玉龙雪山—丽江水体水化学和同位素特征及其变化规律与成因
任坤(1988-), 男, 湖北襄阳人, 博士生, 副研究员, 主要研究方向为表层地球化学、水资源水环境。E-mail: rkhblhk@163.com |
收稿日期: 2024-04-10
修回日期: 2024-09-13
网络出版日期: 2024-12-02
基金资助
中央引导地方专项(XZ202301YD0005C)
广西科技项目(2021JJA150041)
广西科技项目(2023JJD150024)
国家自然科学基金项目(41702278)
中国地质科学院岩溶地质研究所基本科研业务费(2023018)
Hydrochemical and isotopic characteristics, changes and controlling factors of waters in the Yulong Snow Mountain-Lijiang area, China
Received date: 2024-04-10
Revised date: 2024-09-13
Online published: 2024-12-02
Supported by
Dedicated Project of Xizang Autonomous Region Guided by the Central Government(XZ202301YD0005C)
Guangxi Natural Science Foundation of China(2021JJA150041)
Guangxi Natural Science Foundation of China(2023JJD150024)
National Natural Science Foundation of China(41702278)
Special Fund for Basic Scientific Research of Institute of Karst Geology, CAGS(2023018)
水体水化学与同位素组成受自然和人为因素共同控制,研究其组成及变化成因对流域水资源合理利用和科学管理具有重要意义。本文系统采集了玉龙雪山—丽江地区地表—地下水水化学、氘氧(δD/δ18O-H2O)和碳(δ13C-DIC)同位素样品,重点分析上述指标沿径流方向的空间演化,并对比2005年与2021年水化学组分浓度变化,探讨人类活动影响区域水环境的时空差异。结果表明:① 流域地表—地下水以大气降水和冰雪融水补给为主,水化学类型主要为Ca·Mg-HCO3和Ca-HCO3型,部分民井受人类活动影响,Na+、K+、Cl-和 浓度上升。② 受自然和人为因素共同影响,δD和δ18O-H2O值沿地表—地下水径流方向增加,δ13C-DIC值减小,Na+、K+、Cl-和 在流经主城区后因污废水输入而浓度明显增加。③ 玉河河水流经大研古镇后由III类水降低至IV类水(NH4+超标),且古镇内井水Na++K+与δ13C-DIC、Cl-+ 与δ13C-DIC显著性负相关,揭示了古城旅游活动对水环境的负面影响。④ 与2005年相比,受市政污水补给的漾弓江Na+、K+、Cl-和 浓度增长速率大于拉市海、玉峰寺泉和团山水库。研究揭示人类活动对玉龙雪山—丽江水环境产生了一定的负面影响,为流域水资源保护提供了基础数据;同时证实同位素和水化学相结合是研究水环境变化及控制因素的重要手段。
任坤 , 曾洁 , 彭聪 , 潘晓东 , 于正良 , 吴华英 . 玉龙雪山—丽江水体水化学和同位素特征及其变化规律与成因[J]. 地理学报, 2024 , 79(11) : 2864 -2879 . DOI: 10.11821/dlxb202411011
The hydrochemical and isotopic compositions of water are controlled by natural and anthropogenic factors, therefore, it is of great significance to study the hydrochemical and isotopic compositions, changes and contributing factors for the rational utilization and scientific management of water resources within a watershed. Hydrochemistry, water (δD/δ18O-H2O) and carbon (δ13C-DIC) isotope samples from surface-groundwater in the Yulong Snow Mountains-Lijiang area, China, were analyzed to reveal the spatial evolution of the above indicators along the water flow direction, to compare the changes of water chemical compositions between 2005 and 2021, and to explore the spatio-temporal differences of regional water environment affected by human activities. Results showed that: (1) In the basin, surface water and groundwater were mainly recharged by local atmospheric precipitation and glacier-snow meltwater, and the water chemistry types were mainly Ca·Mg-HCO3 and Ca-HCO3, while the concentrations of Na+, K+, Cl- and increased in some wells due to human activities; (2) Under the influence of natural processes and human activities, δD/δ18O-H2O values increased along the direction of the surface-groundwater flow, while the value of δ13C-DIC decreased. Concentrations of Na+, K+, Cl- and increased significantly after water flows through the main urban area; (3) Water quality of the Yuhe River was reduced from class III to class IV (NH4+ exceeded the standard) after the river flows through the Dayan ancient town, and significant negative correlation between Na++K+ and δ13C-DIC, Cl-+ and δ13C-DIC occurred in wells from the ancient town, which revealed the negative impact of tourism activities on the water environment; and (4) Compared with 2005, the growth rates of Na+, K+, Cl- and concentrations in the Yanggong River, which were fed by urban sewage and wastewater, were greater than those of Lashi Lake, Yufengsi Spring and Tuanshan Reservoir waters. Our study revealed that human activities had a certain negative impact on the water environment in the Yulong Snow Mountain-Lijiang area, which provided basic data for water resources protection in the river basin and also confirmed that the combination of isotopes and water chemistry is an important means to study the water environment change and the contributing factors.
