地表过程与环境演变

全球冰川融水无机化学研究进展

  • 闫玉强 , 1, 2 ,
  • 李向应 , 1, 2 ,
  • 刘莎 3 ,
  • 杨瑞 1, 2 ,
  • 苏茜蕊 1, 2 ,
  • 易童 1, 2
展开
  • 1.陕西省地表系统与环境承载力重点实验室,西安 710127
  • 2.西北大学城市与环境学院,西安 710127
  • 3.河海大学水文水资源学院,南京 210000
李向应(1978-), 陕西蒲城人, 教授, 从事冰冻圈地球化学循环研究。E-mail:

闫玉强(1999-), 山西大同人, 硕士生, 主要从事冰川水化学研究。E-mail:

收稿日期: 2023-09-04

  修回日期: 2024-05-09

  网络出版日期: 2024-05-31

基金资助

国家自然科学基金项目(42171123)

国家自然科学基金项目(41671053)

冻土工程国家重点实验室开放基金项目(SKLFSE201901)

Progress on inorganic chemistry of glacial meltwater in the world

  • YAN Yuqiang , 1, 2 ,
  • LI Xiangying , 1, 2 ,
  • LIU Sha 3 ,
  • YANG Rui 1, 2 ,
  • SU Xirui 1, 2 ,
  • YI Tong 1, 2
Expand
  • 1. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an 710127, China
  • 2. College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
  • 3. Hydrology and Water Resources College of Hohai University, Nanjing 210000, China

Received date: 2023-09-04

  Revised date: 2024-05-09

  Online published: 2024-05-31

Supported by

National Natural Science Foundation of China(42171123)

National Natural Science Foundation of China(41671053)

State Key Laboratory of Frozen Soil Engineering Open Fund Project(SKLFSE201901)

摘要

冰川融水是营养盐与生物活性元素运移的主要载体。融水化学是研究冰川排水系统及其动态变化特征,洞悉生物地球化学循环过程,探索冰川消退与气候变化关系的重要手段。随着冰川加速消融,侵蚀风化作用日益增强,融水化学特征发生了明显变化,对下游水质水环境和生态系统可能产生显著影响。回顾了全球冰川融水中无机化学成分含量及其时空变化特征、溶质来源及其比例、化学风化与碳循环关系,发现融水化学受基岩性质、排水系统、物理化学和地形地貌等多种因素影响。未来需要加强融水无机和有机化学参数与水文气象要素的同步连续监测,评估冰川源溶质的环境生态效应,探究冰川区化学风化作用耦合机制与溶质输移和大气CO2收支的关系,为未来冰冻圈与碳循环和气候演化关系研究提供参考。

本文引用格式

闫玉强 , 李向应 , 刘莎 , 杨瑞 , 苏茜蕊 , 易童 . 全球冰川融水无机化学研究进展[J]. 地理学报, 2024 , 79(5) : 1129 -1145 . DOI: 10.11821/dlxb202405003

Abstract

Glacial meltwater is a major carrier of nutrients and bioactive compounds, and meltwater chemistry is an important way to study the glacier drainage system and its dynamic characteristics to gain insights into the biogeochemical cycling process and explore the relationship between deglaciation and climate change. With accelerated melting of glaciers and increases in erosion and weathering, meltwater chemistry has undergone significant changes, which may have significant impacts on downstream water quality, the water environment, and ecosystems. In this study, the contents of inorganic chemical components and their spatial and temporal variations, solute sources and their proportions, and the relationship between chemical weathering and carbon cycling in global glacial meltwater were reviewed. The results indicated that meltwater chemistry is affected by various factors, such as the nature of the bedrock, the drainage system, the physical chemistry, and the topography and geomorphology. To provide references for future research on the relationships among the cryosphere, carbon cycle, and climate change, it is essential to strengthen simultaneous and continuous monitoring of hydrometeorological parameters and inorganic and organic chemical components in meltwater, evaluate the ecological and environmental effects of solutes sourced from glaciers, and examine the relationships among the coupled mechanisms of chemical weathering in glacial regions, solute mobilisation, and atmospheric CO2 balance.

1 引言

冰川融水是地表重要的淡水资源,在人类的生产生活(如发电、灌溉和饮用)中发挥着重要作用[1-3]。融水径流中化学成分主要受基岩矿物类型控制[2,4],基岩矿物经过冰川化学风化以后向河湖海输入大量溶质。溶质通量及其变率受汇流路径、水文系统结构及其季节演变影响[5],可反映化学风化反应的类型、强度、持续时间及其时空变化特征[3-5]。此外,融水化学成分的时间变化和空间分布特征在一定程度上可作为一种“示踪”工具,用来反演难以接近的冰下排水系统结构及冰下物质的生物地球化学过程[1]。因此,研究气候变暖背景下冰川融水化学特征对于了解不同尺度的化学风化、冰下水文系统以及元素生物地球化学循环等具有重要意义。
1961年Rainwater等首次开展冰川融水化学的野外观测[6],前期研究主要采用定性或半定量的方法探索融水化学[7-9]。1970年Reynolds等[8]对美国西北部South Cascade冰川的研究标志着冰川融水化学开始被关注。研究发现,冰川流域阳离子剥蚀速率显著高于全球非冰川流域平均值;较低的气温、植被盖度和土壤发育程度对化学风化有抑制作用,但这种作用可被冰川运动、融水冲刷、紊流气体交换和新鲜泥沙补给等因素抵消,由此认识到冰川化学风化较强[10]。20世纪90年代,随着各种数学方法和统计/概念模型逐渐应用到融水化学计量研究中,检测技术迅速发展使定性研究向定量化转变,并在融水溶质的组分和来源研究等方面取得较大进展[11-16]。2002年Brown综述了冰川融水化学研究[1],指出其可作为调查冰下排水系统和地球化学循环的工具。Sharp等通过溶质质量平衡关系和融水模拟模型估算了溶质组分含量和来源贡献[11],为准确估算溶质通量、评估各组分对地球化学循环的影响奠定了方法基础。近年来,冰川融水的水质变化逐渐成为国际研究热点,冰川源溶质的生态环境效应进一步受到关注[17-19]。全球气候变暖背景下,冰川消融加速造成水量水质明显变化[20],同时也改变溶质的输移速率,这可在更大范围影响元素生物地球化学循环[21-24]。因此,冰川融水化学作为一种行之有效的工具显得尤为重要。
通过对过去有野外观测记录和涉及冰川融水化学的研究文献及数据资料整理,本文汇编了全球93条冰川超过5341个融水样品的无机化学资料,包括基本理化参数、主要可溶性离子和微量元素(表1图1),分析了融水的基本理化参数特征、无机化学成分含量特征、时空变化特征、影响因素、溶质来源以及化学风化与大气CO2的关系,探讨了融水无机化学研究发展趋势,指出了无机化学研究存在的不足以及未来需要关注的研究方向,为深入研究冰川融水化学及其气候环境意义提供重要参考。
表1 全球冰川融水中pH、EC、TDS和主要离子的平均浓度/平均值

Tab. 1 Mean values/concentrations of pH, EC, TDS and ions in meltwater draining glaciers in the world

