异龙湖草—藻型稳态转换的碳氮磷化学计量特征及埋藏量估算
杨关绍(1998-), 男, 云南曲靖人, 硕士生, 主要研究方向为同位素地球化学研究。E-mail: 3024377392@qq.com |
收稿日期: 2024-01-22
修回日期: 2024-09-24
网络出版日期: 2024-12-02
基金资助
国家自然科学基金项目(42067064)
国家自然科学基金项目(42101155)
云南省重点研发计划(202203AC100002-02)
云南省西南联合研究生院科技专项(202302AP370001)
云南省野外科学观测研究站(202305AM070002)
兴滇英才支持计划(XDYC-QNRC-2022-0034)
Carbon, nitrogen, phosphorus stoichiometry and burial estimation of macrophyte- to algae-dominated stage of Yilong lake
Received date: 2024-01-22
Revised date: 2024-09-24
Online published: 2024-12-02
Supported by
National Natural Science Foundation of China(42067064)
National Natural Science Foundation of China(42101155)
Yunnan Provincial Key Research and Development Program(202203AC100002-02)
Science and Technology Projects of Southwest Joint Graduate School of Yunnan Province(202302AP370001)
Yunnan Provincial Department of Science and Technology Field(202305AM070002)
Revitalizing Yunnan Talents Support Program(XDYC-QNRC-2022-0034)
了解湖泊沉积物中C、N、P化学计量特征对于加强陆地水域生态系统化学计量学研究和揭示草型、藻型不同湖泊生态系统生源要素响应轨迹具有重要意义。本文基于覆盖全湖的20根短钻岩芯,对云南浅水富营养湖泊异龙湖沉积物有机碳(TOC)、总氮(TN)、总磷(TP)进行测定与分析,结合前人对异龙湖稳态转换发生的对应沉积深度划分,探讨了水体富营养化驱动的草型、藻型湖泊演化阶段对沉积物化学计量特征的影响。结果表明,湖泊沉积物C、N、P化学计量特征存在明显的时空异质性,异龙湖藻型湖泊阶段TOC、TN和TP含量分别为(4.83±1.47)%、(0.42±0.09)%和(0.04±0.01)%,均显著高于草型湖泊阶段的(3.87±0.98)%、(0.31±0.08)%和(0.03±0.02)%。藻型湖泊阶段的C∶N∶P值为347∶26∶1,较草型湖泊阶段(519∶35∶1)显著下降,反映了水体富营养化驱动下草—藻型稳态转换过程的水生植物群落更替和水环境参数改变对低内稳态有机个体在生态化学计量学上的影响。在不同元素之间,受有机质来源组成、化学元素的功能及活性差异等多因素影响,异龙湖沉积物中C、N元素主要在河流入湖口及沿岸带富集而P元素在深水区富集,导致P元素与C、N元素间的耦合性较低。在表层0~15 cm,异龙湖沉积物TOC、TN和TP埋藏量分别为1829 t/km2、160 t/km2和16 t/km2,顶部0~5 cm(藻型湖泊阶段)的平均埋藏速率较10~15 cm(草型湖泊阶段)升高30%~36%,但受含水率影响,10~15 cm的储量是顶部0~5 cm的1.5倍。与其他富营养化湖泊对比发现,温度极大地影响着湖泊有机质的有效埋藏,对湖泊沉积物C、N、P的源、汇功能起到关键的调控作用。异龙湖较高的水温使得底泥营养盐容易释放到湖泊水体中形成二次污染,加剧了湖泊生态修复的难度。本文揭示的湖泊生态化学计量及储量特征可为深化高原湖泊C、N、P循环认识与评估营养盐埋藏提供重要的科学依据。
杨关绍 , 温雯雯 , 王旭 , 郭雯 , 王明果 , 黄林培 , 孔令阳 , 李蕊 , 陈光杰 , 王教元 . 异龙湖草—藻型稳态转换的碳氮磷化学计量特征及埋藏量估算[J]. 地理学报, 2024 , 79(11) : 2830 -2848 . DOI: 10.11821/dlxb202411009
Understanding the stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) in lake sediments is of great significance in enhancing the stoichiometric studies of terrestrial water ecosystems and revealing the response trajectory of biogenic elements between macrophyte- and algae-dominated lake ecosystems. Based on 20 sediment cores covering the whole lake, the total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) in the sediments of shallow eutrophic Yilong lake were measured, and the influence of macrophyte- and algae-dominated lake on the carbon, nitrogen and phosphorus stoichiometry was discussed. The results showed that the stoichiometric characteristics of C, N and P in lake sediments presented spatial and temporal heterogeneity. The contents of TOC, TN and TP in the algae-dominated stage of Yilong lake were (4.83±1.47)%, (0.42±0.09)% and (0.04±0.01)%, respectively, which were significantly higher than those in the macrophyte-dominated stage ((3.87±0.98)%, (0.31±0.08)% and (0.03±0.02)%, respectively). The C∶N∶P value of 347∶26∶1 for the algae-dominated lake stage was significantly lower than