黄河中下游河水及沉积物花粉分布与传输特征
刘德新(1989-), 男, 河南柘城人, 博士, 副教授, 博士生导师, 研究方向为孢粉学与环境演变。E-mail: dxliu@vip.henu.edu.cn |
收稿日期: 2023-09-14
修回日期: 2024-04-11
网络出版日期: 2024-05-31
基金资助
国家自然科学基金项目(41907382)
中国博士后科学基金项目(2019M652520)
河南省博士后科学基金项目(201902025)
Spatial distribution and transport characteristics of river and sediment pollen in the middle and lower reaches of the Yellow River
Received date: 2023-09-14
Revised date: 2024-04-11
Online published: 2024-05-31
Supported by
National Natural Science Foundation of China(41907382)
China Postdoctoral Science Foundation(2019M652520)
Henan Postdoctoral Science Foundation(201902025)
厘清河流花粉现代过程是重建流域古环境的基础。尽管学界较早开展了河水花粉研究,但花粉进入河流之后如何传输、受何种动力影响等问题尚不清楚。本文选取黄河中下游干、支流布设采样断面,在丰水期采集河水和沉积物样品开展花粉分析,采用地理探测器等研究方法,探究花粉分布特征及影响因素。结果表明:① 不同流域植被组成不同,花粉类型百分比和浓度存在较大差异,河水干流花粉浓度大于支流,而沉积物花粉百分含量与浓度干流普遍低于支流。② 悬浮物浓度是影响河水花粉含量的主要因素,且在晋陕峡谷之外的样点表现尤为突出;粗沙多、流速快可能是导致晋陕峡谷干流悬浮物浓度高而花粉浓度低的原因。③ 黏粒含量是影响沉积物花粉含量的主要因素,且黏粒分别和粉砂、流速交互作用的影响更为突出;黄河出晋陕峡谷后沉积物花粉含量明显增加。④ 水库前后河水和沉积物花粉浓度变化分别与悬浮物和黏粒一致,相较于水样,水库后沉积物花粉浓度减少更为明显。⑤ 河流花粉与表土花粉有良好的对应关系,能较好的反映流域整体植被面貌。研究结果可为利用冲积物或者有河流注入的湖泊花粉开展古环境重建提供支撑。
刘德新 , 潘燕芳 , 何雪莉 , 吴朋飞 , 马建华 , 谷蕾 . 黄河中下游河水及沉积物花粉分布与传输特征[J]. 地理学报, 2024 , 79(5) : 1246 -1264 . DOI: 10.11821/dlxb202405010
Clarifying the modern process of alluvial pollen is the foundation for reconstructing the ancient environment of the watershed. Although research on the transport of pollen in rivers has started early both domestically and internationally, further research is needed on how pollen is transported and what factors affect it after entering rivers. This paper selects sampling sections for the main stream and tributaries of the middle and lower reaches of the Yellow River, collects river water and sediment samples during the flood season for pollen analysis, and uses methods such as geographic detectors to explore the distribution characteristics and influencing factors of pollen. The results show that: (1) The vegetation composition varies in different watersheds, and there are significant differences in the percentage and concentration of pollen types. The pollen concentration in the main stream of river water is higher than that in the tributaries, while the percentage and concentration of sediment pollen in the main stream are generally lower than those in the tributaries. (2) The concentration of suspended solids is the main factor affecting the concentration of pollen in the Yellow River, and it is particularly prominent outside the Shanxi-Shaanxi Gorge. Furthermore, excessive coarse sand and rapid flow velocity may be the reasons for the high concentration of suspended solids and low concentration of pollen in the main stream of the Shanxi-Shaanxi Gorge. (3) The sediment clay content is the main factor affecting the pollen content of sediment, and the interaction between clay and silt, clay and flow velocity is more prominent. After the Yellow River exited the Shanxi-Shaanxi Gorge, the concentration of sediment pollen and clay particles significantly increased. (4) The changes in pollen concentration in the river water before and after the reservoir are consistent with those in suspended solids, while the changes in sediment pollen concentration are consistent with those in clay particles. Compared to water samples, the decrease in pollen concentration in sediment after the reservoir is more pronounced. (5) There is a good correspondence between river pollen and topsoil pollen, which can better reflect the overall vegetation landscape of the watershed. The results can provide support for paleoenvironmental reconstruction using alluvial deposits or lake sediment pollen injected by rivers.
