441)
国家自然科学基金项目(32071563)

Received: 2021-11-4   Revised: 2022-04-6  

Fund supported: Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28060304)
National Natural Science Foundation of China(31870441)
National Natural Science Foundation of China(32071563)

作者简介 About authors

姜勇(1968-), 博士, 研究员, 研究方向为土壤化学和农业生态学。E-mail: jiangyong@iae.ac.cn

摘要

长期施用化肥导致农田黑土酸化、盐基离子耗竭、养分失衡及作物重金属污染等诸多问题。本文依托吉林公主岭国家黑土肥效监测基地25 a的施肥试验,研究了不施肥对照(C)、N、NP、NK、PK、NPK、厩肥—化肥配施(MNPK)、玉米秸秆还田(SNPK)等8个施肥处理对土壤酸中和容量(ANC)的影响,N、P、K施用量分别为165 kg hm-2 a-1、36 kg hm-2 a-1、68.5 kg hm-2 a-1,MNPK和SNPK处理与NPK处理为等N量。结果表明,施化肥导致表土pH下降0.37~1.39,MNPK和SNPK处理分别提高土壤pH值0.21和0.53。以pH 5.0为参比,N、NP、NK、PK、NPK各处理的酸中和容量ANCpH 5.0分别为对照的42.85%、61.79%、54.05%、82.26%、63.68%;MNPK处理的ANCpH 5.0是对照的1.86倍;加酸160 mmol kg-1,SNPK处理的土壤pH值仅从7.65降至6.42,表现出极强的酸中和能力。SNPK和MNPK处理的土壤交换性盐基总量SEB分别是对照的1.37和1.14倍,土壤有机质SOM分别是对照的1.32和1.63倍,二者是提高土壤ANC主要原因。总之,有机物料添加显著提高了黑土抗酸化性能及土壤基础肥力水平,研究结果可为东北黑土区玉米秸秆还田保护性耕作及有机肥部分替代化肥实践提供长期试验的理论依据和数据支撑。

关键词: 黑土; 土壤肥力; 土壤酸化; 酸缓冲容量; 玉米秸秆还田; 有机肥

Abstract

Long-term application of chemical fertilizers can lead to soil acidification, basic cation depletion, nutrient imbalance and heavy metal pollution of crops in farmland of Black Soil regions. Based on a 25-year National Black Soil Fertilizer Efficiency Monitoring Experiment in Gongzhuling, Jilin Province, the effects of 8 different fertilization treatments on soil acid neutralizing capacity (ANC) was examined, including no fertilization (Control or C), N, NP, NK, PK, NPK, combination of farmyard manure with chemical fertilizers (MNPK), and corn stalk return (SNPK). The application rates of N, P and K were 165, 36 and 68.5 kg hm-2 a-1, respectively, and N input was the same among NPK, MNPK and SNPK treatments. Results showed that chemical fertilizer application decreased topsoil pH by 0.37-1.39, while MNPK and SNPK treatments increased soil pH by 0.21 and 0.53, respectively. Acid neutralizing capacity as soil pH dropped to 5.0 (ANCpH 5.0) of N, NP, NK, PK and NPK treatments was 42.85%, 61.79%, 54.05%, 82.26% and 63.68% of the Control, respectively, while the ANCpH 5.0 of MNPK treatment was 1.86 times of the Control. With 160 mmol kg-1 H+ addition, the pH of SNPK-treated soil only decreased from 7.65 to 6.42, showing an extremely strong acid neutralizing capability. Soil exchangeable base cations were 1.37 and 1.14 times, while soil organic matters were 1.32 and 1.63 times, in SNPK and MNPK treatments as much as that in the Control, respectively, which are two main factors in improving soil ANC. In brief, the addition of organic materials significantly improved the anti-acidification properties and soil basic fertility level of the black soil. The results could provide theoretical basis and data support with long-term experiment evidence for the practices of conservation tillage with corn stalk return and chemical fertilizers partly substituted by farm-yard manure in black soil regions of Northeast China.

Keywords: black soil; soil fertility; soil acidification; acid buffering capacity; corn stalk return; manure amendment

PDF (2407KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

姜勇, 张勇勇, 李天鹏, 王汝振, 王聪, 张玉革, 高洪军, 朱平, 李慧. 玉米秸秆还田和有机配施提高黑土酸中和容量. 地理学报, 2022, 77(7): 1701-1712 doi:10.11821/dlxb202207009

JIANG Yong, ZHANG Yongyong, LI Tianpeng, WANG Ruzhen, WANG Cong, ZHANG Yuge, GAO Hongjun, ZHU Ping, LI Hui. Corn stalk return and manure amendment improve acid neutralizing capacity of a black soil in Northeast China. Acta Geographica Sinica, 2022, 77(7): 1701-1712 doi:10.11821/dlxb202207009

1 引言

过量施肥和养分失衡导致的农田土壤酸化,已成为全球陆地生态系统结构和功能及世界粮食安全的主要威胁[1]。科学评估土壤酸化,要研究酸的强度因子(pH)和容量因子(酸中和容量,Acid-Neutralizing Capacity, ANC)[2]。土壤酸碱中和容量是土壤抵御酸碱变化,表征土壤质量和土壤肥力的重要指标,并对土壤的许多化学和生物化学过程产生重要影响[3]。土壤的ANC越大,其抵抗酸雨或酸沉降影响的能力就越强;土壤及灌溉水抗酸化的能力强,可为植物及土壤生物提供稳定健康的生长环境[4]。土壤ANC可表述为将一个酸碱体系的pH降低到某一参比pH时所需要强酸的量,农作物对酸较敏感,一般采用pH 5.0作参比[5]