区域 pH EC
(μS/cm)
TDS
(mg/L)
Ca2+
(mg/L)
Mg2+
(mg/L)
Na+
(mg/L)
K+
(mg/L)
HCO3-
(mg/L)
SO42-
(mg/L)
Cl-
(mg/L)
NO3-
(mg/L)
冰川
条数
(条)
样品
个数
(个)
阿拉斯加 8.75±4.38 85.2±60.2 N/A 15.9±4.22 1.48±0.75 1.17±0.68 0.99±0.94 39.7±19.7 15.6±5.81 5.64±9.84 0.02±0.01 3 > 160
加拿大/美国西部 7.50±N/A N/A N/A 4.32±5.10 0.77±1.42 0.34±0.30 0.39±0.35 14.0±18.0 1.83±1.67 0.36±0.34 0.18±0.11 6 132
北极加拿大北部 6.48±N/A 19.1±N/A N/A 22.8±13.7 1.57±0.72 0.91±0.30 0.44±0.04 19.4±3.42 57.2±36.6 0.60±N/A 0.39±N/A 2 49
格陵兰边缘 8.05±4.21 9.70±2.93 8.00±2.41 1.72±1.02 0.45±0.56 0.98±1.00 0.68±0.62 13.1±9.03 1.62±1.01 0.44±0.33 0.28±0.25 9 323
格陵兰冰盖 7.96±4.17 9.71±3.07 7.99±2.53 1.58±0.96 0.41±0.57 0.82±0.87 0.74±0.62 11.7±8.40 1.82±1.04 0.37±0.27 0.13±0.09 8 >269
冰岛 8.31±4.08 152±N/A 113 11.3±6.61 1.36±0.77 4.16±2.31 0.3±0.13 15.8±N/A 3.39±1.56 0.59±N/A N/A 2 19
斯瓦尔巴 7.78±4.51 N/A N/A 13.4±5.75 5.04±3.32 10.3±7.65 0.65±0.35 31.4±17.4 42.2±44.5 5.80±5.17 0.53±0.59 5 331
斯堪的纳维亚 N/A N/A N/A 1.53±1.81 0.26±0.16 1.06±0.89 0.43±0.30 N/A N/A N/A N/A 2 2
北亚 8.32±N/A N/A N/A 15.0±N/A 1.83±N/A 0.46±N/A 0.80±N/A 45.1±N/A 13.7±N/A 0.73±N/A 0.47±N/A 1 1
中亚 7.98±2.01 93.1±66.3 63.1±55.1 14.5±8.44 4.07±6.43 2.89±6.09 1.34±1.41 35.1±20.6 19.0±14.2 1.47±2.56 1.46±1.56 22 >1686
南亚(西) 7.26±0.68 76.7±35.9 58.2±28.4 9.29±5.65 1.82±1.15 0.99±0.45 1.80±0.63 25.4±13.8 13.1±8.40 0.51±0.18 0.79±0.62 12 941
南亚(东) 7.04±0.76 82.9±27.8 49.9±16.3 8.47±3.07 3.01±2.17 2.09±1.58 2.18±0.93 35.7±29.5 16.7±9.96 2.31±2.22 0.80±0.80 14 1222
欧洲中部 7.68±4.16 N/A N/A 5.99±7.16 2.44±2.06 0.31±0.14 0.52±0.23 27.4±21.4 6.49±5.15 0.22±0.16 0.96±0.62 5 363
低纬度 4.48±N/A N/A N/A 16.1±6.05 3.65±3.23 1.35±0.37 0.52±0.08 N/A 68.4±31.9 0.07±0.05 N/A 2 32
南安第斯 7.47±0.94 107±73.0 N/A 12.3±8.13 1.89±1.45 1.84±1.26 0.37±0.23 41.9±33.2 23.5±19.7 0.69±0.61 3.13±1.82 2 3
南极/亚南极 8.05±0.68 N/A N/A 11.1±6.45 2.04±1.19 5.96±4.36 1.74±1.03 15.8±6.46 9.33±8.08 47.8±19.5 0.60±0.24 6 77
全球冰川a 7.54±3.34 85.3±57.5 58.9±42.3 10.5±7.86 2.64±3.93 2.28±4.10 1.33±1.18 30.8±27.2 17.7±19.9 2.19±5.29 0.96±1.11 85 > 5018

注:N/A指没有数据,a指冰盖以外所有冰川(不包括冰盖边缘的溢出冰川)。

图1 全球冰川融水中主要离子平均浓度的空间变化

注:资料分布在15个冰川区,包括:1阿拉斯加、2加拿大/美国西部、3北极加拿大北部、5格陵兰边缘、6冰岛、7斯瓦尔巴、8斯堪的纳维亚、10北亚、11欧洲中部、13中亚、14南亚西部、15南亚东部、16低纬度、17南安第斯和19南极/亚南极;无资料冰川区包括:4北极加拿大南部、9俄罗斯北极、12高加索和中东和18新西兰;紫色指示冰川;数据来自文献[25]。

Fig. 1 Spatial variation of mean concentrations for major ions in meltwater draining glaciers in the world

2 基本理化参数特征

冰川融水的pH资料分布较广,仅格陵兰和欧洲中部缺乏;电导率(EC)和总溶解固体(TDS)资料集中在亚洲(表1图2)。作为水体基本理化参数,pH、EC和TDS是溶质含量及其迁移转化的重要影响因素[26]。在流域尺度上,冰岛Fjallsjökull冰川的pH最高,秘鲁由融水补给的Quilcay流域最低,其较强酸性可能由黄铁矿氧化造成[27];中国七一冰川和煤矿冰川分别具有最高的EC(265 μS/cm)和TDS(236 mg/L)[28-29],表明融水溶质含量高;格陵兰Isunnguata Sermia冰川和Russell冰川的EC(9.70 μS/cm)和TDS最低(7.99 mg/L)[30],显示出较低的溶质含量(图2)。在区域尺度上,除低纬度和北极加拿大北部外,其他地区融水呈弱碱性(pH为7.04~8.75);冰岛冰川的EC和TDS最高,格陵兰边缘冰川最低(表1)。亚洲冰川融水的EC(82.9 μS/cm)和TDS(58.0 mg/L)远低于青藏高原自然水体的EC(450 μS/cm)和TDS(226 mg/L)[31],这与消融期融水流速较大和水岩作用时间较短有关[32]。在全球尺度上,由于南极/亚南极地区的融水化学数据不能代表南极冰盖[33],因此只比较了冰川与格陵兰冰盖的融水化学特征。冰川和格陵兰冰盖融水pH均值分别为7.54和7.96,均呈弱碱性;冰川融水的EC和TDS较冰盖高7倍以上,表明冰川溶质浓度普遍高于冰盖(表1)。
图2 全球冰川融水中主要理化参数的空间变化

注:pH、EC和TDS资料分别分布在14个、8个和5个冰川区;紫色指示冰川;数据来自文献[25]。

Fig. 2 Spatial variation of physical and chemical parameters in meltwater draining glaciers in the world

3 无机化学成分含量

冰川融水中无机离子的资料主要集中在亚洲高山区(表1图1)。溶质来源可根据Piper图主要离子的相对丰度来判断,有助于解释水化学组成成因[34]。由Piper图可见,大多数流域Ca2+占阳离子含量比例最高,这归因于碳酸盐的风化(如方解石)[35]。然而,亚洲、欧洲中部和格陵兰边缘的一些流域Mg2+含量较高,这可能是由硅酸盐风化引起[36];挪威Austre Okstindbreen冰川的Na+含量最高,这可能与大气气溶胶有关[37];除少数冰川外[38-40],其他冰川融水中HCO3-和SO42-可占阴离子总量的80%以上,表明碳酸盐和硫化物风化对溶质贡献很大[35]图3)。HCO3-和SO42-作为风化产物的主要阴离子,可指示碳酸盐与硫化物风化[41],但这两种离子浓度的相对比例具有显著区域差异性。例如,中国冬克玛底冰川融水溶质主要受方解石风化、黄铁矿氧化和蒸发岩溶解控制[42],融水中HCO3-含量(41.2 mg/L)比SO42-(1.02 mg/L)高1个数量级;印度Batal冰川则相反,HCO3-(9.46 mg/L)低于SO42-(49.3 mg/L)[43]。研究表明,人类活动对冰川融水化学的影响显著,如巴基斯坦Gulmit冰川融水HCO3-含量随着农业用地比例提高而增加[44],人类活动导致了尼泊尔Langtang河谷中NO3-含量升高[40]
图3 全球主要冰川区融水中主要离子Piper图