that of the macrophyte-dominated lake stage (519∶35∶1). This reflected the effect of aquatic plant community succession during the macrophyte- to algae-dominated stage transformation, and the impact of altered water environments on the ecological stoichiometry of low homeostasis organisms. Among different elements, due to the composition of organic matter sources, the function and activity of chemical elements, the C and N elements in sediments of Yilong lake were mainly enriched in the estuary and littoral zone, while the P element was enriched in the deep-water area, resulting in a low coupling between the P element and the C and N elements. In the surface 0~15 cm layer, the burial amounts of TOC, TN and TP in the sediments of Yilong lake were 1829 t/km2, 160 t/km2 and 16 t/km2, respectively. The average burial rate in the top 0~5 cm (algae-dominated stage) was elevated by 30%-36% compared to the bottom 10~15 cm (macrophyte-dominated stage), but burial in the bottom 10-15 cm layer was 1.5 times higher than in the top 0-5 cm layer, as affected by water content. Comparison with other eutrophic lakes revealed that temperature greatly influenced the effective burial of organic matter in lakes and played a key role in regulating the source and sink functions of C, N and P in lake sediments. The high water temperature of Yilong lake made it easier for sediment nutrients to be released into the lake water, which aggravated the difficulty of lake ecological restoration. The ecological stoichiometry and burial characteristics of lake revealed in this study can provide an important scientific basis for deepening the understanding of C, N and P cycles in plateau lakes and evaluating nutrient burial.
表1 异龙湖水质及沉水植物、浮游植物化学计量特征Tab. 1 Water quality and stoichiometric characteristics of submerged macrophyte and phytoplankton in Yilong lake |
样品类别 | 指标名称 | 符号(单位) | 平均值±标准差 |
---|---|---|---|
表层水样 | 水温 | WT(℃) | 22.62±3.65 |
酸碱度 | pH | 8.61±0.14 | |
透明度 | SD(m) | 0.23±0.05 | |
总氮 | TN(mg/L) | 3.43±0.73 | |
总磷 | TP(μg/L) | 97.84±24.93 | |
叶绿素a | Chl-a(μg/L) | 110.27±83.67 | |
沉水植物 | 有机碳 | TOC(%) | 43.21±2.82 |
总氮 | TN(%) | 3.60±0.42 | |
总磷 | TP(%) | 0.11±0.04 | |
碳氮比 | C∶N | 14.23±2.02 | |
碳磷比 | C∶P | 1155.44±432.34 | |
氮磷比 | N∶P | 82.65±33.51 | |
浮游植物 | 有机碳 | TOC(%) | 30.92±4.68 |
总氮 | TN(%) | 4.47±0.79 | |
总磷 | TP(%) | 0.24±0.03 | |
碳氮比 | C∶N | 8.10±0.33 | |
碳磷比 | C∶P | 345.17±66.27 | |
氮磷比 | N∶P | 42.77±8.88 |
图5 异龙湖草型和藻型湖泊阶段TOC、TN、TP空间分布特征Fig. 5 Spatial distribution of TOC、TN、TP during the macrophyte- and algae-dominated stages of Yilong lake |
[1] |
|
[2] |
|
[3] |
|
[4] |
[王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28(8): 3937-3947.]
|
[5] |
[邢鹏, 李彪, 韩一萱, 等. 淡水生态系统对全球变化的响应: 研究进展与展望. 植物生态学报, 2020, 44(5): 565-574.]
|
[6] |
|
[7] |
[秦伯强, 高光, 朱广伟, 等. 湖泊富营养化及其生态系统响应. 科学通报, 2013, 58(10): 855-864.]
|
[8] |
[虞孝感,
|
[9] |
[刘厚田. 湿地的定义和类型划分. 生态学杂志, 1995, 14(4): 73-77.]
|
[10] |
[蒋卫国, 张泽, 凌子燕, 等. 中国湿地保护修复管理经验与未来研究趋势. 地理学报, 2023, 78(9): 2223-2240.]
|
[11] |
[宋以龙, 陈敬安, 杨海全, 等. 云南抚仙湖沉积物有机质来源与时空变化特征. 矿物岩石地球化学通报, 2016, 35(4): 618-624.]
