交通与旅游地理

京津冀城市群总体与城际出行特征异同性挖掘

  • 王月 ,
  • 姚恩建 ,
  • 郝赫 ,
  • 李义罡 ,
  • 史佳柠
展开
  • 北京交通大学 综合交通运输大数据应用技术交通运输行业重点实验室,北京 100044
姚恩建(1971-), 男, 博士, 教授, 主要从事综合交通运输规划与系统设计、综合交通大数据与数字交通等方面的研究。E-mail:

注:本文为第二十七届中国科协年会学术论文。

王月(1997-), 女, 博士生, 研究方向为城市交通规划与管理。E-mail:

收稿日期: 2023-05-16

  修回日期: 2024-10-10

  网络出版日期: 2025-04-23

基金资助

国家自然科学基金项目(52172312)

The similarities and differences in general and inter-city travel characteristics in the Beijing-Tianjin-Hebei urban agglomeration

  • WANG Yue ,
  • YAO Enjian ,
  • HAO He ,
  • LI Yigang ,
  • SHI Jianing
Expand
  • Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China

Received date: 2023-05-16

  Revised date: 2024-10-10

  Online published: 2025-04-23

Supported by

National Natural Science Foundation of China(52172312)

摘要

随着城市群的快速发展,在城市出行的基础上城际出行日渐规模化、常态化。为深入分析城市群出行特征,支持城市与城际交通一体化发展,本文构建了一套城市群总体出行与城际出行特征对比分析框架,基于2023年5月京津冀地区手机信令数据,以区县间出行需求构建城市群出行网络,并拆分城际出行网络聚焦城际出行特征,挖掘城市群总体与城际出行特征异同。结果表明:① 京津冀城市群呈现“核心—外围”的空间形态,行政边界的限制作用依然明显。总体出行以市域为界形成多个独立的核心—外围结构;城际出行形成以北京为核心,石家庄和天津为中介的放射型结构。② 出行强度的空间分布不均衡,两级分化严重。总体出行中,各城市中心城区出行强度较高,并对外围产生不同程度的影响;城市副中心、边界和飞地区县是城际出行中的关键区域;而大量边缘区县给城市群出行网络化发展带来阻碍。③ 组团识别结果体现了出行中的行政区效应、溢出效应和邻近效应,并揭示了各中心城区的枢纽功能,其中北京和石家庄兼具了城际枢纽功能。

本文引用格式

王月 , 姚恩建 , 郝赫 , 李义罡 , 史佳柠 . 京津冀城市群总体与城际出行特征异同性挖掘[J]. 地理学报, 2025 , 80(4) : 1089 -1102 . DOI: 10.11821/dlxb202504014

Abstract

The scale and spatial distribution of travel demand are crucial foundations for the formulation of transportation planning. This paper extracts the travel demand between counties and districts (referred to as counties) within the Beijing-Tianjin-Hebei (BTH) urban agglomeration based on mobile phone signaling data, and constructs travel networks for general and inter-city travels respectively. Using complex network analysis methods, it analyzes and compares the characteristics differences in node centrality, leading connections, and clustering spaces in general travels and inter-city travels within the urban agglomeration. The results indicate that: (1) The spatial distribution of travel intensities is uneven, with higher travel intensities in the center of the city, higher travel intensities for cross-boundary trips in suburban counties, and higher travel intensities for cross-city travel in border counties. The spatial distribution of travel intensities is uneven, with higher travel intensities in the center of the city, higher travel intensities for cross-boundary trips in suburban counties, and higher travel intensities for cross-city travel in border counties. (2) Travel primarily involves close connections between central urban areas and surrounding counties, with a positive correlation between city rank and travel intensity; inter-city travel is concentrated on the spillover boundaries of core cities, forming leading connection characteristics of central encirclement, boundary interaction, and enclave connections. (3) There are clear differences in the travel clusters between general travel and inter-city travel, with general travel clustering involving individual cities forming clusters; central urban areas jointly form spatially jumping inter-city clusters, with the boundary cluster centered on Beijing already in substantial scale. The differentiated regional functional positioning under different travel perspectives reveals that central urban area clusters play a regional connecting role, with the central urban areas of Beijing and Shijiazhuang simultaneously serving inter-city hub functions, yet a large number of peripheral counties participate less in travel connections. Analyzing the differentiated characteristics of general travel and inter-city travel demand among counties can clarify the transportation development positioning of different areas, providing a planning basis for the construction of a comprehensive transportation network in the urban agglomeration, thus promoting urban-rural and inter-city coordinated development.