表1 玉龙雪山—丽江地区不同水体理化性质和同位素组成Tab. 1 Physicochemical parameters and isotope ratios of waters from the Yulong Snow Mountain-Lijiang area |
水体 | pH | K+ (mg/L) | Na+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | NH4+ (mg/L) | Cl- (mg/L) | SO42- (mg/L) | HCO3- (mg/L) | NO3- (mg/L) | PO43- (mg/L) | CODMn (mg/L) | TDS (mg/L) | δD(‰) | δ18O- H2O(‰) | δ13C-DIC (‰) | d (‰) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
河流 | 最大值 | 7.87 | 5.03 | 18.65 | 61.78 | 13.67 | 5.03 | 17.76 | 20.42 | 275.74 | 2.37 | 1.29 | 1.98 | 275 | -94.5 | -12.3 | -5.5 | 11.9 |
最小值 | 7.60 | 0.07 | 0.22 | 37.44 | 3.54 | bdl | bdl | 2.45 | 142.39 | bdl | bdl | bdl | 119 | -108.6 | -14.8 | -7.8 | 4.1 | |
平均值 | 7.72 | 1.83 | 5.83 | 43.92 | 7.98 | 1.35 | 5.45 | 8.21 | 176.29 | 0.65 | 0.38 | 0.78 | 161 | -103.7 | -13.9 | -6.8 | 7.8 | |
标准差 | 0.10 | 1.94 | 7.42 | 10.11 | 3.78 | 2.08 | 7.05 | 7.16 | 56.12 | 0.97 | 0.53 | 0.83 | 65 | 5.7 | 1.0 | 0.9 | 3.0 | |
湖泊 水库 | 最大值 | 8.43 | 1.90 | 11.66 | 63.16 | 21.77 | 0.04 | 7.04 | 13.49 | 262.18 | 4.40 | 0.08 | 2.57 | 213 | -64.7 | -6.6 | 0.5 | 8.3 |
最小值 | 7.51 | 0.06 | 1.45 | 15.06 | 4.10 | bdl | 0.48 | 1.05 | 72.33 | bdl | bdl | bdl | 84 | -103.7 | -14.0 | -9.1 | -12.1 | |
平均值 | 7.94 | 1.15 | 4.33 | 31.94 | 11.53 | bdl | 2.40 | 6.15 | 149.63 | 1.32 | 0.03 | 1.20 | 132 | -83.9 | -10.3 | -4.5 | -1.4 | |
标准差 | 0.29 | 0.60 | 3.15 | 14.66 | 5.70 | 0.01 | 2.19 | 4.66 | 51.28 | 1.35 | 0.03 | 0.81 | 38 | 12.6 | 2.3 | 3.5 | 5.7 | |
民井 | 最大值 | 8.03 | 55.69 | 89.72 | 177.30 | 59.25 | 1.17 | 169.59 | 166.20 | 506.28 | 227.64 | 5.36 | 2.94 | 915 | -82.6 | -10.7 | -8.9 | 7.0 |
最小值 | 7.19 | 0.44 | 3.79 | 38.52 | 6.98 | bdl | 2.14 | 0.95 | 201.16 | bdl | bdl | bdl | 179 | -104.8 | -13.9 | -15.1 | 1.8 | |
平均值 | 7.56 | 12.66 | 18.88 | 80.90 | 21.72 | 0.13 | 23.01 | 27.32 | 317.07 | 33.88 | 0.53 | 0.80 | 343 | -95.4 | -12.6 | -12.1 | 5.2 | |
标准差 | 0.21 | 14.53 | 18.70 | 35.06 | 14.25 | 0.32 | 34.91 | 33.43 | 77.89 | 55.95 | 1.19 | 0.89 | 157 | 4.7 | 0.7 | 1.6 | 1.5 | |
泉水 | 最大值 | 8.23 | 17.22 | 17.89 | 84.28 | 48.44 | 0.23 | 14.77 | 22.39 | 370.67 | 46.91 | 2.42 | 0.88 | 336 | -91.4 | -12.0 | -0.6 | 11.8 |
最小值 | 7.36 | 0.18 | 0.19 | 22.84 | 1.24 | bdl | bdl | 0.32 | 81.37 | bdl | bdl | bdl | 52 | -112.4 | -15.5 | -11.0 | 2.4 | |