土壤ANC的大小取决于土壤中酸缓冲物质的组成及含量,土壤pH不同,其所处的缓冲或酸中和体系不同,其主要的酸中和区间存在较大差别。土壤酸缓冲或酸中和体系包括:碳酸盐体系(pH>7.5)、交换性盐基和表面电荷交换体系(4.5<pH<7.5)、氧化铁铝体系(3.0<pH<5.0)等[6]。土壤有机质(SOM)在较宽泛的pH区间内均具有较高的ANC;土壤黏粒含量及胶体类型不同,土壤ANC会存在较大差异[7-8]。对于中国东北黑土区,土壤pH、交换性盐基及SOM含量等是影响其ANC的主导因子[9]

集约化生产条件下,中国农田土壤pH普遍下降,原因是氮、磷化肥的大量施用导致土壤中H+输入增加,高产的农作物吸收盐基而在土壤中生成大量H+[10-12]。东北黑土区长期高强度利用造成土壤负荷加重,土壤侵蚀和农用化学品高量投入造成局部土壤酸化[13-14]。吉林省黑土的研究发现,在2005—2016年间吉林省大部分地区的土壤pH下降0.5[15],而土壤pH的下降与阳离子交换量的降低高度吻合[14]。由于东北黑土酸化导致土壤盐基离子耗竭、铝和锰活性增强、营养元素失衡、作物重金属污染等诸多问题[16],土壤pH高、交换性盐基含量高、SOM含量高的土壤具有相对较高的土壤ANC[9,17],因此有必要对黑土农田pH、交换性盐基、ANC等与酸化相关的土壤变量进行系统研究。本文依托黑土肥力监测长期定位试验,提出如下科学假设:① 长期施用化学氮、磷肥,因氮、磷循环过程而导致土壤酸化和ANC下降;② 有机—无机配施和秸秆还田可增加土壤交换性盐基离子及SOM含量,从而可提高土壤pH和ANC;有机—无机配施的效果会优于秸秆还田。针对上述科学假设,拟解决的科学问题是,长期施用氮、磷化肥、有机肥及秸秆还田对土壤pH及土壤ANC的影响机制是什么?旨在通过本文,为东北黑土区施肥及保护性耕作实践提供长期试验的理论依据和数据支撑。

2 材料与方法

2.1 研究地点及实验设计

本文在吉林公主岭国家黑土肥力监测长期定位试验站进行(43°30´N, 124°48´E)。属温带大陆季风气候,年平均气温5.6 ℃,年均降水量594.8 mm,无霜期144 d,土壤类型为中层典型黑土,成土母质为第四纪黄土状沉积物[11]

1990年建立玉米(Zea mays L.)单作试验,包括12个处理:对照(不施肥)、仅施N肥、NP、NK、PK、NPK、MNPK、SNPK,以及MNPK(玉米—大豆轮作)、M1.5NPK、M2NPK、撂荒等4个处理。小区面积57.1 m×7 m,无重复。N、P、K用量分别为165 kg N hm-2 a-1、36 kg P hm-2 a-1、68.5 kg K hm-2 a-1,化肥品种为尿素(含N为46%)、(NH4)2HPO4(N、P含量分别为18%和20%)、过磷酸钙(含P为20%)、KCl(含K为50%);MNPK处理中M为厩肥23 t hm-2 a-1(猪粪、圈草等混合物,N、P、K、全C含量分别为5.0 g kg-1、1.75 g kg-1、4.1 g kg-1、190 g kg-1);SNPK处理中S为风干玉米秸秆7.5 t hm-2 a-1(N、P、K、全C含量分别为7.0 g kg-1、0.7 g kg-1、6.2 g kg-1、460 g kg-1)。厩肥、P、K及1/3的N肥作底肥,另2/3的N于玉米拔节前追施在表土下10 cm处,秸秆粉碎后于玉米拔节追肥后撒施在土壤表面。MNPK和SNPK处理与NPK处理为等N量[11]

试验开始时0~20 cm土层土壤SOM含量22.8 g kg-1,N、P、K全量分别为1.40 g kg-1、1.39 g kg-1、22.1 g kg-1,试验起始土壤pH值7.6。壤质黏土,土壤颗粒大小分布为2.0~0.2 mm占5.50%、0.2~0.02 mm占32.81%、0.02~0.002 mm占29.87%、< 0.002 mm占31.05%;土壤容重1.19 g cm-3,总孔隙度53.91%。除SNPK处理外,各处理的玉米秸秆在收获后均移出试验小区。每年秋季对土壤进行翻耕(深度15~20 cm),春季起垄播种玉米[11]

2.2 样品采集和土壤分析

2014年10月作物收获后,每小区3等份,各等份取3钻0~20 cm土层混合样品,风干,过2 mm 和0.149 mm筛备用。土壤有机C、全N采用Vario MACRO Cube元素分析仪(德国)测定。交换性Ca、Mg、K、Na用1 mol/L的NH4OAc(pH = 7)浸提,原子吸收分光光度计(AA-6880,日本Shimazu)测定。交换性盐基(K+、Na+、Ca2+、Mg2+)总量(SEB)采用一价离子等价加和法。土壤容重采用环刀采样体积称重法。土壤pH(土水比1∶2.5)采用数字pH计(Mettler, S210)测定[8]