表1 研究区采样点信息Tab. 1 Sampling point information of the study area |
序号 | 样点名称 | 经度(E) | 纬度(N) | 样点类型 | 流速(m/s) | 悬浮物(mg/L) |
---|---|---|---|---|---|---|
T1 | 浑河 | 111°26′30.436″ | 39°55′31.508″ | 支流 | 0.23 | 890 |
T2 | 皇甫川 | 111°11′39.142″ | 39°13′28.072″ | 支流 | 0.35 | 56.1 |
T3 | 窟野河 | 100°26′45.844″ | 38°57′58.065″ | 支流 | 0.18 | 266.3 |
T4 | 三川河 | 110°37′51.945″ | 37°23′32.100″ | 支流 | 0.46 | 439.1 |
T5 | 无定河 | 110°25′43.826″ | 37°2′57.896″ | 支流 | 0.79 | 99.3 |
T6 | 昕水河 | 110°29′54.424″ | 36°28′19.310″ | 支流 | 0.29 | 439.4 |
T7 | 延河 | 110°28′30.159″ | 36°24′00.431″ | 支流 | 0.83 | 257 |
T8 | 汾河 | 110°29′11.962″ | 35°21′12.958″ | 支流 | 0.61 | 276 |
T9 | 渭河(泾河汇入前) | 109°2′55.452″ | 34°27′00.387″ | 支流 | 0.17 | 961.7 |
T10 | 泾河 | 109°3′26.570″ | 34°28′09.217″ | 支流 | 0.20 | 19.6 |
T11 | 渭河(泾河汇入后) | 109°4′51.412″ | 34°28′00.757″ | 支流 | 0.95 | 919.7 |
T12 | 渭河(洛河汇入前) | 110°8′59.676″ | 34°38′14.440″ | 支流 | 0.48 | 611.8 |
T13 | 洛河 | 110°8′18.999″ | 34°41′28.005″ | 支流 | 0.53 | 90.1 |
T14 | 渭河(洛河汇入后) | 110°11′55.814″ | 34°37′09.675″ | 支流 | 0.51 | 544 |
T15 | 渭河(汇入黄河前) | 110°14′14.846″ | 34°36′57.206″ | 支流 | 0.45 | 679.3 |
T16 | 伊洛河 | 113°3′29.097″ | 34°49′55.985″ | 支流 | 0.18 | 11.3 |
T17 | 沁河 | 113°25′40.915″ | 35°0′44.563″ | 支流 | 0.14 | 661 |
M1 | 黄河(浑河汇入前) | 111°26′03.712″ | 39°56′28.087″ | 干流 | 0.92 | 893.2 |
M2 | 黄河(浑河汇入后 | 111°25′45.364″ | 39°53′22.625″ | 干流 | 0.87 | 864.4 |
M3 | 黄河(皇甫川汇入前) | 111°12′32.069″ | 39°14′09.394″ | 干流 | 0.82 | 1000 |
M4 | 黄河(皇甫川汇入后) | 111°11′08.216″ | 39°12′03.354″ | 干流 | 0.74 | 1000 |
M5 | 黄河(窟野河汇入前) | 110°45′02.005″ | 38°23′54.169″ | 干流 | 0.85 | 967.8 |
M6 | 黄河(窟野河汇入后) | 110°43′07.720″ | 38°21′44.366″ | 干流 | 0.82 | 1000 |
M7 | 黄河(三川河汇入前) | 110°38′06.365″ | 37°24′42.124″ | 干流 | 0.71 | 1000 |
M8 | 黄河(三川河汇入后) | 110°37′39.146″ | 37°22′43.335″ | 干流 | 0.68 | 1000 |
M9 | 黄河(无定河汇入前) | 110°26′17.554″ | 37°2′36.679″ | 干流 | 1.58 | 1000 |
M10 | 黄河(无定河汇入后) | 110°25′15.674″ | 37°2′29.153″ | 干流 | 1.50 | 1000 |
M11 | 黄河(昕水河汇入前) | 110°29′55.496″ | 36°29′00.976″ | 干流 | 1.54 | 1000 |
M12 | 黄河(昕水河汇入后) | 110°28′42.354″ | 36°27′46.214″ | 干流 | 1.30 | 1000 |