[1]
Chen Wei, Xiu Chunliang. A rethinking of the theoretical connotation of megaregion in the new era. Progress in Geography, 2021, 40(5): 848-857.

DOI

[陈伟, 修春亮. 新时期城市群理论内涵的再认知. 地理科学进展, 2021, 40(5): 848-857.]

DOI

[2]
Lu Dadao. A review of "Innovation pattern and path of urban agglomerations in China". Acta Geographica Sinica, 2023, 78(11): 2903.

[陆大道. 《中国城市群的创新格局与路径》评介. 地理学报, 2023, 78(11): 2903.]

[3]
Song Weixuan, Xu Di, Wang Jiekai, et al. Differentiation pattern and cross-scale comparison of daytime and nighttime social space in Nanjing inner city. Acta Geographica Sinica, 2024, 79(2): 421-438.

DOI

[宋伟轩, 徐旳, 王捷凯, 等. 基于手机画像数据的南京内城日夜间社会空间分异. 地理学报, 2024, 79(2): 421-438.]

DOI

[4]
Zhang Y, Zheng X, Chen M, et al. Urban fine-grained spatial structure detection based on a new traffic flow interaction analysis framework. ISPRS International Journal of Geo-Information, 2021, 10(4): 227. DOI: 10.3390/ijgi10040227.

[5]
Ma S, Long Y. Functional urban area delineations of cities on the Chinese mainland using massive Didi ride-hailing records. Cities, 2020, 97: 102532. DOI: 10.1016/j.cities.2019.102532.

[6]
Shi Xiang, Wang Shijun, Wang Dongyan, et al. Characteristics and influencing factors of daily population flow among cities in China. Geographical Science, 2022, 42(11): 1889-1899.

[施响, 王士君, 王冬艳, 等. 中国市域间日常人口流动特征及影响因素. 地理科学, 2022, 42(11): 1889-1899.]

DOI

[7]
Pan Jinghu, Wei Shimei, Zhang Rong, et al. Spatial structure characteristics of intercity travel network of Chinese residents: Based on Tencent migration data. Acta Geographica Sinica, 2022, 77(10): 2494-2513.

DOI

[潘竟虎, 魏石梅, 张蓉, 等. 中国居民城际出行网络的空间结构特征. 地理学报, 2022, 77(10): 2494-2513.]

DOI

[8]
Li Tao, Wang Jiaoe, Gao Xingchuan. Comparison of inter-city travel network during weekdays and holiday in China. Acta Geographica Sinica, 2020, 75(4): 833-848.

DOI

[李涛, 王姣娥, 高兴川. 中国居民工作日与节假日的城际出行网络异同性研究. 地理学报, 2020, 75(4): 833-848.]

DOI

[9]
Li Tao, Wang Jiaoe, Huang Jie. Research on travel pattern and network characteristics of inter-city travel in China's urban agglomeration during national day week based on tencent migration data. Journal of Geo-information Science, 2020, 22(6): 1240-1253.

[李涛, 王姣娥, 黄洁. 基于腾讯迁徙数据的中国城市群国庆长假城际出行模式与网络特征. 地球信息科学学报, 2020, 22(6): 1240-1253.]

DOI

[10]
Zhu R X, Wang Y J, Lin D, et al. Exploring the rich-club characteristic in internal migration: Evidence from Chinese Chunyun migration. Cities, 2021, 114: 103198. DOI: 10.1016/j.cities.2021.103198.

[11]
Wang Shaojian, Gao Shuang, Wang Yuqu. Spatial structure of the urban agglomeration based on space of flows: The study of the Pearl River Delta. Geographical Research, 2019, 38(8): 1849-1861.

[王少剑, 高爽, 王宇渠. 基于流空间视角的城市群空间结构研究: 以珠三角城市群为例. 地理研究, 2019, 38(8): 1849-1861.]