土壤酸滴定曲线测定采用HNO3溶液[8]:称取各处理过2 mm筛的自然风干土壤7份,每份2.00 g,分别加入不同浓度HNO3溶液20 mL(土水比1∶10)。加酸梯度分别为:0 mol H+ kg-1、0.01 mol H+ kg-1、0.02 mol H+ kg-1、0.04 mol H+ kg-1、0.06 mol H+ kg-1、0.08 mol H+ kg-1和0.16 mol H+ kg-1土,150 r min-1震荡24 h后,于(25±2) ℃的恒温箱中静置,培养6 d后,取出震荡2 min,测定土壤溶液的pH,以酸添加量为横坐标,各处理土壤pH值为纵坐标,绘制土壤酸滴定曲线。土壤溶液pH采用数字pH计(Mettler, S210)测定[8]。不加HNO3处理的土壤溶液pH定义为初始pH。

2.3 计算与统计分析

酸滴定曲线最佳模拟方程是二次多项式[9,17]。以参比pH5.0计算土壤酸中和容量(ANCpH 5.0),

y=ax2+bx+c

式中:y为ANCpH 5.0,表示各试验处理经25 a后从实际pH降低到5.0时能够中和的酸量;c为初始pH,ab分别是二次项和一次系数。根据二次多项式,当土壤pH降低至5.0时的酸添加量(mmol H+ kg-1土)即为ANCpH 5.0。公式(1)中,令y = 5.0,根据二次多项式的求解公式(2),舍去冗余解,可得到ANCpH 5.0时的酸添加量x(mmol H+ kg-1土):

x=-b±b2-4ac2a

根据酸滴定曲线,可计算不同施肥处理下土壤样品的pH分别下降0.5和1.0时的ANC(mmol H+ kg-1土)。令公式(1)中y = 初始pH-0.5或y = 初始pH-1.0,根据2计算出ANC。

对照(C)处理的pH高于单独施化肥的5个处理,根据对照处理的综合模拟方程:

ycontrol=147.3x2-42.64x+6.841

计算出对照处理的pH下降到各施化肥处理pH时所中和酸量x(mmol H+ kg-1土)。用计算得到的x与0~20 cm土层土壤容量(g cm-3)的积,再乘以换算系数,可得到对照处理pH下降到各个施化肥处理pH时所能中和的总酸量(kmol H+ hm-2)。

数据统计分析采用SPSS 16.0 (SPSS, Inc., Chicago, IL, USA),采用单因素方差分析(one-way ANOVA)Duncan多重比较法比较各施肥处理间各变量的差异显著性(P < 0.05)。

3 结果与分析

3.1 土壤化学性质

3.1.1 土壤pH、交换性盐基总量及土壤有机质含量

施用化肥处理的土壤pH均显著低于对照,MNPK处理的土壤pH与对照无显著差异,而SNPK处理的土壤pH比对照提高了0.53(图1a)。与对照相比,添加N肥处理的土壤交换性盐基总量(SEB)显著降低,PK处理的SEB无显著变化,MNPK和SNPK处理的SEB分别增加了3.76 cmol+ kg-1和10.12 cmol+ kg-1,且SNPK处理显著高于MNPK处理(图1b)。NK和NPK处理下,土壤SOM含量显著增加,N、NP、PK处理SOM无显著变化,MNPK和SNPK处理的SOM分别增加了14.38 g kg-1和7.31 g kg-1图1c)。

图1

图1   不同施肥处理下土壤pH、交换性盐基总量(SEB)和土壤有机质(SOM)含量

注:图中数据为3次重复的平均值±标准差,不同字母表示处理间差异显著性(P < 0.05),下同。

Fig. 1   Soil pH, sum of exchangeable base cations and soil organic matter under different fertilization treatments


3.1.2 土壤交换性盐基含量及在盐基总量中的占比

NK和NPK处理显著降低了土壤交换性Ca含量,而MNPK和SNPK处理显著提高了交换性Ca含量(图2a)。PK和MNPK处理的交换性Mg含量显著提高,N或N与化肥配施对交换性Mg含量无显著影响,但SNPK处理的交换性Mg含量显著低于其他7个施肥处理(图2b)。NK、PK、MNPK、SNPK增加交换性K含量,N、NP、NPK处理降低交换性K含量(图2c)。土壤交换性Na含量在MNPK处理下显著增加(图2d)。

图2

图2   不同施肥处理下土壤交换性Ca2+、Mg2+、K+、Na+含量

Fig. 2   Soil exchangeable cations (Ca2+, Mg2+, K+, and Na+) under different fertilization treatments


不同施肥处理影响交换性盐基在SEB中的占比,Ca/SEB在SNPK处理中最高,在MNPK处理中最低,NPK处理的Ca/SEB低于对照,而其他4个施化肥处理的Ca/SEB无显著变化。MNPK处理的Mg/SEB最高,SNPK处理的Mg/SEB最低,NK、PK、NPK等3个施K肥处理的Mg/SEB亦显著增加。MNPK处理的K/SEB最高,单施N肥处理最低,施K可增加K/SEB,但SNPK处理的K/SEB与对照无显著差异。Na/SEB亦为MNPK处理最高,SNPK处理最低(表1)。

表1   不同施肥处理下土壤交换性盐基占盐基总量比(%)

Tab. 1  The percentage of exchangeable cations to SEB under different fertilization treatments(%)