|
[12] |
[高铭君, 李育, 张占森, 等. 祁连山周边内流区湖泊沉积物与人类活动研究. 地理学报, 2023, 78(5): 1192-1212.]
|
[13] |
|
[14] |
|
[15] |
[尹德超, 王雨山, 祁晓凡, 等. 白洋淀湿地不同植物群落区表层沉积物碳氮磷化学计量特征. 湖泊科学, 2022, 34(2): 506-516.]
|
[16] |
|
[17] |
[曾冬萍, 蒋利玲, 曾从盛, 等. 生态化学计量学特征及其应用研究进展. 生态学报, 2013, 33(18): 5484-5492.]
|
[18] |
|
[19] |
|
[20] |
[梁红, 黄林培, 陈光杰, 等. 滇东湖泊水生植物和浮游生物碳、氮稳定同位素与元素组成特征. 湖泊科学, 2018, 30(5): 1400-1412.]
|
[21] |
[吴爱平, 吴世凯, 倪乐意. 长江中游浅水湖泊水生植物氮磷含量与水柱营养的关系. 水生生物学报, 2005, 29(4): 406-412.]
|
[22] |
|
[23] |
|
[24] |
[徐德琳, 林乃峰, 邹长新, 等. 太湖食物网生态化学计量学特征空间差异. 中国环境科学, 2017, 37(12): 4681-4689.]
|
[25] |
[冀文豪, 郭匿春, 徐军, 等. 长江中游浅水湖泊沉积物碳氮同位素特征及其来源分析. 水生态学杂志, 2018, 39(6): 8-15.]
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
[吴泓辰, 王敬富, 杨小红, 等. 云贵高原湖泊有机碳、氮沉积记录对环境变化和人类活动的指示. 矿物岩石地球化学通报, 2022, 41(5): 1014-1022.]
|
[32] |
|
[33] |
[王圣瑞, 倪兆奎, 吴涛, 等. 异龙湖水环境. 北京: 科学出版社, 2022.]
|
[34] |
|
[35] |
[刘薇, 宁平, 孙鑫, 等. 异龙湖水质及水生生态系统演变趋势. 环境科学与技术, 2018, 41 (Suppl.1): 281-287.]
|
[36] |
[杨关绍, 王旭, 郭雯, 等. 异龙湖草型—藻型稳态转换的有机碳氮及其同位素源解析. 地理研究, 2023, 42(11): 3061-3078.]
|
[37] |
[沈吉. 湖泊沉积研究的历史进展与展望. 湖泊科学, 2009, 21(3): 307-313.]
|
[38] |
[范成新. 湖泊沉积物—水界面研究进展与展望. 湖泊科学, 2019, 31(5): 1191-1218.]
|
[39] |
[王艳平, 徐伟伟, 韩超, 等. 巢湖沉积物氮磷分布及污染评价. 环境科学, 2021, 42(2): 699-711.]
|
[40] |
|
[41] |
[李平, 陈光杰, 孔令阳, 等. 近百年来异龙湖有机碳和无机碳埋藏响应水体富营养化的协同变化特征. 中国环境科学, 2023, 43(10): 5389-5402.]
|
[42] |
|
[43] |
[崔保山, 翟红娟. 高原湿地功能退化的表征及其恢复中的生态需水量. 科学通报, 2006, 51 (Suppl.2): 106-113.]
|
[44] |
State Environmental Protection Administration. Methods for Detection and Analysis of Water and Wastewater. Beijing: China Environmental Science Press, 2002.
[国家环境保护总局. 水和废水检测分析方法. 北京: 中国环境科学出版社, 2002.]
|
[45] |
[于海峰, 史小红, 孙标, 等. 2011—2020年呼伦湖水质及富营养化变化分析. 干旱区研究, 2021, 38(6): 1534-1545.]
|
[46] |
[王明翠, 刘雪芹, 张建辉. 湖泊富营养化评价方法及分级标准. 中国环境监测, 2002, 18(5): 47-49.]
|
[47] |
[林光辉. 稳定同位素生态学. 北京: 高等教育出版社, 2013.]
|
[48] |
[鲁静, 周虹霞, 田广宇, 等. 洱海流域44种湿地植物的氮磷含量特征. 生态学报, 2011, 31(3): 709-715.]
|
[49] |
[鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.]
|
[50] |
环境保护部. 土壤总磷的测定碱熔—钼锑抗分光光度法(HJ 6322011), 2012.