DOI

[12]
Hu Haoyu, Huang Xinrong, Li Peilin, et al. Comparison of network structure patterns of urban agglomerations in China from the perspective of space of flows: Analysis based on railway schedule. Journal of Geo-information Science, 2022, 24(8): 1525-1540.

[胡昊宇, 黄莘绒, 李沛霖, 等. 流空间视角下中国城市群网络结构特征比较: 基于铁路客运班次的分析. 地球信息科学学报, 2022, 24(8): 1525-1540.]

DOI

[13]
Wang Bei, Liu Yanhua, Chen Kebi, et al. An analytical framework of the interconnection between Beijing and Tianjin municipalities and characteristics of factor mobility. Progress in Geography, 2023, 42(7): 1229-1242.

DOI

[王蓓, 刘艳华, 陈科比, 等. 京津双城联动的分析框架及要素对流特征. 地理科学进展, 2023, 42(7): 1229-1242.]

DOI

[14]
Wang Jing, Liu Benteng, Li Yurui. Spatial-temporal characteristics and influencing factors of population distribution and floating changes in Beijing-Tianjin-Hebei region. Geographical Research. 2018, 37(9): 1802-1817.

[王婧, 刘奔腾, 李裕瑞. 京津冀人口时空变化特征及其影响因素. 地理研究, 2018, 37(9): 1802-1817.]

DOI

[15]
Shi Cheng, Tian Lin, Cheng Yao. Regional spatial organization from the perspective of short-term travel: An empirical study on the Yangtze River Delta based on mobile phone data. Urban and Rural Planning, 2020(6): 105-115.

[施澄, 田琳, 程遥. 短期人口流动视角下的长三角城市群空间组织研究: 基于手机信令数据对出行数据识别的实证. 城乡规划, 2020(6): 105-115.]

[16]
Zhang Yingna, Wang Yue, Hu Haoyu, et al. Analysis of population spatial-temporal distribution and mobility in Beijing-Tianjin-Hebei urban agglomeration based on mobile phone trajectory big data. Areal Research and Development, 2023, 42(3): 161-167,180.

[Zhang Yingna, 王悦, 胡昊宇, 等. 基于手机信令大数据的京津冀城市群人口时空分布与流动特征分析. 地域研究与开发, 2023, 42(3): 161-167, 180.]

[17]
Zhang W J, Fang C Y, Zhou L, et al. Measuring megaregional structure in the Pearl River Delta by mobile phone signaling data: A complex network approach. Cities, 2020, 104: 102809. DOI: 10.1016/j.cities.2020.102809.

[18]
Li Ziyuan, Sun Hao, Li Linbo. Analysis of intercity travel in the Yangtze River Delta based on mobile signaling data. Journal of Tsinghua University (Science and Technology), 2022, 62(7): 1203-1211.

[李自圆, 孙昊, 李林波. 基于手机信令数据的长三角全域城际出行网络分析. 清华大学学报(自然科学版), 2022, 62(7): 1203-1211.]

[19]
Niu Xinyi, Yue Yufeng, Li Kaike. Inter-city travel characteristics between central and surrounding cities in the Yangtze River Delta urban agglomerations. Shanghai Urban Planning Review, 2020(4): 1-8.

[钮心毅, 岳雨峰, 李凯克. 长三角城市群中心城市与周边城市的城际出行特征研究. 上海城市规划, 2020(4): 1-8.]

[20]
Chen Lifeng, Shang Jing, Liu Tingting, et al. Analysis of spatiotemporal characteristics for Beijing-Tianjin-Hebei intercity travel based on mobile phone signaling data. Journal of Beijing Jiaotong University, 2023, 47(5): 162-168.

DOI

[陈立峰, 尚晶, 刘婷婷, 等. 基于手机信令数据的京津冀城际出行时空特征分析. 北京交通大学学报, 2023, 47(5): 162-168.]

DOI

[21]
Liu Z Y, Zhao P J, Liu Q Y, et al. Exploring the spatial characteristics of the human mobility network in rural settings of China's Greater Bay Area. Journal of Transport Geography, 2023, 112: 103699. DOI: 10.1016/j.jtrangeo.2023.103699.