处理Ca/SEBMg/SEBK/SEBNa/SEB
C88.27±2.68 b10.36±2.58 c1.15±0.09 de0.22±0.01 cd
N87.14±1.01 bc11.67±1.01 bc0.98±0.05 f0.22±0.01 cd
NP86.59±1.08 bc12.12±1.17 bc1.02±0.09 ef0.27±0.02 b
NK85.00±0.47 cd13.26±0.59 ab1.52±0.13 b0.23±0.00 c
PK85.02±0.80 cd13.34±0.82 ab1.37±0.06 bc0.27±0.02 b
NPK85.80±0.80 c12.69±0.64 ab1.23±0.10 cd0.28±0.00 b
MNPK83.45±0.73 d14.40±0.67 a1.67±0.09 a0.48±0.05 a
SNPK94.11±0.27 a4.64±0.24 d1.07±0.03 ef0.18±0.01 d

注:表中数据为3次重复的平均值±标准差,不同字母表示处理间差异显著性(P<0.05);SEB为交换性盐基总量。

新窗口打开| 下载CSV


3.2 土壤酸缓冲曲线和土壤酸中和容量

3.2.1 土壤酸缓冲曲线

各施肥处理土壤酸滴定曲线用二次多项式拟合的决定系数(R2)为最高。各施肥处理酸缓冲曲线中的初始pH大小依次为SNPK、MNPK、C、PK、NPK、NP、NK、N处理,在加酸160 mmol H+ kg-1并进行6 d培养后,各处理土壤溶液的pH平均值分别为6.42、4.48、3.68、3.54、3.39、3.39、3.29、3.37(与土壤溶液初始pH的总体趋势一致)。SNPK处理的酸缓冲曲线随H+添加量的下降幅度最缓,其次是MNPK处理(图3)。

图3

图3   不同施肥处理下表土酸缓冲曲线

Fig. 3   Acid buffering curve at the topsoil under different fertilization treatments


3.2.2 土壤酸中和容量

当土壤pH下降到5.0时,各施肥处理的ANCpH 5.0的大小依次为MNPK、C、PK、NPK、NP、NK、N处理,由于在加酸160 mmol H+ kg-1培养后,SNPK的pH为6.42,根据模拟方程,不能算出其ANCpH 5.0图4a)。对各施肥处理在初始pH基础上分别降低0.5和1.0的ANC进行计算,SNPK处理的ANC最高,MNPK与N处理次之,再次为NK处理,其他几个处理与对照无显著差异(图2b)。因为对照处理的初始pH显著高于5个施化肥处理,对对照处理降低到各施化肥处理的初始pH时的ANC进行计算,结果表明降至施N处理的ANC最大,其后依次为NK、NP、NPK、PK处理(图4c)。

图4

图4   不同施肥处理下表土的酸中和容量(ANC)

注:图a中ANCpH 5.0指各处理土壤pH降低到5.0时所需要添加的酸量;图c中ANC指对照土壤的pH下降到各施化肥处理的pH能够中和的土壤酸度。

Fig. 4   Acid-neutralizing capacity (ANC) at the topsoil under different fertilization treatments


3.3 土壤酸中和容量与土壤化学性质间关系

3.3.1 土壤酸中和容量与土壤性质间关系

对3.2.2中3种情景的土壤(ANC)与土壤化学性质进行相关分析,发现土壤ANCpH 5.0与土壤pH间符合二次多项式关系(图5a),与SOM、SEB、交换性Ca含量呈线性正相关(图5d、5g、5j)。对各处理pH下降0.5和1.0的ANC与土壤化学性质进行相关分析,ANC与土壤pH间关系符合二次多项式(图5b、5c),与SEB(图5h、5i)、交换性Ca(图5k、5l)呈线性正相关;土壤pH下降0.5和1.0的ANC与SOM间的关系中,SNPK处理具有较高的ANC及中等含量的SOM,而MNPK具有中等的ANC却含有较高的SOM,施化肥处理的ANC及SOM均处理中等以下水平(图5e、5f)。

图5

图5   土壤酸中和容量(ANC)与土壤pH、有机质、交换性盐基总量间关系

Fig. 5   Relationships of acid-neutralizing capacity (ANC) with soil pH, SOM, SEB and exchangeable Ca


3.3.2 土壤交换性盐基离子与土壤性质间关系

土壤交换性Ca、K、SEB与土壤pH呈线性正相关,交换性K与SOM量呈正相关(图6),MNPK、SNPK处理对各种交换性盐基含量影响存在较大差异,MNPK、SNPK处理下的交换性盐基离子及SEB在不同pH及SOM含量下具有高度的离散性(图6)。

图6

图6   土壤交换性盐基含量与土壤pH及有机质间关系

Fig. 6   Relationships of exchangeable base cation with soil pH and soil organic matter


4 讨论

4.1 长期施化肥降低土壤pH,有机物料添加提高土壤pH

研究表明,N、NP、NK、PK、NPK等5个单施化肥处理的初始pH均显著低于不施肥处理(图1a),主要原因是外源氮、磷肥的输入向土壤中输入了H+。本文中,氮、磷肥分别是尿素、磷酸氢二铵和过磷酸钙,3种化肥料添加到土壤中均具有致酸作用[3]。施入到土壤中的尿素氮,其水解及转化过程比较复杂,可以氨挥发、硝化—反硝化、淋溶和径流等途径损失一部分,因此要量化表征各种化学过程是十分困难的,但根据长期实验监测可以证明尿素氮具有显著的土壤酸化效应[16]。磷酸二铵是氮磷复合肥料,施入土壤中以后,可以短时间内把土壤pH提高到8.0左右,随后NH4+的硝化作用产生的酸很快抵消了初始的pH上升,长期施用(NH4)2HPO4具有显著的土壤酸化效应[3]。过磷酸钙是主要产物Ca(H2PO4)2·H2O和CaSO4的混合物,有8%~10%的S是以CaSO4的形式存在[3],肥料中的P、S在土壤中的转化亦产生H+,从而导致土壤酸化[17]