注:资料分布在12个冰川区,虚线圆圈中的数据点指示离子含量的特殊性;数据来自文献[25]。

Fig. 3 Piper diagram for major ions in meltwater draining glaciers in the world

全球尺度上,融水中主要离子类型为HCO3--Ca2+-SO42-表1),占离子总量80%以上,阳离子含量次序为Ca2+>Mg2+>Na+>K+,占比分别为62.6%、15.8%、13.7%和7.99%;阴离子为HCO3->SO42->Cl->NO3-,占比分别为59.4%、34.5%、4.27%和1.87%;冰盖阳离子含量次序为Ca2+>Na+>K+>Mg2+,阴离子为HCO3->SO42->Cl->NO3-表1)。冰川离子总含量大于冰盖,其中冰川的Ca2+含量(10.5 mg/L)比冰盖(1.58 mg/L)高1个数量级,HCO3-(30.4 mg/L)比冰盖(11.7 mg/L)高2倍,SO42-(17.7 mg/L)远高于冰盖(1.82 mg/L,表1),这可能与冰川化学风化较强有关[29]
冰川融水中微量元素的资料主要分布在中亚、斯瓦尔巴和冰岛[45-47]。与全球非冰川河流相比,冰川融水中溶解态微量元素(< 0.45 μm)的高含量主要受矿物微粒的风化作用和融水在排水系统中的滞留时间影响[48-55]。其中,Fe、Al、Sr和Mn为冰川融水中的优势元素,分别为49.5 μg/L、36.3 μg/L、36.2 μg/L和35.2 μg/L,比其他含量较低的元素(如Cr、Cd和As)高出1个数量级[45-48,51 -52,56];而冰盖中Al、Fe、Li和Ti为优势元素,分别为383 μg/L、133 μg/L、98.6 μg/L和12.2 μg/L[55];其Al和Fe含量比冰川高1个数量级,而冰川融水中Sr和Mn比冰盖高1个数量级,这种差异可能与冰川的融水量大、生物地球化学风化环境不同以及化学风化速率高密切相关[29,57 -59]。此外,微量元素存在形式多样:金属元素(如Ba、Cd、Li、Mn、Rb、Sr和Zn)以可溶性金属、非金属配合物,以及单价和二价离子的混合态为主[17,23];对氧化还原反应敏感的可溶性金属元素(如Cr、Fe和Mn)主要以氧化态存在,碱金属和碱土金属元素(如Ba、Li和Sr)主要以单价和二价阳离子形态存在,其余元素大多以羟基阴离子(如Al(OH)4-)、含氧阴离子(如CrO42-)或羟基氧化物(如Hg(OH)2)形式存在[42,60];其中一些羟基氧化物可能在悬浮泥沙表面溶解,或通过吸附、表面沉淀和共沉淀作用被去除[28,42]。通过对微量元素浓度和形态等特征的研究可获得与氧化还原过程和冰下水文路径相关的重要信息,这些信息很难由无机离子获悉[61-62]

4 无机化学成分时空变化

4.1 空间变化特征

融水中阴阳离子浓度具有明显的区域差异。就阳离子而言,青藏高原中部枪勇冰川融水的Ca2+浓度最高(37.5 mg/L),可能是由强烈的碳酸盐风化导致[63],而挪威Austre Okstindbreen冰川Ca2+浓度最低(0.23 mg/L,图1a[37];美国Gannett冰川的Mg2+浓度最低(0.05 mg/L),而中国煤矿冰川Mg2+浓度最高(31.3 mg/L,图1b),可能与基岩矿物的区域差异和周围强烈的风沙作用有关[64-66];煤矿冰川Na+浓度最高(30.4 mg/L)[29],而加拿大Berendon冰川Na+浓度最低(0.1 mg/L,图1c[63],这与基岩风化密切相关;中国公格尔3号冰川的K+浓度最高(6.90 mg/L)[29],而阿根廷Agua Negra冰川浓度最低(0.03 mg/L,图1d[54],二者相差2个数量级,这可能与流域基岩中黑云母矿物化学风化有关[67]。在区域尺度上,Ca2+在各地区均为优势离子,低纬度浓度最高,斯堪的纳维亚浓度相对较低,这与碳酸盐分布及其风化速率相关[35];斯瓦尔巴Mg2+浓度最高,斯堪的纳维亚最低,二者相差10倍以上;斯瓦尔巴和冰岛地区Na+浓度较高,欧洲中部较低,或可归因于基岩和海盐贡献的差异[15];南极/亚南极K+浓度较高,冰岛较低,相差5倍以上(表1),这种区域差异可能与硅酸盐风化速率有关[68]
就阴离子而言,巴基斯坦B&B冰川融水的HCO3-浓度最高(75.4 mg/L)[44],中国Hanging冰川最低(0.61 mg/L,图1e[69],二者相差3个数量级,这可能与碳酸盐风化差异有关。挪威Longyrbreen冰川的SO42-浓度最高(98.9mg/L,图1f),可能与Longyrbreen冰川流域岩层中富含硫化物的活性煤层有关[16]。南极Tuva冰川融水的Cl-浓度最高(47.8 mg/L,图1g),原因可能是海盐在溶质输入中占主导地位[38]。中国青冰滩72号冰川具有最高NO3-浓度(6.96 mg/L),可能与人类活动有关[70];而挪威Scottbreen冰川最低(0.02 mg/L,图1h[71],可能是受微生物活动的影响[72]。在区域尺度上,HCO3-浓度的最大和最小值分别出现在北亚地区和格陵兰冰盖,造成这一差异的原因是碳酸盐含量及其风化速率区域差异。低纬度地区SO42-浓度最高,而格陵兰边缘最低,可能与硫化物矿物含量及其风化速率有关。南极/亚南极Cl-浓度最高,低纬度最低,可能源于海盐贡献的差异;亚洲的Cl-浓度变化最大(0.01~11.6 mg/L),受西南季风影响的地区Cl-浓度更高[25]。南安第斯NO3-浓度最高,阿拉斯加最低,该区域差异由大气气溶胶主导[15,73];亚洲的NO3-浓度变化较大(0.06~6.96 mg/L),可能与部分冰川流域频繁人类活动有关(表1[40]
微量元素主要来源于基岩风化,矿物类型和风化强度的差异造成了元素浓度的区域差异[42],同时人类活动对元素浓度也有一定影响,如在中国老虎沟冰川发现一些金属元素(Ni、Zn、Mo、Cd、Sb和Pb)主要来自人为源[74]。智利Quilcay流域的Al、Mn、Zn和Pb的平均浓度与酸性矿井水的浓度相当,远高于其他冰川,原因是结合硫酸的硅酸盐风化主导着该区域的微量元素组成[27,47];加拿大Athabasca冰川Sr浓度最高,可能是碳酸盐风化强烈所导致[53]。研究发现冰川融水中一些元素的浓度接近或超过水质标准的限值或指导值,如中国冬克玛底冰川融水Fe的浓度超过了美国环境保护署(USEPA)指导值,Al、Zn和Pb的浓度接近USEPA的限值[42];中国七一冰川Fe的浓度显著低于其他冰川[28],而在瑞士Haut Glacier d'Arolla冰川Fe的浓度(390 μg/L)超过了饮用水标准[56],这可能会对河流下游居民的身体造成危害,因此应加强冰川流域微量元素尤其是重金属的监测。由于获取资料有限,多数区域仅体现部分流域特征,因此并未进行区域比较。

4.2 时间变化特征

冰川融水中溶质的年际变化数据较少,而季节和日变化数据相对较多。年际变化上,2003—2010年印度Chhota Shigri冰川阳离子年际变化趋势大体一致[35,75 -77],表明阳离子浓度影响因素较简单,而阴离子浓度变化趋势差异较显著,表明影响因素较复杂。年内变化上,由于融水径流量的变化及其稀释作用,即径流量与溶质浓度总体上呈负相关关系,离子和微量元素因而具有明显的季节和日变化特征[78-79]。例如,在中国卡尔塔马克冰川和海螺沟冰川,离子浓度与径流量/水位呈相反的变化趋势[80-81]。但一些微量元素在季节(如Mn、Co和Zn)和日(如Al、Ti和V)时间尺度上与径流量之间未观察到明显变化规律[18,28,60],这可能与矿物微粒的吸附、表面沉淀和共沉淀反应等物理化学过程有关[60,74]。对于季节变化,4种丰度较高的离子(Ca2+、Mg2+、SO42-和HCO3-)可以代表总体离子季节变化[82]。离子浓度在整个消融期呈先降后升的趋势,6月和9月左右浓度最高,7月或8月浓度最低(图4)。在消融初期,融水滞留时间较长,水岩作用强烈,且积雪的“淋溶作用”也会使溶质浓度升高[83-84];洪峰期大量融水通过冰下渠道式排水系统快速排出[41],水岩作用时间缩短,而融水稀释作用增强,导致溶质浓度降低[81];消融末期融水量减小,流速变缓,水岩作用时间增长,溶质浓度升高[76,85 -86]图4)。日变化的控制机理与季节变化类似[28],四种阳离子呈现相同变化趋势,在径流量较小的1:00—12:00浓度较高,径流量较大的13:00—24:00浓度较低;其中Mg2+和Na+日变化更明显,可为探究日变化做出更好的指示作用(图4)。
图4 典型冰川融水中主要离子浓度的季节和日变化