M13 | 黄河(延河汇入后) | 110°28′14.119″ | 36°22′52.165″ | 干流 | 1.40 | 1000 |
M14 | 黄河干流2 | 110°36′50.339″ | 35°38′39.901″ | 干流 | 1.37 | 1000 |
M15 | 黄河(汾河汇入前) | 110°28′56.966″ | 35°28′07.953″ | 干流 | 1.32 | 1000 |
M16 | 黄河(汾河汇入后) | 110°22′44.886″ | 35°16′59.353″ | 干流 | 1.19 | 1000 |
M17 | 黄河(渭河汇入后) | 110°17′16.533″ | 34°36′35.851″ | 干流 | 0.46 | 691.5 |
M18 | 三门峡水库前 | 110°54′32.086″ | 34°40′28.088″ | 干流 | 0.80 | 923 |
M19 | 三门峡水库 | 111°12′35.804″ | 34°47′25.706″ | 干流 | 0.50 | 809.4 |
M20 | 三门峡水库后 | 111°21′14.908″ | 34°49′14.141″ | 干流 | 1.80 | 973 |
M21 | 三门峡—小浪底 | 111°36′10.486″ | 34°53′34.394″ | 干流 | 1.73 | 793 |
M22 | 小浪底水库 | 112°21′30.482″ | 34°56′21.125″ | 干流 | 0.60 | 664.8 |
M23 | 小浪底栖霞院 | 112°31′00.123″ | 34°52′45.340″ | 干流 | 0.76 | 667.9 |
M24 | 小浪底水库后 | 112°32′28.315″ | 34°52′29.341″ | 干流 | 1.80 | 1000 |
M25 | 黄河(伊洛河汇入前) | 113°3′15.172″ | 34°50′04.308″ | 干流 | 1.57 | 1000 |
M26 | 黄河(伊洛河汇入后) | 113°9′48.043″ | 34°50′23.657″ | 干流 | 1.53 | 1000 |
M27 | 黄河(沁河汇入前) | 113°25′00.842″ | 34°59′33.853″ | 干流 | 0.90 | 547 |
M28 | 黄河(沁河汇入后) | 113°28′53.533″ | 34°57′46.324″ | 干流 | 0.78 | 501 |
M29 | 黄河干流1 | 114°16′21.134″ | 34°54′21.127″ | 干流 | 0.77 | 472 |
SM1 | 黄河(渭河汇入前) | 110°13′44.238″ | 34°41′09.406″ | 干流 | 0.76 | 930 |
SM2 | 小浪底前 | 111°49′31.188″ | 35°3′25.936″ | 干流 | 1.75 | 845 |
表2 黄河干流和支流河水和沉积物样品的影响因子探测和交互探测结果Tab. 2 Detection and interaction detection results of influencing factors on river water and sediment samples in the main stream and tributaries of the Yellow River |
样品类型 | 影响因子 | q值 |
---|---|---|
河水样品 | 悬浮物 | 0.330** |
流速 | 0.23* | |
悬浮物∩流速 | 0.477↗ | |
沉积物样品 | 黏粒 | 0.494*** |
粉砂 | 0.096 | |
砂粒 | 0.071 | |
流速 | 0.260** | |
黏粒∩粉砂 | 0.929*↖ | |
黏粒∩砂粒 | 0.929↖ | |
黏粒∩流速 | 0.773**↗ | |
粉砂∩流速 | 0.505↖ | |
粉砂∩砂粒 | 0.443↖ | |
砂粒∩流速 | 0.574↖ |
注:***表示通过0.01显著性检验;**表示通过0.05显著性检验;*表示通过0.1显著性检验;↖表示非线性增强,是指影响因子交互作用的贡献率大于各自单独时的贡献率之和;↗表示双因子增强,是指影响因子交互作用的贡献率均大于各单一因子的贡献率。 |
图7 黄河干流和支流沉积物花粉总浓度与砂粒、粉砂和黏粒含量的关系Fig. 7 Relationship between total pollen concentration and sand, silt, and clay content in sediment of the main stream and tributaries of the Yellow River |
[1] |
[孔昭宸, 张芸, 王力, 等. 中国孢粉学的过去, 现在及未来: 侧重第四纪孢粉学. 科学通报, 2018, 63(2): 164-171.]