关于农业生产与田间管理对土壤酸化的影响,主要是施肥、淋溶作用、作物收获导致土壤系统的净质子输入,从而表现为土壤pH降低[10,12]。如Guo等[10]的研究表明,中国农田系统每年由氮循环输入到土壤中的H+为20~221 kmol hm-2,作物吸收盐基产生的H+为15~20 kmol hm-2,相对而言,酸沉降贡献的H+仅为0.4~2.0 kmol hm-2。因此,长期施用化学氮、磷肥因土壤—植物系统氮、磷循环而导致农田土壤酸化的假设成立。

本文有机无机配施(MNPK)和秸秆还田(SNPK)处理的土壤pH显著高于5个施化肥处理,SNPK处理的pH还显著高于对照。与假设不同的是,秸秆还田对土壤pH的正效应高于有机无机配施(图1a)。有机物料添加提升土壤pH的机制是向土壤中输入了盐基,而北方地区玉米秸秆和有机肥中盐基元素含量均较高,长期有机肥投入可有效弥补农产品输出的盐基,从而对维持或提高土壤pH具有显著的促进作用[18]。东北地区黑土、棕壤及一些石灰性土壤区,有机物料还田一般有利于土壤pH的提高[11,13]

有机物料改良土壤酸度的效应受物料属性及土壤性质决定,不同植物材料具有不同的碱度,碱度高的有机物料一般对土壤pH提高具有正向效应[18]。一些含N较高的有机物料在短期内可提高土壤pH,但由于硝化作用的影响,长期添加会导致土壤酸化[19]。如太湖地区26 a的黄泥土稻田尿素与水稻秸秆配施处理导致土壤pH显著下降,其pH甚至低于单施尿素处理[20];湖南省望城县32 a的红壤性水稻土稻草还田与NPK肥配施试验亦降低土壤pH[11]。不过,亦有一些酸性土壤作物秸秆还田抑制土壤酸化的研究案例[21]

施肥对土壤的酸化速率和强度的影响取决于肥料品种、土壤条件、作物生产及管理水平[3-4,12]。如某种肥料施入到砂质土壤上可能5 a会发生酸化,施入粉壤质土壤上可能10 a发生酸化,施入到黏壤质土壤上则可能是15 a或更长时间才开始发生酸化,这取决于土壤酸缓冲容量或酸中和容量(ANC)的大小[3]

4.2 长期施N降低交换性盐基含量,有机物料添加提高土壤交换性盐基和有机质含量

土壤交换性SEB在含有N肥的化学肥料添加处理中显著下降,其中NK处理的SEB最低,而PK处理与对照相比SEB无显著变化,有机—无机配施和秸秆还田处理SEB显著提高(图1b)。长期施肥还改变了交换性盐基离子组成及其在SEB中的占比(图2表1)。施N导致土壤交换性盐基含量降低的主要机理是,土壤酸化导致盐基的淋溶损失[22],施N增加植物生物量而输出更多的盐基元素[23]

在中国北方地区,添加有机物料一般对土壤交换性盐基具有正效应。施用有机肥增加土壤中盐基的输入[24],外源添加生物炭[25]或通过植被构建提高土壤SOM[26],从而显著提高土壤交换性盐基离子含量。本文中,土壤SOM含量在有机—无机配施和秸秆还田处理中均显著提高(图1c),土壤交换性Ca及SEB总量的增加与土壤SOM含量的提高具有较好的对应关系,但与假设不同的是秸秆还田对增加土壤交换性盐基的效应优于有机—无机配施(图6)。本试验样地玉米秸秆中具有较高的Ca含量(6~9 g kg-1),长期秸秆还田导致土壤交换性Ca含量显著增高。另外,玉米秸秆Mg含量在秸秆还田(SNPK)处理(1.89 g kg-1)及NPK、MNPK处理中显著低于NP(3.13 g kg-1)及N、NK、PK处理,虽然SNPK处理土壤全Mg含量与其他处理无显著差异,但由于土壤较高的交换性Ca/Mg抑制了玉米对Mg的吸收,较高的生物产量吸收了交换性Mg,这些应当是SNPK处理中交换性Mg含量最低(图2b)的原因。有机—无机配施(MNPK)处理的交换性Ca含量仅低于SNPK处理,而交换性Mg、K、Na及SOM等都是8个处理中含量最高的(图2),主要原因可能与有机肥本身的高盐基含量及SOM含量增加提高了土壤对盐子离子的吸附有关[4]

有机—无机配施和秸秆还田处理均显著提高了土壤SOM含量,但有机—无机配施处理下SOM的增量显著高于秸秆还田处理(图1c)。厩肥和秸秆还田每年向土壤中输入的C量分别约为4.37 t hm-2和3.75 t hm-2,由于C输入量的差异而导致土壤SOM增量不同;另外,厩肥施入土壤后的腐殖化系数很高,其在稳定SOM含量方面的效率也很高,而作物秸秆的腐殖化系数仅为厩肥的一半左右[27];还有研究表明,由于玉米秸秆C4-C的快速周转,长期的玉米秸秆还田增加SOM到一定值后,SOM含量就不再增加[28],因此秸秆还田对SOM的贡献比有机肥的贡献低。由于SNPK处理的ANC显著高于MANK处理(图4b),而SOM含量显著低于MANK处理(图1c),从而导致MNPK和SNPK处理在ANC与SOM的关系图中表现为高度的离散性(图5e、5f)。