注:黑色柱状图为所有冰川逐日(时)离子浓度平均异常,逐日(时)浓度异常指日(时)浓度与采样期所有样品平均浓度之差除以采样期中所有样品平均浓度;季节变化包括4条冰川,分别为采样于1999年瑞士Haut Glacier d'Arolla冰川(HGA)、2006年中国天山1号冰川、2008年中国海螺沟冰川和2010年印度Chhota Shigri冰川(CSG);日变化包括19条冰川,采样于2007—2008年;数据来自文献[56,76,81,87]。

Fig. 4 Seasonal and diurnal variations of major ion concentrations in typical meltwater draining glaciers

5 溶质来源

冰川融水的溶质主要来源于地壳、大气、海盐(干湿沉降)和气溶胶,少量来自有机物、地热及人类活动输入[12-16]。已有研究在估算融水溶质通量时通常仅考虑地壳源、大气源(包含气溶胶)和海盐源[11,71],这3种来源的平均贡献率分别为65.9%(29.6%~95.5%)、24.2%(0.70%~66.6%)和9.90%(0.46%~25.0%)(图5a),其中地壳风化是溶质的主要来源,海盐贡献较少。流域尺度上,挪威Longyrbreen流域的地壳源贡献最大[16],格陵兰Kuannersuit流域最小[15];而Kuannersuit流域大气源贡献最大,Longyrbreen流域最小;挪威Scott Turnerbreen冰川海盐源贡献最大[12],瑞士Haut Glacier d'Arolla冰川最小[11];其中挪威Scott Turnerbreen、Erdmannbreen和Austre Brøggerbreen冰川的海盐贡献率高于全球平均水平,海盐贡献超过了大气,可能与这些冰川距海洋较近有关[12-13]图5a)。
图5 典型冰川融水中溶质的来源

注:虚线圆圈中的数据点指示离子含量的特殊性;数据来自文献[11-16,29,71,88]。

Fig. 5 Provenance of solutes in typical meltwater draining glaciers

利用Gibbs图、端元图等方法定性分析融水溶质形成机制及控制因素[7,89 -90]。根据Gibbs图中Na+/(Na++Ca2+)与TDS的关系,发现溶质主要来自岩石矿物化学风化,大气降水影响次之,蒸发结晶影响最小。大部分冰川区融水溶质主要来自岩石矿物化学风化,极少数流域(如低纬度地区)岩石风化、大气降水和蒸发结晶对溶质的贡献相当。溶质贡献的相对量也具有差异,例如,相较于亚洲,格陵兰边缘TDS值较小,所以其岩石风化的贡献相对较小,降水的贡献相对较大(图5b)。由端元图可见,融水中大部分溶质源于碳酸盐和硅酸盐的化学风化,少部分来自蒸发岩[1]。多数流域碳酸盐的贡献最大,蒸发岩对融水溶质的贡献最小。然而,斯堪的纳维亚和格陵兰的部分流域硅酸盐对溶质的贡献明显大于碳酸盐。值得注意的是,欧洲中部一些流域的溶质来源显示出偏离这3种岩石风化源的特征[36],可能是受到降水影响(图5c)。

6 化学风化作用

化学风化作用通过释放矿物成分来改变海洋—大气系统的碱度和氧化还原条件,进而影响大气组成[91]。冰川流域中岩石矿物的化学风化主要有以下4种类型:① 硫化物氧化;② 碳酸盐风化;③ 岩石有机碳氧化;④ 硅酸盐风化。硫化物氧化产生的硫酸直接溶解碳酸盐矿物,排放CO2(式(1)~(2))[92];碳酸溶解碳酸盐矿物产生碱度(式(5)),结合硫化物氧化生成的硫酸[93-94],排放CO2(式(6));岩石有机碳氧化排放CO2(式(3)),这3种排放途径为碳源。而硅酸盐矿物的风化作用产生碱度,作为碳汇封存CO2(式(4))[13,95]图6)。已有研究指出耦合硫化物氧化的碳酸盐风化是冰川融水的主要溶质来源,硅酸盐风化的贡献相对较小[96-99]。尽管硫化物和碳酸盐在岩石中丰度较低[91,100 -101],但其溶解速度比硅酸盐高几个数量级[99]。需要注意的是,硫化物矿物在氧化风化中产生的硫酸能中和硅酸盐风化产生的碱度[99,101]。因此,结合硫酸的硅酸盐风化不会降低大气中的CO2浓度,但结合硫酸的碳酸盐风化则会向大气中排放CO2[99,101]
图6 冰川变化、化学风化、CO2收支和气候变化关系

Fig. 6 Relationships among glacier change, chemical weathering, CO2 budgets and climate change

2 F e S 2 + 2 H 2 O + 7 O 2 4 H + + 4 S O 4 2 - + 2 F e 2 +
C a C O 3 + H 2 S O 4 C a 2 + + S O 4 2 - + H 2 O + C O 2 g
C H 2 O + O 2 C O 2 g + H 2 O
C a A l 2 S i 2 O 8 + 2 C O 2 ( a q ) + 2 H 2 O C a 2 + + 2 H C O 3 - + 2 S i O 2 + 2 A l O O H
C a C O 3 + H 2 O + C O 2 a q C a 2 + + 2 H C O 3 -
C a 2 + + H 2 S O 4 + 2 H C O 3 - C a 2 + + S O 4 2 - + 2 H 2 O + 2 C O 2 g
冰川化学风化对气候系统的反馈作用取决于化学风化是大气CO2的源还是汇,而这又取决于不同矿物化学风化耦合作用的平衡[102]。大多研究指出冰川流域是CO2汇,例如美国South Cascade冰川CO2封存速率为3.30×103 kg/(km2 a)[13],瑞士Haut Glacier d'Arolla冰川为2.90×104 kg/(km2 a)[11],印度Batal冰川为2.26×106 kg/(km2 a)[103],中国由冰川融水补给的曲嘎其流域为1.23×103 kg/(km2 a)[104]。可见在不同的流域吸收速率相差较大,其中Batal冰川吸收速率最高,可能由于采样期的高融水流量和高风化速率[103]。仅有少数研究表明,冰川流域是CO2源,例如老虎沟冰川由于硫化物耦合碳酸盐排放CO2速度远远快于硅酸盐消耗速度而成为碳源[105],中国枪勇冰川CO2排放速率为3.56×106 kg/(km2 a)[106]。硫化物、碳酸盐、硅酸盐和岩石有机碳风化速率的相对变化调节CO2封存与排放[107-108],且随着冰川作用增强,物理侵蚀速率增加,硅酸盐矿物的化学风化速率可能不变或降低,但耦合硫化物氧化的碳酸盐风化速率增加[102,109 -110],这可能导致冰川流域从封存大气CO2转变到了排放的角色。
阳离子剥蚀速率(CDR)和剥蚀强度(CDI)常作为化学风化速率和强度的代用指标。通常CDR被定义为阳离子(Na+、K+、Mg2+和Ca2+)通量与采样点控制流域面积的比值[18],温度和降水量等因素都会影响径流深,进而影响CDR,CDR与径流深具有较好的线性关系且呈正相关[29];而CDI可通过CDR与径流深的比值获得[88]。在流域尺度上,印度Dokriani冰川的CDR和CDI最大,格陵兰Watson冰川的CDR和Mittivakkat流域的CDI最小[25],由流域降水量差异导致[111]。在区域尺度上,亚洲CDR(1974 Σ*meq+/(m2 a))和CDI(1149 Σ*meq+/(m3 a))远高于其他冰川区(501 Σ*meq+/(m2 a)和519 Σ*meq+/(m3 a)),可能与其消融速率高、降水量大且暖基冰川较多有关[42,67,87,112];与其相反,其他冰川区消融速率低、降水量小且冷基冰川较多[15,38,113]。在全球尺度上,冰川流域CDR(728 Σ*meq+/(m2 a))和CDI(549 Σ*meq+/(m3 a))是格陵兰冰盖(CDR和CDI分别为216 Σ*meq+/(m2 a)和101 Σ*meq+/(m3 a))的3~5倍[25],表明冰川流域化学风化作用较强。未来随着气温持续升高,冰川消融加剧,融水量在达到拐点之前,冰川流域的化学风化作用会继续增强,化学风化源的溶质产量会不断增加,对主要由冰川补给的河流和湖泊的影响进一步增大,冰川驱动的化学风化对碳循环和气候变化的重要性也愈发显著。