平均值 | 7.79 | 2.05 | 4.13 | 53.10 | 12.37 | 0.02 | 3.23 | 7.47 | 214.72 | 4.99 | 0.24 | 0.08 | 187 | -101.9 | -13.7 | -8.4 | 7.6 | |
标准差 | 0.28 | 3.91 | 4.42 | 16.03 | 7.90 | 0.06 | 4.83 | 7.04 | 59.50 | 10.57 | 0.56 | 0.22 | 66 | 5.0 | 0.8 | 2.3 | 2.0 |
注:bdl低于检测限。 |
表2 2005年7月与2021年8月玉龙雪山—丽江地区离子组成(mg/L)Tab. 2 Ion composition in the Yulong Snow Mountain-Lijiang area in July 2005 and August 2021 |
水体类型 | 时间 | K+ | Na+ | Cl- | SO42- | NO3- |
---|---|---|---|---|---|---|
木家桥(河流) | 2021年 | 5.03 | 18.65 | 17.76 | 20.42 | 0.37 |
2005年 | 0.24 | 0.85 | 0.9 | 1.03 | 0.53 | |
拉市海(湿地公园) | 2021年 | 0.99 | 4.93 | 4.42 | 11.25 | 1.63 |
2005年 | 0.12 | 0.44 | 0.29 | 1.32 | 0.01 | |
团山水库(饮用水源) | 2021年 | 1.25 | 4.82 | 1.02 | 2.24 | 4.4 |
2005年 | 0.98 | 2.96 | 0.69 | 4.76 | / | |
玉峰寺(泉) | 2021年 | 0.69 | 5.77 | 1.05 | 12.26 | 0.78 |
2005年 | 0.37 | 3.4 | 0.16 | 6.02 | 0 |
注:2005年的数据来自朱国锋等[22]。 |
[1] |
[任孝宗, 杨小平. 鄂尔多斯沙区天然水体水化学组成及其成因. 地理学报, 2021, 76(9): 2224-2239.]
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
[刘鑫, 李思亮, 岳甫均, 等. 喀斯特系统生物地球化学循环及对全球变化的响应. 中国岩溶, 2022, 41(3): 465-476.]
|
[14] |
|
[15] |
|
[16] |
|
[17] |
[李铮, 钟君, 李思亮, 等. 青藏高原北部典型冰川流域化学风化研究. 地理学报, 2023, 78(7): 1792-1808.]
|
[18] |
[王宇. 云南省地下水资源潜力评价现状与问题分析. 中国岩溶, 2020, 39(2): 137-146.]
|
[19] |
[庞洪喜, 何元庆, 卢爱刚, 等. 玉龙雪山冰川稳定同位素分馏冬夏对比. 地理学报, 2006, 61(5): 501-509.]
|
[20] |
[朱国锋, 蒲焘, 何元庆, 等. 雨季玉龙雪山白水1号冰川表层雪中无机离子特征及环境意义. 自然资源学报, 2013, 28(4): 678-686.]
|
[21] |
|
[22] |
[朱国锋, 何元庆, 蒲焘, 等. 夏季玉龙雪山地区不同水体常规阴离子特征及其来源分析. 环境科学, 2011, 32(3): 626-631.]
|
[23] |
[田原, 余成群, 查欣洁, 等. 青藏高原西部、南部和东北部边界地区天然水的水化学性质及其成因. 地理学报, 2019, 74(5): 975-991.]
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
[尹观, 倪师军, 张其春. 氘过量参数及其水文地质学意义: 以四川九寨沟和冶勒水文地质研究为例. 成都理工学院学报, 2001, 28(3): 251-254.]
|
[31] |
[宋献方, 刘相超, 夏军, 等. 基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究. 中国科学(D辑: 地球科学), 2007, 37(1): 102-110.]
|
[32] |
[王春凤, 何元庆, 张宁宁, 等. 丽江—玉龙雪山不同区域大气降水化学特征. 环境科学研究, 2012, 25(1): 18-23.]
|
[33] |
[范弢, 杨世瑜. 丽江城市地下水脆弱性评价. 昆明理工大学学报(理工版), 2007, 32(1): 91-96.]
|
[34] |
|
[35] |
[张宁宁, 何元庆, 王春凤, 等. 发展旅游产业对大气降水化学特征的影响: 以云南丽江为例. 环境科学, 2011, 32(2): 330-337.]
|
[36] |
|
[37] |
|
[38] |
[尹立河, 张俊, 姜军, 等. 南疆地区水资源问题与对策建议. 中国地质, 2023, 50(1): 1-12.]
|
[39] |
|
/
〈 |
|
〉 |