[Ministry of Environmental Protection. Soil-determination of total phosphorus by alkali fusion-Mo-Sb anti spectrophotometric method (HJ 632-2011), 2012.]
|
[51] |
[孙标, 杨志岩, 张生, 等. 哈素海沉积物有机质分布与碳储量估计. 环境科学与技术, 2018, 41(12): 179-183.]
|
[52] |
[王绍强, 周成虎, 李克让, 等. 中国土壤有机碳库及空间分布特征分析. 地理学报, 2000, 55(5): 533-544.]
|
[53] |
[杨玉盛, 谢锦升, 盛浩, 等. 中亚热带山区土地利用变化对土壤有机碳储量和质量的影响. 地理学报, 2007, 62(11): 1123-1131.]
|
[54] |
[刘卫国, 李祥忠, 王政, 等. 西北干旱区湖泊碳同位素与环境变化. 中国科学: 地球科学, 2019, 49(8): 1182-1196.]
|
[55] |
[熊汉锋, 黄世宽, 陈治平, 等. 梁子湖湿地植物的氮磷积累特征. 生态学杂志, 2007, 26(4): 466-470.]
|
[56] |
|
[57] |
[邢伟, 刘寒, 刘贵华. 生态化学计量学在水生态系统中的研究与应用. 植物科学学报, 2015, 33(5): 608-619.]
|
[58] |
|
[59] |
[苏强. 生长速率假说及其在浮游动物营养动力学中的研究进展. 地球科学进展, 2012, 27(11): 1204-1210.]
|
[60] |
|
[61] |
|
[62] |
[曾昭霞, 王克林, 刘孝利, 等. 桂西北喀斯特区原生林与次生林鲜叶和凋落叶化学计量特征. 生态学报, 2016, 36(7): 1907-1914.]
|
[63] |
[秦伯强, 张运林, 高光, 等. 湖泊生态恢复的关键因子分析. 地理科学进展, 2014, 33(7): 918-924.]
|
[64] |
[赵磊, 刘永, 李玉照, 等. 湖泊生态系统稳态转换理论与驱动因子研究进展. 生态环境学报, 2014, 23(10): 1697-1707.]
|
[65] |
[王旭, 郭雯, 王明果, 等. 人类活动影响下异龙湖浮游植物碳氮稳定同位素变化特征. 中国环境科学, 2023, 43(6): 3087-3099.]
|
[66] |
[林志忠, 叶志云, 林圣彩, 等. 单磷酸腺苷激活的蛋白激酶(AMPK)调控机制的研究进展. 厦门大学学报(自然科学版), 2018, 57(2): 149-156.]
|
[67] |
[刘旭, 李畅游, 贾克力, 等. 北方干旱区湖泊湿地沉积物有机碳分布及碳储量特征研究: 以乌梁素海为例. 生态环境学报, 2013, 22(2): 319-324.]
|
[68] |
|
[69] |
[任万平, 李晓秀, 张汪寿. 沉积物中磷形态及影响其释放的环境因素研究进展. 环境污染与防治, 2012, 34(9): 53-60.]
|
[70] |
[李小林, 刘恩峰, 于真真, 等. 异龙湖沉积物重金属人为污染与潜在生态风险. 环境科学, 2019, 40(2): 614-624.]
|
[71] |
[李原, 李任伟, 尚榆民, 等. 洱海环境沉积学研究: 表层沉积物营养盐与粒度分布. 沉积学报, 2000, 18(3): 346-348.]
|
[72] |
[周锴, 钟小燕, 庾从蓉, 等. 太湖河道水深对底泥营养物质再释放过程的影响. 环境科学学报, 2020, 40(2): 597-603.]
|
[73] |
[沈吉, 薛滨, 吴敬禄, 等. 湖泊沉积与环境演化. 北京: 科学出版社, 2010.]
|
[74] |
|
[75] |
[郝盛吞, 周爱锋, 张晓楠, 等. 湖泊沉积有机碳埋藏效率及其影响要素研究进展. 地球环境学报, 2017, 8(4): 292-306.]
|
[76] |
[尹德超, 王雨山, 祁晓凡, 等. 白洋淀表层沉积物氮磷分布、储量及污染评价. 地质通报, 2023, 42(11): 1983-1992.]
|
[77] |
[段晓男, 王效科, 欧阳志云. 乌梁素海湿地生态系统服务功能及价值评估. 资源科学, 2005, 27(2): 110-115.]
|
[78] |
[白军红, 房静思, 黄来斌, 等. 白洋淀湖沼湿地系统景观格局演变及驱动力分析. 地理研究, 2013, 32(9): 1634-1644.]
|
[79] |
|
[80] |
[张茜, 冯民权, 郝晓燕. 上覆水环境条件对底泥氮磷释放的影响研究. 环境污染与防治, 2020, 42(1): 7-11.]
|
[81] |
|
[82] |
|
/
〈 |
|
〉 |