7 总结与展望

冰川融水的水化学类型为HCO3--Ca2+-SO42-,3种离子占主要离子总量80%以上,阴阳离子含量次序为HCO3->SO42->Cl->NO3-和Ca2+>Mg2+>Na+>K+。阳离子主要源于耦合硫化物氧化的碳酸盐风化,阴离子主要源自地壳、海洋和大气,硅酸盐风化对微量元素的贡献较大。溶质浓度的日变化和季节变化特征明显,与径流量呈负相关关系。冰川融水的溶质浓度高于冰盖,不同区域的溶质浓度存在明显差异,而且基岩性质、气温、径流量、排水系统、物理化学过程、地形特征、土地利用和人为因素是影响冰川融水无机化学特征的主要因素。尽管冰川融水无机化学研究目前已取得大量成果,但仍存在较多不足,需加强以下研究:
(1)野外协同监测。融水离子资料主要分布在亚洲,其他地区资料较少,微量元素资料更加匮乏。尽管离子检测方法已趋于完善,但对HCO3-的定量检测仍有较大误差,需要加强野外实地检测,并对不同方法的检测结果进行交叉分析。未来还应加强融水无机和有机化学成分的协同监测,同时开展融水微生物相关的监测,为冰川地球化学研究奠定坚实基础。
(2)环境生态效应。尽管认识到冰川融水输出的无机化学成分(如重金属、活性元素)可能影响下游水环境和生态系统,但如何量化其对环境生态系统的影响仍是一个难题。未来应加强冰川融水中相关化学成分的河道输移过程以及河道和河口去除过程研究,同时开展冰川融水对水质水环境和生态系统影响评估,为元素循环和区域可持续发展研究提供保障。
(3)碳收支影响。虽然冰川侵蚀风化作用不断增强且化学风化速率已经升高,但不同矿物化学风化的耦合作用究竟是碳源还是碳汇,目前还没有确切答案。未来应加强碳酸盐、硅酸盐、硫化物和岩石有机碳氧化风化的耦合作用研究,同时结合室内实验和模拟分析手段,量化冰川消融对大气CO2收支的潜在影响,为冰川消融与气候演化关系研究提供支撑。

感谢课题组苏昊海、雷田旺、彭淑鑫、邓春燕、张凯强、惠俞翔、王泓杰、刘皓月在文章修改方面提供的帮助;特别感谢编辑老师和审稿专家对本文的修改与完善所给予的宝贵建议。

[1]
Brown G H. Glacier meltwater hydrochemistry. Applied Geochemistry, 2002, 17: 855-883.

[2]
Bisht H, Kotlia B S, Kumar K, et al. Hydrogeochemical analysis and identification of solute sources in the meltwater of Chaturangi Glacier, Garhwal Himalaya, India. Applied Water Science, 2022, 12(3): 29. DOI: 10.1007/s13201-021-01510-5.

[3]
Wang Zongxia, Liu Suxia. Estimation and spatiotemporal evolution of groundwater storage on the northern slope of the Tianshan Mountains over the past three decades. Acta Geographica Sinica, 2023, 78(7): 1744-1763.

DOI

[王宗侠, 刘苏峡. 1990—2020年天山北坡地下水储量估算及其时空演变规律. 地理学报, 2023, 78(7): 1744-1763.]

DOI

[4]
Li Mingyue, Sun Xuejun, Li Shengnan, et al. Advances on inorganic hydrochemistry of glacial meltwater runoff in the Qinghai-Tibet Plateau and its surrounding areas. Journal of Glaciology and Geocryology, 2020, 42(2): 562-574.

DOI

[李明月, 孙学军, 李胜楠, 等. 青藏高原及其周边地区冰川融水无机水化学特征研究进展. 冰川冻土, 2020, 42(2): 562-574.]

DOI

[5]
Sharp M J. Hydrological inferences from meltwater quality data: The unfulfilled potential. Proceedings of the British Hydrological Society 3rd National Symposium, 1991: 16-18.

[6]
Rainwater F H, Guy H P. Some Observations on the Hydrochemistry and Sedimentation of the Chamberlin Glacier Area, Alaska. Washington DC: United States Government Printing Office, 1961.

[7]
Gibbs R J. Mechanisms controlling world water chemistry. Science, 1970, 170(3962): 1088-1090.

DOI PMID

[8]
Reynolds R C, Johnson N M. Chemical weathering in the temperate glacial environment of the northern Cascade Mountains. Geochimica et Cosmochimica Acta, 1972, 36(5): 537-554.

[9]
Collins D N. Hydrology of an alpine glacier as indicated by the chemical composition of meltwater. Zeitschrift fur Gletscherkunde und Glazialgeollogie, 1977, 13: 219-238.

[10]
Brown G H, Tranter M, Sharp M J. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 1996, 10(4): 579-597.

[11]
Sharp M, Tranter M, Brown G H, et al. Rates of chemical denudation and CO2 drawdown in a glacier-covered alpine catchment. Geology, 1995, 23(1): 61-64.

[12]
Hodgkins R, Tranter M, Dowdeswell J A. Solute provenance, transport and denudation in a high arctic glacierized catchment. Hydrological Processes, 1997, 11(14): 1813-1832.

[13]
Hodson A, Tranter M, Vatne G. Contemporary rates of chemical denudation and atmospheric CO2 sequestration in glacier basins: An Arctic perspective. Earth Surface Processes and Landforms, 2000, 25(13): 1447-1471.

[14]
Hodson A, Porter P, Lowe A, et al. Chemical denudation and silicate weathering in Himalayan glacier basins: Batura glacier, Pakistan. Journal of Hydrology, 2002, 262(1): 193-208.

[15]
Yde J C, Tvis Knudsen N, Nielsen O B. Glacier hydrochemistry, solute provenance, and chemical denudation at a surge-type glacier in Kuannersuit Kuussuat, Disko Island, West Greenland. Journal of Hydrology, 2005, 300(1): 172-187.

[16]
Yde J C, Riger-Kusk M, Christiansen H H, et al. Hydrochemical characteristics of bulk meltwater from an entire ablation season, Longyearbreen, Svalbard. Journal of Glaciology, 2008, 54(185): 259-272.

[17]
Savichev O G, Paromov V V. Chemical composition of glacial meltwaters and river waters within the Aktru river basin (Gornyi Altai). Geography and Natural Resources, 2013, 34(4): 364-370.

[18]
Li X Y, Ding Y J, Han T D, et al. Seasonal controls of meltwater runoff chemistry and chemical weathering at Urumqi Glacier No.1 in central Asia. Hydrological Processes, 2019, 33(26): 3258-3281.

[19]
Wang Shiyu, Sun Congjian, Chen Wei, et al. Assessing water resource risks in inland river basins of Northwest China from water chemistry and runoff. Acta Geographica Sinica, 2023, 78(11): 2763-2780.