4.3 长期施化肥降低土壤酸中和容量,有机物料添加提高酸中和容量

以农田土壤pH 5.0为参比,施N素化肥处理的土壤NACpH 5.0低于对照,有机—无机配施处理的NACpH 5.0显著高于对照及各个施化肥处理(图4a)。从对照处理下降到各施化肥处理初始pH的ANC依次为N、NK、NP、NPK、PK处理(图4c)。上述结果表明,施N肥显著降低表土的ANC。ANC大小与土壤初始pH、土壤SOM含量、SEB及交换性Ca含量均呈正相关关系(图5a、5b、5c、5d)。

ANC直接影响向土壤中输入或土壤中消耗的H+量,因此是酸化或碱化的基础;在消耗一定量的质子时,土壤的pH可能会上升,但也可能无显著变化,即土壤对质子的输入具有一定的缓冲作用。若一种土壤的ANC减小,表明土壤酸化;反之,则表明土壤碱化[2]

土壤溶液中金属离子浓度越高,土壤的ANC也就越大[29]。本文中土壤交换性Ca在SEB中的占比高(表1),因此,长期施肥处理下土壤ANC与土壤SEB及交换性Ca含量均呈显著的正相关关系(图5)。由于秸秆还田处理(SNPK)中交换性Ca含量(图2a)和SEB(图1b)显著高于有机—无机配施处理(MNPK),是导致SNPK处理的ANC显著高于MNPK处理(图4b)的主要原因,这一点与假设中提出的有机—无机配施处理对ANC的贡献优于秸秆还田处理相反。

土壤pH是影响ANC的关键因素之一[4],决定了土壤所处的酸缓冲体系,pH 4.5~7.5区间以ANC交换性盐基和表面电荷交换体系为主、pH 3~5区间ANC由氧化铝体系主导[7]。本文中单独施N处理的初始pH仅为5.5(图1a),土壤pH下降至4.5时,土壤溶液中交换性Al3+含量增加,Al3+对H+的交换中和能力增强[30]。因此,N处理在初始pH下降1个单位时的ANC仅低于SNPK和MNPK处理(图4b)。

ANC可以表达为土壤阳离子交换量(CEC)与交换性酸总量(TA)的差值(ANC = CEC-TA)。就土壤中质子的循环过程而言,H2CO3和腐殖质是土壤中质子交换的主要贡献者。土壤腐殖质羧基和羟基官能团对金属离子及质子均有很好的缓冲作用,腐殖酸的CEC约为500~900 cmol+ kg-1,而腐殖质的ANC就是土壤溶液中离解的酸性官能团的浓度(g mL-1)。若ANC随pH的增加而快速增大,则土壤溶液中和质子的容量就很大,因此土壤SOM(腐殖质)是中和土壤酸度的一种重要物质[31],而土壤SOM含量的增加对提高土壤ANC具有正效应(图5d)。

5 结论

25 a的施肥试验结果表明,长期施氮、磷化肥处理导致土壤酸化,总体上降低交换性盐基离子含量并导致盐基离子组成变化;有机—无机(厩肥—NPK化肥)配施和玉米秸秆还田可提高土壤pH、交换性盐基总量及土壤有机质含量。土壤初始pH、交换性盐基总量及土壤有机质含量是影响土壤酸中和容量的主要因子,施氮肥显著降低土壤酸中和容量,有机肥与化肥配施提高黑土酸中和容量,而玉米秸秆还田是提高黑土抵抗酸化的最佳措施。研究结果可为中国东北黑土区玉米秸秆还田、有机肥部分替代化肥的农田管理实践提供长期试验的理论依据和数据支撑。

参考文献

FAO ITPS.

Status of the world's soil resources (SWSR) main report: Food and agriculture organization of the United Nations and intergovernmental technical panel on soils

Rome, 2015: 31-43.

[本文引用: 1]

van Breemen N, Driscoll C T, Mulder J.

Acidic deposition and internal proton sources in acidification of soils and waters

Nature, 1984, 307(5952): 599-604.

[本文引用: 2]

Havlin J H, Tisdale S L, Nelson W L, et al.

Soil Fertility and Fertilizers: An Introduction to Nutrient Management. 7th ed

New Delhi: Pearson Education, 2005: 17-116.

[本文引用: 6]

Weil R R, Brady N C.

The Nature and Properties of Soils. 15th ed

New Jersey: Pearson Education, 2016: 374-417.

[本文引用: 4]

Zhou Jianmin, Shen Renfang. Dictionary of Soil Science. Beijing: Science Press, 2013: 262-328.

[本文引用: 1]

[ 周健民, 沈仁芳. 土壤学大辞典. 北京: 科学出版社, 2013: 262-328.]

[本文引用: 1]

Wong M T F, Webb M J, Wittwer K.

Development of buffer methods and evaluation of pedotransfer functions to estimate pH buffer capacity of highly weathered soils

Soil Use and Management, 2013, 29(1): 30-38.

[本文引用: 1]

Bowman W D, Cleveland C C, Halada L, et al.

Negative impact of nitrogen deposition on soil buffering capacity

Nature Geoscience, 2008, 1(11): 767-770.

[本文引用: 2]

Cai J P, Luo W T, Liu H Y, et al.

Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland

Atmospheric Environment, 2017, 170: 312-318.

[本文引用: 4]

Meng Hongqi, Xu Minggang, Jialong, et al.

Evaluation of acid-neutralizing capacity of topsoil in croplands using quadratic curve fitting

Journal of Agro-Environment Science, 2013, 32(1): 29-35.