|
[2] |
|
[3] |
|
[4] |
[孔昭宸, 许清海, 阳小兰, 等. 河北卢龙饮马河流域全新世冲积物孢粉分析及对植被时空变化的初步探讨. 植物生态学报, 2000, 24(6): 724-730.]
|
[5] |
[许清海, 阳小兰, 杨振京. 河北滦河流域冲积物花粉与植被关系的研究. 古地理学报, 2004, 6(1): 69-77.]
|
[6] |
|
[7] |
|
[8] |
[王娜, 许清海, 张生瑞, 等. 白洋淀地区晚冰期以来的气候和环境演变. 地理学报, 2022, 77(5): 1195-1210.]
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
[许清海, 阳小兰, 王子惠, 等. 河流搬运花粉的初步研究. 植物学报, 1995, 37(10): 829-832.]
|
[17] |
[彭卫, 林雪如, 黄小忠, 等. 黄河兰州段河水搬运花粉与累积花粉组合特征初步研究. 古地理学报, 2016, 18(4): 691-698.]
|
[18] |
|
[19] |
|
[20] |
[童国榜, 龙江平, 李团结, 等. 粤西琼东海域表层孢粉沉积的形成环境. 科学通报, 2014, 59(8): 687-700.]
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
[许清海, 杨振京, 阳小兰, 等. 滦河流域及周边地区花粉与植被关系的研究. 植物生态学报, 2005, 29(3): 444-456.]
|
[30] |
|
[31] |
[刘德新, 马建华, 谷蕾, 等. 全新世中后期开封西郊黄泛沉积序列的孢粉记录. 地理学报, 2016, 71(5): 852-863.]
|
[32] |
|
[33] |
|
[34] |
|
[35] |
[王志勇, 贾新平, 邵坚, 等. 黄河中游粗泥沙集中来源区重点支流的遴选. 中国水土保持, 2006(11): 31-32.]
|
[36] |
[张佳, 王厚杰, 张勇, 等. 黄河中游主要支流输沙量变化对黄河入海泥沙通量的影响. 海洋地质与第四纪地质, 2012, 32(3): 21-30.]
|
[37] |
|
[38] |
|
[39] |
[王伏雄, 钱南芬, 张玉龙, 等. 中国植物花粉形态. 2版. 北京: 科学出版社, 1995.]
|
[40] |
[唐领余, 毛礼米, 舒军武, 等. 中国第四纪孢粉图鉴. 北京: 科学出版社, 2016.]
|
[41] |
[王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017, 72(1): 116-134.]
|
[42] |
[陈海燕, 徐德宇, 廖梦娜, 等. 中国现代花粉数据集. 植物生态学报, 2021, 45(7): 799-808.]
|
[43] |
|
[44] |
[李文漪, 姚祖驹. 表土中松属花粉与植物间数量关系的研究. 植物学报, 1990, 32(12): 943-950.]
|
[45] |
[张文超, 李春海, 鹿化煜, 等. 南洛河流域洛南盆地表土孢粉与植被的关系. 地理学报, 2013, 68(3): 398-413.]
|
[46] |
[孙爱芝, 张海红, 李雪银, 等. 北京市北部空气花粉类型及浓度变化特征研究. 地理科学, 2023, 43(4): 737-744.]
|
[47] |
[王叶星, 许清海, 张生瑞, 等. 中国西部干旱区荒漠草原相对花粉产量估算和土地覆被重建: 以新疆巴里坤盆地为例. 第四纪研究, 2021, 41(6): 1738-1748.]
|
[48] |
[翟佳, 袁凤辉, 吴家兵. 植物物候变化研究进展. 生态学杂志, 2015, 34(11): 3237-3243.]
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
[朱艳, 程波, 陈发虎, 等. 石羊河流域现代孢粉传播研究. 科学通报, 2004, 49(1): 15-21.]
|
[57] |
|
/
〈 |
|
〉 |