DOI

[王诗语, 孙从建, 陈伟, 等. 基于水化学及径流组成的中国西北内陆河流域水资源风险评估. 地理学报, 2023, 78(11): 2763-2780.]

DOI

[20]
Zhang Q F, Chen Y N, Li Z, et al. Glacier changes from 1975 to 2016 in the Aksu River Basin, Central Tianshan Mountains. Journal of Geographical Sciences, 2019, 29(6): 984-1000.

DOI

[21]
IPCC. Special Report on the Ocean and Cryosphere in a Changing Limate. New York: Cambridge University Press, 2019.

[22]
Li Yaojun, Ding Yongjian, Shangguan Donghui, et al. Climate-driven acceleration of glacier mass loss on global and regional scales during 1961-2016. Scientia Sinica (Terrae), 2021, 51(3): 453-464.

[李耀军, 丁永建, 上官冬辉, 等. 1961—2016年全球变暖背景下冰川物质亏损加速度研究. 中国科学: 地球科学, 2021, 51(3): 453-464.]

[23]
Zhong Xinyue, Kang Shichang, Guo Wanqin, et al. The rapidly shrinking cryopshere in the past decade: An interpretation of cryospheric changes from IPCC WGI Sixth Assessment Report. Journal of Glaciology and Geocryology, 2022, 44(3): 946-953.

[钟歆玥, 康世昌, 郭万钦, 等. 最近十多年来冰冻圈加速萎缩: IPCC第六次评估报告之冰冻圈变化解读. 冰川冻土, 2022, 44(3): 946-953.]

[24]
Zhao Guining, Zhang Zhengyong, Liu Lin, et al. Changes of glacier mass balance in Manas River basin based on multi-source remote sensing data. Acta Geographica Sinica, 2020, 75(1): 98-112.

DOI

[赵贵宁, 张正勇, 刘琳, 等. 基于多源遥感数据的玛纳斯河流域冰川物质平衡变化. 地理学报, 2020, 75(1): 98-112.]

DOI

[25]
Li Xiangying. Global Glacier Water Chemistry and Chemical Weathering Data Set. National Qinghai-Tibet Plateau Data Center, 2021. https://doi.org/10.11888/Glacio.tpdc.271705.

[李向应. 全球冰川水化学与化学风化数据集. 国家青藏高原数据中心, 2021. https://doi.org/10.11888/Glacio.tpdc.271705.]

[26]
Zhao G, Li W, Li F, et al. Hydrochemistry of waters in snowpacks, lakes and streams of Mt. Dagu, eastern of Tibetan Plateau. Science of the Total Environment, 2018, 610: 641-650.

[27]
Fortner S K, Mark B G, McKenzie J M, et al. Elevated stream trace and minor element concentrations in the foreland of receding tropical glaciers. Applied Geochemistry, 2011, 26(11): 1792-1801.

[28]
Li X Y, Qin D H, Jing Z F, et al. Diurnal hydrological controls and non-filtration effects on minor and trace elements in stream water draining the Qiyi Glacier, Qilian Mountain. Science China: Earth Sciences, 2013, 56(1): 81-92.

[29]
Li X Y, Wang N L, Ding Y J, et al. Globally elevated chemical weathering rates beneath glaciers. Nature Communications, 2022, 13(1): 407. DOI: 10.1038/s41467-022-28032-1.

PMID

[30]
Wimpenny J, James R H, Burton K W, et al. Glacial effects on weathering processes: New insights from the elemental and lithium isotopic composition of west Greenland rivers. Earth and Planetary Science Letters, 2010, 290: 427-437.

[31]
Tian Y, Yu C Q, Luo K L, et al. Hydrochemical characteristics and element contents of natural waters in Tibet, China. Journal of Geographical Sciences, 2015, 25(6): 669-686.

DOI

[32]
Han T D, Li X Y, Gao M J, et al. Electrical conductivity during the ablation process of the glacier No. 1 at the headwaters of the Urumqi River in the Tianshan Mountains. Arctic, Antarctic, and Alpine Research, 2015, 47(2): 327-334.

[33]
Hood E, Battin T J, Fellman J, et al. Storage and release of organic carbon from glaciers and ice sheets. Nature Geoscience, 2015, 8(2): 91-96.

[34]
Bisht H, Arya P C, Kumar K. Hydro-chemical analysis and ionic flux of meltwater runoff from Khangri glacier, west Kameng, Arunachal Himalaya, India. Environmental Earth Sciences, 2018, 77: 598. DOI: 10.1007/s12665-018-7779-6.

[35]
Sharma P, Ramanathan A L, Pottakkal J. Study of solute sources and evolution of hydrogeochemical processes of the Chhota Shigri glacier meltwaters, Himachal Himalaya, India. Hydrological Sciences Journal, 2013, 58(5): 1128-1143.

[36]
Fairchild I J, Bradby L, Sharp M, et al. Hydrochemistry of carbonate terrains in alpine glacial settings. Earth Surface Processes and Landforms, 1994, 19(1): 33-54.

[37]
Theakstone W H, Knudsen N T. Isotopic and ionic variations in glacier river water during three contrasting ablation seasons. Hydrological Processes, 1996, 10(4): 523-539.

[38]
Hodson A, Heaton T, Langford H, et al. Chemical weathering and solute export by meltwater in a maritime Antarctic glacier basin. Biogeochemistry, 2010, 98: 9-27.

[39]
Hindshaw R S, Tipper E T, Reynolds B C, et al. Hydrological control of stream water chemistry in a glacial catchment (Damma glacier, Switzerland). Chemical Geology, 2011, 285: 215-230.

[40]
Tuladhar A, Kayastha R B, Gurung S, et al. Hydro-chemical characterization of glacial melt waters draining from Langtang Valley, Nepal. Journal of Water Resource and Protection, 2015, 7(8): 605-613.

[41]
Brown G H, Sharp M, Tranter M. Subglacial chemical erosion: Seasonal variations in solute provenance, Haut Glacier d'arolla, Valais, Switzerland. Annals of Glaciology, 1996, 22: 25-31.

[42]
Li X Y, He X B, Kang S C, et al. Diurnal dynamics of minor and trace elements in stream water draining Dongkemadi Glacier on the Tibetan Plateau and its environmental implications. Journal of Hydrology, 2016, 541: 1104-1118.

[43]
Singh V B, Ramanathan A. Characterization of hydrogeochemical processes controlling major ion chemistry of the Batal glacier meltwater, Chandra basin, Himachal Pradesh, India. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2017, 87: 145-153.

[44]
Zhang F, Qaiser F U, Zeng C, et al. Meltwater hydrochemistry at four glacial catchments in the headwater of Indus River. Environmental Science and Pollution Research International, 2019, 26(23): 23645-23660.

DOI PMID

[45]
Singh A T, Laluraj C, Sharma P, et al. Export fluxes of geochemical solutes in the meltwater stream of Sutri Dhaka glacier, Chandra basin, western Himalaya. Environmental Monitoring and Assessment, 2017, 189: 555. DOI: 10.1007/s10661-017-6268-9.

PMID

[46]
Eiriksdottir E S, Gislason S R, Oelkers E H. Direct evidence of the feedback between climate and nutrient, major, and trace element transport to the oceans. Geochimica et Cosmochimica Acta, 2015, 166: 249-266.

[47]
Stachnik Ł, Yde J C, Nawrot A, et al. Aluminium in glacial meltwater demonstrates an association with nutrient export (Werenskiöldbreen, Svalbard). Hydrological Processes, 2019, 33(12): 1638-1657.

DOI

[48]
Colombo M, Brown K A, De Vera J, et al. Trace metal geochemistry of remote rivers in the Canadian Arctic Archipelago. Chemical Geology, 2019, 525: 479-491.

DOI

[49]
Brighenti S, Tolotti M, Bruno M C, et al. After the peak water: The increasing influence of rock glaciers on alpine river systems. Hydrological Processes, 2019, 33(21): 2804-2823.

DOI

[50]
Sepúlveda L, Pasquini A, Temporetti P, et al. Unraveling the sources of major, trace and rare earth elements in the waters of a high latitude proglacial environment: Weathering vs. atmospheric signature in northern Patagonia. Chemical Geology, 2024, 646: 121919. DOI: 10.1016/j.chemgeo.2023.121919.