[22]
An Shuwei, Li Ruipeng. Does the core city drive the development of its peripheral areas? Take the Beijing-Tianjin-Hebei and Yangtze River Delta as examples. China Soft Science, 2022, (9): 85-96.

[安树伟, 李瑞鹏. 城市群核心城市带动外围地区经济增长了吗? 以京津冀和长三角城市群为例. 中国软科学, 2022, (9): 85-96.]

[23]
Wang Jinying, Fan Shijie. Spatial structure characteristics and evolution trend of Beijing-Tianjin-Hebei urban agglomeration. Journal of Yanshan University (Philosophy and Social Science), 2023, 24(5): 68-80.

[王金营, 范世杰. 京津冀城市群空间结构特征及其演变趋势判断. 燕山大学学报(哲学社会科学版), 2023, 24(5): 68-80.]

[24]
Zhao Jingtian, Chen Yanguang, Li Shuangcheng. Bi-fractal structure and evolution of the Beijing-Tianjin-Hebei region urban land-use patterns. Progress in Geography, 2019, 38(1): 77-87.

DOI

[赵静湉, 陈彦光, 李双成. 京津冀城市用地形态的双分形特征及其演化. 地理科学进展, 2019, 38(1): 77-87.]

DOI

[25]
Long Yuqing, Chen Yanguang. Multi-scaling allometric analysis of the Beijing-Tianjin-Hebei urban system based on nighttime light data. Progress in Geography, 2019, 38(1): 88-100.

DOI

[龙玉清, 陈彦光. 基于灯光数据的京津冀城市多标度异速分析. 地理科学进展, 2019, 38(1): 88-100.]

DOI

[26]
Li Y G, Yao E J, Liu S S, et al. Spatiotemporal influence of built environment on intercity commuting trips considering nonlinear effects. Journal of Transport Geography, 2024, 114: 103744. DOI: 10.1016/j.jtrangeo.2023.103744.

[27]
Zhao Peng, Hu Haoyu, Zeng Liang'en, et al. Revisiting the gravity laws of inter-city mobility in megacity regions. Science China Earth Sciences, 2023, 66(2): 271-281.

[赵鹏军, 胡昊宇, 曾良恩, 等. 重探城市群地区跨城移动性的引力模型. 中国科学: 地球科学, 2023, 53(2): 256-266.]

[28]
Opsahl T, Agneessens F, Skvoretz J. Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 2010, 32(3): 245-251.

[29]
Zhao Gouheng, Jia Peng, Zhou Anmin. Improved degree centrality for directed-weighted network. Journal of Computer Applications, 2020, 40(S1): 141-145.

[赵构恒, 贾鹏, 周安民. 有向加权网络中的改进度中心性. 计算机应用, 2020, 40(S1): 141-145.]

[30]
Zhao P J, Wang H, Liu Q Y, et al. Unravelling the spatial directionality of urban mobility. Nature Communications, 2024, 15(1): 4507. DOI: 10.1038/s41467-024-48909-7.

[31]
Zipf G K. The generalized harmonic series as a fundamental principle of social organization. The Psychological Record, 1940, 4(5): 43.

[32]
Liu F T, Ting K M, Zhou Z H. Isolation forest. 8th IEEE International Conference on Data Mining. Italy, 2008: 413-422.

[33]
Rosvall M, Axelsson D, Bergstrom C T. The map equation. The European Physical Journal Special Topics, 2009, 178: 13-23.

[34]
Guimerà R, Amaral L A N. Cartography of complex networks: Modules and universal roles. Journal of Statistical Mechanics: Theory and Experiment, 2005(2): P02001. DOI: 10.1088/1742-5468/2005/02/P02001.

[35]
Ding Liang, Niu Xinyi, Song Xiaodong. Validating gravity model in multi-centre city: A study based on individual mobile trajectory. Acta Geographica Sinica, 2020, 75(2): 268-285.

DOI

[丁亮, 钮心毅, 宋小冬. 基于个体移动轨迹的多中心城市引力模型验证. 地理学报, 2020, 75(2): 268-285.]

DOI

文章导航

/