[本文引用: 3]

[ 孟红旗, 徐明岗, 吕家珑, .

用二次曲线拟合表征土壤酸中和能力的研究

农业环境科学学报, 2013, 32(1): 29-35.]

[本文引用: 3]

Guo J H, Liu X J, Zhang Y, et al.

Significant acidification in major Chinese croplands

Science, 2010, 327(5968): 1008-1010.

DOI:10.1126/science.1182570      PMID:20150447      [本文引用: 3]

Soil acidification is a major problem in soils of intensive Chinese agricultural systems. We used two nationwide surveys, paired comparisons in numerous individual sites, and several long-term monitoring-field data sets to evaluate changes in soil acidity. Soil pH declined significantly (P < 0.001) from the 1980s to the 2000s in the major Chinese crop-production areas. Processes related to nitrogen cycling released 20 to 221 kilomoles of hydrogen ion (H+) per hectare per year, and base cations uptake contributed a further 15 to 20 kilomoles of H+ per hectare per year to soil acidification in four widespread cropping systems. In comparison, acid deposition (0.4 to 2.0 kilomoles of H+ per hectare per year) made a small contribution to the acidification of agricultural soils across China.

Xu Minggang, Zhang Wenju, Huang Shaomin, et al. Evolution of Soil Fertility in China. 2nd ed. Beijing: China Agricultural Science and Technology Press, 2015: 101-117.

[本文引用: 6]

[ 徐明岗, 张文菊, 黄绍敏, . 中国土壤肥力演变. 2版. 北京: 中国农业科学技术出版社, 2015: 101-117.]

[本文引用: 6]

Tang Xian, Liang Feng, Xu Minggang, et al.

A meta-analysis of effects of long-term application of chemical fertilizer on pH of farmland soil

Journal of Jilin Agricultural University, 2020, 42(3): 316-321.

[本文引用: 3]

[ 唐贤, 梁丰, 徐明岗, .

长期施用化肥对农田土壤pH影响的整合分析

吉林农业大学学报, 2020, 42(3): 316-321.]

[本文引用: 3]

Hao Xiaoyu, Zhou Baoku, Ma Xingzhu, et al.

Characteristics of black soil fertility and comprehensive assessment under long-term fertilization

Heilongjiang Agricultural Sciences, 2015(11): 23-30.

[本文引用: 2]

[ 郝小雨, 周宝库, 马星竹, .

长期施肥下黑土肥力特征及综合评价

黑龙江农业科学, 2015(11): 23-30.]

[本文引用: 2]

Li X Y, Li H Y, Yang L M, et al.

Assessment of soil quality of croplands in the corn belt of northeast China

Sustainability, 2018, 10(1): 248. DOI: 10.3390/su10010248.

URL     [本文引用: 2]

Zhang Y, Sui B, Shen H O, et al.

Estimating temporal changes in soil pH in the black soil region of Northeast China using remote sensing

Computers and Electronics in Agriculture, 2018, 154: 204-212.

[本文引用: 1]

Jiang Yong, Xu Zhuwen, Wang Ruzhen, et al.

Effects of long-term fertilization and water addition on some soil properties and plant functional traits in a semiarid grassland

Chinese Journal of Applied Ecology, 2019, 30(7): 2470-2480.

[本文引用: 2]

[ 姜勇, 徐柱文, 王汝振, .

长期施肥和增水对半干旱草地土壤性质和植物性状的影响

应用生态学报, 2019, 30(7): 2470-2480.]

[本文引用: 2]

Meng Yani, Li Tianpeng, Shi Zhan, et al.

Effects of fertilization and water addition on soil acid neutralizing capacity in an old-field

Chinese Journal of Applied Ecology, 2020, 31(5): 1579-1586.

DOI:10.13287/j.1001-9332.202005.010      [本文引用: 3]

Increasing nitrogen (N) deposition results in soil acidification in grasslands. Acid buffering capacity of soil is a critical index evaluating soil acidification, the response of which to N input is regulated by precipitation and concentration of other limiting elements. To explore the responses of soil acidification to N, phosphorus (P), and water inputs, we conducted a 13-year field experiment in an old-field grassland and calculated the acid buffering capacity (ABC) and acid neutralizing capacity (ANC) at the reference of pH=5.0 (ANC<sub>pH5.0</sub>) and 4.0 (ANC<sub>pH4.0</sub>), using quadratic curve fitting model. The results showed that, without water addition, single N addition or combined with P addition significantly decreased soil pH, ANC<sub>pH5.0</sub> and ANC<sub>pH4.0</sub>, whereas single P addition had no significant effect on soil pH, ANC<sub>pH5.0</sub> or ANC<sub>pH4.0</sub>. With water addition, the addition of N or combined with P decreased soil pH, ANC<sub>pH5.0</sub> and ANC<sub>pH4.0</sub>, whereas P addition decreased soil pH, increased ANC<sub>pH4.0</sub>, without effect on ANC<sub>pH5.0</sub>. In contrast with treatments without water addition, water addition had positive effects on soil pH, ANC<sub>pH5.0</sub> and ANC<sub>pH4.0</sub>. For soils with different initial soil pH values, it was better to select ANC rather than ABC as an index to evaluate soil anti-acidification capacity.

[ 孟亚妮, 李天鹏, 施展, .

施肥和增水对弃耕草地土壤酸中和容量的影响

应用生态学报, 2020, 31(5): 1579-1586.]