[51]
Galeczka I, Oelkers E H, Gislason S R. The chemistry and element fluxes of the July 2011 Múlakvísl and Kaldakvísl glacial floods, Iceland. Journal of Volcanology and Geothermal Research, 2024, 273: 41-57.

[52]
Fortner S K, Lyons W B, Fountain A G, et al. Trace element and major ion concentrations and dynamics in glacier snow and melt: Eliot glacier, Oregon Cascades. Hydrological Processes, 2009, 23(21): 2987-2996.

[53]
Staniszewska K J, Cooke C A, Reyes A V. Quantifying meltwater sources and contaminant fluxes from the Athabasca glacier, Canada. American Chemical Society Earth and Space Chemistry, 2021, 5(1): 23-32.

[54]
Lecomte K L, Milana J P, Formica S M, et al. Hydrochemical appraisal of ice- and rock-glacier meltwater in the hyperarid Agua Negra drainage basin, Andes of Argentina. Hydrological Processes, 2008, 22(13): 2180-2195.

[55]
Hawkings J R, Skidmore M L, Wadham J L, et al. Enhanced trace element mobilization by earth's ice sheets. PNAS, 2020, 117(50): 31648-31659.

DOI PMID

[56]
Mitchell A, Brown G H, Fuge R. Minor and trace element export from a glacierized alpine headwater catchment (Haut Glacier d'Arolla, Switzerland). Hydrological Processes, 2001, 15(18): 3499-3524.

[57]
Graly J A, Humphrey N F, Landowski C M, et al. Chemical weathering under the Greenland ice sheet. Geology, 2014, 42(6): 551-554.

[58]
Michaud A B, Skidmore M L, Mitchell A C, et al. Solute sources and geochemical processes in subglacial lake Whillans, west Antarctica. Geology, 2016, 44(5): 347-350.

[59]
Yde J C, Knudsen N T, Hasholt B, et al. Meltwater chemistry and solute export from a Greenland ice sheet catchment, Watson River, west Greenland. Journal of Hydrology, 2014, 519: 2165-2179.

[60]
Mitchell A C, Brown G H. Diurnal hydrological-physicochemical controls and sampling methods for minor and trace elements in an alpine glacial hydrological system. Journal of Hydrology, 2007, 332: 123-143.

[61]
Gaillardet J, Viers J, Dupré B. Trace elements in river waters. Treatise on Geochemistry, 2014, 7: 195-235.

[62]
Hawkings J R, Wadham J L, Tranter M, et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nature Communications, 2014, 5: 3929. DOI: 10.1038/ncomms4929.

PMID

[63]
Eyles N, Sasseville D R, Slatt R M, et al. Geochemical denudation rates and solute transport mechanisms in a maritime temperate glacier basin. Canadian Journal of Earth Sciences, 1982, 19(8): 1570-1581.

[64]
Huang Cuilan, Pu Jianchen. The features of cations within glacier ice, snow and river water in the district of Xidatan Meikuang Glacier. Journal of Glaciology and Geocryology, 1995, 17(3): 283-288.

[皇翠兰, 蒲健辰. 西大滩煤矿冰川区冰川冰、雪和河水的阳离子特征. 冰川冻土, 1995, 17(3): 283-288.]

[65]
Stumpf A R, Elwood Madden M E, Soreghan G S, et al. Glacier meltwater stream chemistry in Wright and Taylor Valleys, Antarctica: Significant roles of drift, dust and biological processes in chemical weathering in a polar climate. Chemical Geology, 2012, 322: 79-90.

[66]
Barkdull N S, Carling G T, Fernandez D P, et al. Glaciers control the hydrogeochemistry of proglacial streams during late summer in the wind river range, Wyoming, United States. Frontiers in Earth Science, 2021, 9: 727575. DOI: 10.3389/feart.2021.727575.

[67]
Axtmann E V, Stallard R F. Biogeochemistry of Seasonally Snow-Covered Catchments. Boulder: International Association of Hydrological Sciences Publications, 1995: 431-439.

[68]
Kumar K, Miral M S, Joshi S, et al. Solute dynamics of meltwater of Gangotri glacier, Garhwal Himalaya, India. Environmental Geology, 2009, 58(6): 1151-1159.

[69]
Yu Z L, Wu G J, Li F, et al. Glaciation enhanced chemical weathering in a cold glacial catchment, western Nyaingentanglha Mountains, central Tibetan Plateau. Journal of Hydrology, 2021, 597: 126197. DOI: 10.1016/j.jhydrol.2021.126197.

[70]
Wang Shengjie, Zhang Mingjun, Wang Feiteng, et al. A review of the concentration records of nitrate in snow and ice. Journal of Glaciology and Geocryology, 2010, 32(6): 1162-1169.

[王圣杰, 张明军, 王飞腾, 等. 雪冰中NO3-浓度记录的研究进展. 冰川冻土, 2010, 32(6): 1162-1169.]

[71]
Krawczyk W E, Lefauconnier B, Pettersson L E. Chemical denudation rates in the Bayelva catchment, Svalbard, in the Fall of 2000. Physics and Chemistry of the Earth, 2003, 28: 1257-1271.

[72]
Tranter M, Brown G H, Hodson A J, et al. Variations in the nitrate concentration of glacial runoff in alpine and sub-Polar environments// Tranter M, Brown G H. Yokohama: International Association of Hydrological Sciences Publications, 1994, 299-311.

[73]
Liu Feng, Li Zhongqin, Hao Jianan, et al. Chemistry characteristics and environmental significance of snow deposited on the Yushugou Glacier No. 6, Tianshan Mountains. Environmental Chemistry, 2020, 39(9): 2498-2506.

[刘峰, 李忠勤, 郝嘉楠, 等. 天山哈密榆树沟6号冰川积雪化学特征及环境意义. 环境化学, 2020, 39(9): 2498-2506.]

[74]
Dong Z W, Kang S C, Qin D H, et al. Temporal and diurnal analysis of trace elements in the Cryospheric water at remote Laohugou basin in northeast Tibetan Plateau. Chemosphere, 2017, 171: 386-398.

DOI PMID

[75]
Singh V B, Ramanathan A L, Sharma P, et al. Dissolved ion chemistry and suspended sediment characteristics of meltwater draining from Chhota Shigri glacier, western Himalaya, India. Arabian Journal of Geosciences, 2015, 8: 281-293.

[76]
Singh V B, Ramanathan A L. Hydrogeochemistry of the Chhota Shigri glacier meltwater, Chandra basin, Himachal Pradesh, India: Solute acquisition processes, dissolved load and chemical weathering rates. Environmental Earth Sciences, 2017, 76: 223. DOI: 10.1007/s12665-017-6465-4.

[77]
Hasnain S I, Subramanian V, Dhanpal K. Chemical characteristics and suspended sediment load of meltwaters from a Himalayan glacier in India. Journal of Hydrology, 1989, 106: 99-108.

[78]
He Xiaobo, Ding Yongjian, Liu Shiyin, et al. Obsevation and analyses of hydrological process of the Kaltamak glacier in Muztag Ata. Journal of Glaciology and Geocryology, 2005, 27(2): 262-268.

[何晓波, 丁永建, 刘时银, 等. 慕士塔格卡尔塔马克冰川水文观测与特征分析. 冰川冻土, 2005, 27(2): 262-268.]

[79]
Wu Xiaobo, Li Quanlian, Song Gaoju, et al. Hydrochemical characteristics and evolution of runoff at Qiyi Glacier, Qilian Mts. Enviornmental Science, 2008, 29(3): 613-618.

[武小波, 李全莲, 宋高举, 等. 祁连山七一冰川融水化学组成及演化特征. 环境科学, 2008, 29(3): 613-618.]

[80]
Zhao Huabiao, Yao Tandong, Xu Baiqing. Hydrological and hydrochemical features of Kartamak Glacier area in Muztag Ata. Journal of Glaciology and Geocryology, 2006, 28(2): 269-275.

