模态框(Modal)标题

在这里添加一些文本

模态框(Modal)标题

  • Journal
  • Article
  • Figure
  • Search
EN中文
  • Home
  • About Journal
    • About Journal
    • Indexed in
    • Awards
  • Editorial Board
  • Guide for Authors
  • Browse
    • Current Issue
    • Online First
    • Archive
    • Highlights
    • Topic
    • Archive by Subject
    • Most Viewed
    • Most Download
    • Most Cited
    • E-mail Alert
    • RSS
  • Subscribe
  • Advertisement
  • Contact us
EN中文

Figure/Table detail

Carbon peak prediction for Yangtze River Delta urban agglomeration based on spatially embedded GA-LSTM model
SHI Changfeng, YU Yue, YAO Xiao, PANG Qinghua
Acta Geographica Sinica, 2024, 79(11): 2895-2914.   DOI: 10.11821/dlxb202411013

模型 R2 MSE RMSE MAE
BP神经网络 0.75 105.60 10.28 6.45
LSTM模型 0.78 74.17 6.93 5.36
GA-LSTM模型 0.88 47.97 6.49 4.55
空间嵌入式GA-LSTM模型 0.96 42.06 6.14 4.13
Tab. 5 Performance evaluation of different predictive models
Other figure/table from this article
  • Fig. 1 Flowchart of spatially embedded GA-LSTM model
  • Fig. 2 Structure of spatially embedded LSTM model
  • Fig. 3 Comparison of city carbon emission trends from two data sources
  • Tab. 1 Scenario variables setting for Shanghai
  • Tab. 2 Spatial autocorrelation test of carbon emissions in the Yangtze River Delta urban agglomeration, 2000-2019
  • Tab. 3 Verification of spatial panel models
  • Tab. 4 Estimated results of regression model
  • Tab. 6 Metrics for ablation experiments based on spatially embedded GA-LSTM model
  • Fig. 4 Comparison of prediction results based on spatially embedded GA-LSTM model and GA-LSTM model
  • Fig. 5 Historical evolution and prediction results of carbon emissions in the Yangtze River Delta urban agglomeration
  • Fig. 6 Peaking time and spatial distribution of carbon emissions in the Yangtze River Delta urban agglomeration
  • Fig. 7 Comparison of prediction results based on spatially embedded GA-LSTM model under baseline and green scenarios

Website Copyright © Acta Geographica Sinica, All Rights Reserved.
Tel: 64889295,64888892,64889447(编务),64888410(排版) 
Fax: 64889295 
E-mail: geog@igsnrr.ac.cn,dlxb@igsnrr.ac.cn,qkpb@igsnrr.ac.cn(排版)
Powered by Beijing Magtech Co. Ltd