人工智能时代的地理科学前沿问题探析
李宇航(1989-), 男, 河南南阳人, 博士生, 副研究员, 研究方向为可持续发展与应对气候变化科技政策、科技创新服务等。E-mail: liyh@acca21.org.cn |
收稿日期: 2024-07-15
修回日期: 2024-09-21
网络出版日期: 2024-10-25
基金资助
国家自然科学基金项目(42025104)
国家自然科学基金项目(42122001)
AI for geographical sciences: The frontiers
Received date: 2024-07-15
Revised date: 2024-09-21
Online published: 2024-10-25
Supported by
National Natural Science Foundation of China(42025104)
National Natural Science Foundation of China(42122001)
李宇航 , 徐志伟 , 刘燕华 , 张玉虎 , 孙福宝 . 人工智能时代的地理科学前沿问题探析[J]. 地理学报, 2024 , 79(10) : 2409 -2424 . DOI: 10.11821/dlxb202410001
With the rapid advancement of science and technology, artificial intelligence (AI) has become a significant force driving scientific development and social progress. In the field of geographical sciences, the application of AI technology is deepening, bringing revolutionary changes to the collection, analysis, and application of big data and spatio-temporal information, and demonstrating innovative and application potential in multiple aspects. This paper systematically reviews the development and application of AI in geographical sciences, providing a detailed introduction to the development trajectories of various AI fields such as machine learning, computer vision, natural language processing, planning systems, and large AI models, as well as their applications in geography. It discusses the problems and challenges of AI applications in geography and provides an outlook on the future development of interdisciplinary research between AI and geographical sciences.
图2 2000—2023年美国地球物理联合会和欧洲地球科学联合会主办期刊上与机器学习相关的发文量注:检索关键词包括“artificial intelligence”“machine learning”和“deep learning”;检索时段为2000—2023年。 Fig. 2 The number of publications related to artificial intelligence, machine learning and deep learning in journals hosted by the American Geophysical Union (AGU) and the European Geosciences Union (EGU), 2000-2023 |
图3 arXiv开放预印平台上与地理学相关的论文热门词云注:数据来源为 https://www.kaggle.com/datasets/Cornell-University/arxiv,数据时段为2007—2024年7月10日。Fig. 3 Hot words of geographies-related papers in arXiv |
感谢李正阳同学在文献收集整理和图件绘制中的帮助。
[1] |
[克劳斯·施瓦布. 第四次工业革命. 李菁, 译. 北京: 中信出版集团股份有限公司, 2016.]
|
[2] |
|
[3] |
|
[4] |
[龚健雅. 人工智能时代测绘遥感技术的发展机遇与挑战. 武汉大学学报(信息科学版), 2018, 43(12): 1788-1796.]
|
[5] |
[李灿锋, 刘达, 周德坤, 等. 人工智能在地质领域的应用与展望. 矿物岩石地球化学通报, 2022, 41(3): 668-677.]
|
[6] |
|
[7] |
[翟明国. 大数据定将改变地质: 向读者推荐《地球科学大数据挖掘与机器学习》. 矿物岩石地球化学通报, 2018, 37(6): 1.]
|
[8] |
|
[9] |
|
[10] |
[张兵, 杨晓梅, 高连如, 等. 遥感大数据智能解译的地理学认知模型与方法. 测绘学报, 2022, 51(7): 1398-1415.]
|
[11] |
|
[12] |
|
[13] |
|
[14] |
[吴绍洪, 高江波, 戴尔阜, 等. 中国陆地表层自然地域系统动态研究: 思路与方案. 地球科学进展, 2017, 32(6): 569-576.]
|
[15] |
[陈发虎, 吴绍洪, 刘鸿雁, 等. 自然地理学学科体系与发展战略要点. 地理学报, 2021, 76(9): 2074-2082.]
|
[16] |
[刘昌明, 郑度, 崔鹏, 等. 自然地理学创新发展与展望. 地理学报, 2020, 75(12): 2547-2569.]
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
[宋长青. 地理学研究范式的思考. 地理科学进展, 2016, 35(1): 1-3.]
|
[25] |
[杨振山, 龙瀛,
|
[26] |
[李航. 统计学习方法. 北京: 清华大学出版社, 2019.]
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
[陆锋, 诸云强, 张雪英. 时空知识图谱研究进展与展望. 地球信息科学学报, 2023, 25(6): 1091-1105.]
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
[张立福, 孙雪剑, 张霞, 等. 时空谱多维数据格式(MDD)结构与计算机配套系统. 全球变化数据学报(中英文), 2017, 1(2): 121-135.]
|
[86] |
[周永章, 陈铄, 张旗, 等. 大数据与数学地球科学研究进展: 大数据与数学地球科学专题代序. 岩石学报, 2018, 34(2): 255-263.]
|
[87] |
[吴冲龙, 刘刚, 张夏林, 等. 地质科学大数据及其利用的若干问题探讨. 科学通报, 2016, 61(16): 1797-1807.]
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
[程昌秀, 裴韬, 刘瑜, 等. 新时代自然灾害态势感知的实践与方法探索. 地理学报, 2023, 78(3): 548-557.]
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
[宋长青, 程昌秀, 史培军. 新时代地理复杂性的内涵. 地理学报, 2018, 73(7): 1204-1213.]
|
[108] |
|
[109] |
|
[110] |
|
[111] |
|
[112] |
[程昌秀, 史培军, 宋长青, 等. 地理大数据为地理复杂性研究提供新机遇. 地理学报, 2018, 73(8): 1397-1406.]
|
[113] |
|
[114] |
|
[115] |
|
/
〈 |
|
〉 |