[赵华标, 姚檀栋, 徐柏青. 塔格卡尔塔马克冰川作用区的水文与水化学特征. 冰川冻土, 2006, 28(2): 269-275.]

[81]
Li X Y, Ding Y J, Liu Q, et al. Intense chemical weathering at glacial meltwater-dominated Hailuogou basin in the southeastern Tibetan Plateau. Water, 2019, 11(6): 1209. DOI: 10.3390/w11061209.

[82]
Mitchell A C, Brown G H, Fuge R. Minor and trace elements as indicators of solute provenance and flow routing in a subglacial hydrological system. Hydrological Processes, 2006, 20(4): 877-897.

[83]
Liu F J, Williams M, Sun J Y, et al. Hydrochemical process and hydrological separation at the headwaters of the Urumqi River, Tianshan Mountains, China. Journal of Glaciology and Geocryology, 1999, 21(4): 362-370.

[84]
Johannessen M, Henriksen A. Chemistry of snow meltwater: Changes in concentration during melting. Water Resources Research, 1978, 14(4): 615-619.

[85]
Wu X B. Diurnal and seasonal variation of glacier meltwater hydrochemistry in Qiyi glacierized catchment in Qilian Mountains, northwest China: Implication for chemical weathering. Journal of Mountain Science, 2018, 15(5): 1035-1045.

[86]
Song Lingling, Tian Qing, Li Zongjie, et al. Hydrochemical characteristics of melt-water in the Yuzhu Peak glacier, Kunlun mountains. Environmental Chemistry, 2019, 38(8): 1864-1871.

[宋玲玲, 田青, 李宗杰, 等. 昆仑山玉珠峰冰川冰雪融水水化学特征分析. 环境化学, 2019, 38(8): 1864-1871.]

[87]
Feng F, Li Z Q, Jin S, et al. Hydrochemical characteristics and solute dynamics of meltwater runoff of Urumqi Glacier No.1, Eastern Tianshan, northwest China. Journal of Mountain Science, 2012, 9(4): 472-482.

[88]
Krawczyk W E, Bartoszewski S A. Crustal solute fluxes and transient carbon dioxide drawdown in the Scottbreen Basin, Svalbard in 2002. Journal of Hydrology, 2008, 362: 206-219.

[89]
Zhao Aifang, Zhang Mingjun, Li Zhongqin, et al. Hydrochemical characteristics in the Glacier No.72 of Qingbingtan, Tomur Peak. Enviormental Science, 2012, 33(5): 1484-1490.

[赵爱芳, 张明军, 李忠勤, 等. 冰滩72号冰川径流水化学特征初步研究. 环境科学, 2012, 33(5): 1484-1490.]

[90]
Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 1999, 159: 3-30.

[91]
Hilton R G, West A J. Mountains, erosion and the carbon cycle. Nature Reviews Earth & Environment, 2020, 1: 284-299.

[92]
Tranter M, Sharp M J, Lamb H R, et al. Geochemical weathering at the bed of Haut Glacier d'Arolla, Switzerland: A new model. Hydrological Processes, 2002, 16(5): 959-993.

[93]
Torres M A, West A J, Li G. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature, 2014, 507(7492): 346-349.

[94]
Soulet G, Hilton R G, Garnett M H, et al. Temperature control on CO2 emissions from the weathering of sedimentary rocks. Nature Geoscience, 2021, 14(9): 665-671.

[95]
Sharp M, Brown G H, Tranter M, et al. Comments on the use of chemically based mixing models in glacier hydrology. Journal of Glaciology, 1995, 41(138): 241-246.

[96]
Liu J K, Han G L, Zhang Q, et al. Stable isotopes and Bayesian tracer mixing model reveal chemical weathering and CO2 release in the Jiulongjiang River basin, southeast China. Water Resources Research, 2022, 58(9): e2021WR031738. DOI: 10.1029/2021WR031738.

[97]
Li Xiangying, Wang Ninglian, Ding Yongjian, et al. CO2 release driven by co-weathering of silicate, carbonate and sulfide. Chinese Science Bulletin, 2022, 67(23): 2704-2707.

[李向应, 王宁练, 丁永建, 等. 硅酸盐、碳酸盐和硫化物共同风化促使CO2排放. 科学通报, 2022, 67(23): 2704-2707.]

[98]
Brown G H, Sharp M J, Tranter M, et al. Impact of post-mixing chemical reactions on the major ion chemistry of bulk meltwaters draining the Haut Glacier d'Arolla, Valais, Switzerland. Hydrological Processes, 1994, 8(5): 465-480.

[99]
Morse J W, Arvidson R S. The dissolution kinetics of major sedimentary carbonate minerals. Earth-Science Reviews, 2002, 58: 51-84.

[100]
Torres M A, West A J, Clark K E, et al. The acid and alkalinity budgets of weathering in the Andes-Amazon system: Insights into the erosional control of global biogeochemical cycles. Earth and Planetary Science Letters, 2016, 450: 381-391.

[101]
Calmels D, Gaillardet J, Brenot A, et al. Sustained sulfide oxidation by physical erosion processes in the Mackenzie river basin: Climatic perspectives. Geology, 2007, 35(11): 1003-1006.

[102]
Torres M A, Moosdorf N, Hartmann J, et al. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks. PNAS, 2017, 114(33): 8716-8721.

DOI PMID

[103]
Singh V B, Keshari A K, Ramanathan A L. Major ion chemistry and atmospheric CO2 consumption deduced from the Batal glacier, Lahaul-Spiti valley, Western Himalaya, India. Environment, Development and Sustainability, 2020, 22(7): 6585-6603.

[104]
Yu Z L, Li J H, Wu G J, et al. Dissolved inorganic carbon budget of two alpine catchments in the central Tibetan Plateau: Glaciation matters. Science of the Total Environment, 2023, 898: 165191. DOI: 10.1016/j.scitotenv.2023.165191.

[105]
Cao Y, Wang M, Zhang F, et al. Chemical weathering in glacial catchment acting as a net carbon source. Science of the Total Environment, 2023, 901: 165842. DOI: 10.1016/j.scitotenv.2023.165842.

[106]
Zhang F, Xiao X, Wang L J, et al. Chemical weathering and CO2 consumption in the glaciated Karuxung river catchment, Tibetan Plateau. Hydrological Processes, 2021, 35(8): e14330. DOI: 10.1002/hyp.14330.

[107]
Riebe C S, Hahm W J, Brantley S L. Controls on deep critical zone architecture: A historical review and four testable hypotheses. Earth Surface Processes and Landforms, 2017, 42(1): 128-156.

[108]
Zondervan J R, Hilton R G, Dellinger M, et al. Rock organic carbon oxidation CO2 release offsets silicate weathering sink. Nature, 2023, 623(7986): 329-333.

[109]
Bufe A, Hovius N, Emberson R, et al. Co-variation of silicate, carbonate and sulfide weathering drives CO2 release with erosion. Nature Geoscience, 2021, 14(4): 211-216.

[110]
Li Zheng, Zhong Jun, Li Siliang, et al. Chemical weathering in a typical glacier catchment in the northern Qinghai-Tibet Plateau. Acta Geographica Sinica, 2023, 78(7): 1792-1808.

DOI

[李铮, 钟君, 李思亮, 等. 青藏高原北部典型冰川流域化学风化研究. 地理学报, 2023, 78(7): 1792-1808.]

DOI

[111]
Hasnain S I, Thayyen R J. Controls on the major-ion chemistry of the Dokriani glacier meltwaters, Ganga basin, Garhwal Himalaya, India. Journal of Glaciology, 1999, 45(149): 87-92.

[112]
Hasnain S I, Thayyen R J. Sediment transport and solute variation in meltwaters of Dokriani Glacier (Bamak), Garhwal Himalaya. Journal of the Geological Society of India, 1996, 47: 731-739.

[113]
Yde J C, Tvis Knudsen N. The importance of oxygen isotope provenance in relation to solute content of bulk meltwaters at Imersuaq Glacier, west Greenland. Hydrological Processes, 2004, 18(1): 125-139.

文章导航

/