DOI:10.13287/j.1001-9332.202005.010      [本文引用: 3]

大气氮沉降增加是草地土壤酸化的主要原因。土壤酸缓冲性能作为评估土壤酸化的重要指标,对氮输入的响应受到降水与其他限制养分含量的影响。本研究以我国北方温带弃耕草地氮、磷、水添加试验13年后的土壤为对象,利用二次多项式模型拟合酸滴定曲线,计算了土壤酸缓冲容量(ABC)以及以pH 5.0和4.0为参比的土壤酸中和容量(ANC)。结果表明: 不增水处理下,单独加氮和同时添加氮磷均显著降低土壤pH,降低以pH 5.0和4.0为参比时的酸中和容量(ANC<sub>pH5.0</sub>和ANC<sub>pH4.0</sub>);单独加磷对土壤pH、ANC<sub>pH5.0</sub>和ANC<sub>pH4.0</sub>均无显著影响。增水处理下,加氮及加氮磷显著降低土壤pH、ANC<sub>pH5.0</sub>和ANC<sub>pH4.0</sub>;加磷显著降低土壤pH,但增加了ANC<sub>pH4.0</sub>,而对ANC<sub>pH5.0</sub>无显著影响。与不增水处理相比,增水处理对土壤pH、酸中和容量均具有显著的正效应。对于初始pH值不同的土壤,采用土壤酸中和容量比酸缓冲容量能更好地指示土壤抗酸化能力。

Meng Hongqi, Jialong, Xu Minggang, et al.

Alkalinity of organic manure and its mechanism for mitigating soil acidification

Journal of Plant Nutrition and Fertilizers, 2012, 18(5): 1153-1160.

[本文引用: 2]

[ 孟红旗, 吕家珑, 徐明岗, .

有机肥的碱度及其减缓土壤酸化的机制

植物营养与肥料学报, 2012, 18(5): 1153-1160.]

[本文引用: 2]

Li Zhian, Zou Bi, Ding Yongzhen, et al.

Effect of plant residues on soil acidity and its mechanisms

Acta Ecologica Sinica, 2005, 25(9): 2382-2388.

[本文引用: 1]

[ 李志安, 邹碧, 丁永祯, .

植物残茬对土壤酸度的影响及其作用机理

生态学报, 2005, 25(9): 2382-2388.]

[本文引用: 1]

Zhang Yongchun, Wang Jidong, Shen Mingxing, et al.

Effects of long-term fertilization on soil acidification in Taihu Lake region, China

Acta Pedologica Sinica, 2010, 47(3): 465-472.

[本文引用: 1]

[ 张永春, 汪吉东, 沈明星, .

长期不同施肥对太湖地区典型土壤酸化的影响

土壤学报, 2010, 47(3): 465-472.]

[本文引用: 1]

Mao Yanting, Liu Hongbin, Chen Anqiang, et al.

Effects of long-term application of organic fertilizers on reducing soil acidification of plough layer in vegetable fields

Ecology and Environmental Sciences, 2020, 29(9): 1784-1791.

[本文引用: 1]

[ 毛妍婷, 刘宏斌, 陈安强, .

长期施用有机肥对减缓菜田耕层土壤酸化的影响

生态环境学报, 2020, 29(9): 1784-1791.]

[本文引用: 1]

Wang R Z, Dungait J A J, Buss H L, et al.

Base cations and micronutrients in soil aggregates as affected by enhanced nitrogen and water inputs in a semi-arid steppe grassland

Science of the Total Environment, 2017, 575: 564-572.

[本文引用: 1]

Wang R Z, Zhang Y H, He P, et al.

Intensity and frequency of nitrogen addition alter soil chemical properties depending on mowing management in a temperate steppe

Journal of Environmental Management, 2018, 224: 77-86.

[本文引用: 1]

Zhang Y G, Yang S, Fu M M, et al.

Sheep manure application increases soil exchangeable base cations in a semi-arid steppe of Inner Mongolia

Journal of Arid Land, 2015, 7(3): 361-369.

[本文引用: 1]

Wang R Z, Zhang Y L, Cerdà A, et al.

Changes in soil chemical properties as affected by pyrogenic organic matter amendment with different intensity and frequency

Geoderma, 2017, 289: 161-168.

[本文引用: 1]

Zhang Y G, Xu Z W, Jiang D M, et al.

Soil exchangeable base cations along a chronosequence of Caragana microphylla plantation in a semi-arid sandy land

Journal of Arid Land, 2013, 5(1): 42-50.

[本文引用: 1]

Berti A, Morari F, Dal Ferro N, et al.

Organic input quality is more important than its quantity: C turnover coefficients in different cropping systems

European Journal of Agronomy, 2016, 77: 138-145.

[本文引用: 1]

Hooker B A, Morris T F, Peters R, et al.

Long-term effects of tillage and corn stalk return on soil carbon dynamics

Soil Science Society of America Journal, 2005, 69(1): 188-196.

[本文引用: 1]

Zetterberg T, Köhler S J, Löfgren S.

Sensitivity analyses of MAGIC modelled predictions of future impacts of whole-tree harvest on soil calcium supply and stream acid neutralizing capacity

Science of the Total Environment, 2014, 494/495: 187-201.

[本文引用: 1]

Xu R K, Zhao A Z, Yuan J H, et al.

pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars

Journal of Soils and Sediments, 2012, 12(4): 494-502.

[本文引用: 1]

Xie S W, Yang F, Feng H X, et al.

Organic fertilizer reduced carbon and nitrogen in runoff and buffered soil acidification in tea plantations: Evidence in nutrient contents and isotope fractionations

Science of the Total Environment, 2021, 762: 143059. DOI: 10.1016/j.scitotenv.2020.143059.

URL     [本文引用: 1]

/