理论与方法探索

青藏高原地表大气氧含量空间格局及自然地带“三维分异”的新认识

  • 史培军 , 1, 2, 3 ,
  • 胡小康 1, 4 ,
  • 陈彦强 4, 7 ,
  • 张慧 1, 4 ,
  • 杨合仪 1, 4 ,
  • 胡金鹏 1, 4 ,
  • 杨雯倩 1, 4 ,
  • 贾伟 5 ,
  • 马伟东 2, 5 ,
  • 姜璐 2, 4, 5 ,
  • 张钢锋 1, 4 ,
  • 蒲小燕 6 ,
  • 郝力壮 6 ,
  • 王静爱 4 ,
  • 朱文泉 4 ,
  • 马永贵 2, 5 ,
  • 唐海萍 4 ,
  • 陈志 2, 5
展开
  • 1.北京师范大学地表过程与资源生态国家重点实验室,北京 100875
  • 2.青海省人民政府—北京师范大学高原科学与可持续发展研究院,西宁 810016
  • 3.应急管理部—教育部减灾与应急管理研究院,北京 100875
  • 4.北京师范大学地理科学学部,北京 100875
  • 5.青海师范大学,西宁 810016
  • 6.青海大学,西宁 810016
  • 7.四川大学,成都 610065
史培军(1959-), 男, 陕西靖边人, 教授, 博导, 主要从事环境演变与自然灾害研究。E-mail:

收稿日期: 2022-10-08

  修回日期: 2023-02-10

  网络出版日期: 2023-03-27

基金资助

第二次青藏高原综合科学考察研究(2019QZKK0606)

Spatial pattern of oxygen concentration and "three-dimensional zonation" in the natural zone on the Qinghai-Tibet Plateau

  • SHI Peijun , 1, 2, 3 ,
  • HU Xiaokang 1, 4 ,
  • CHEN Yanqiang 4, 7 ,
  • ZHANG Hui 1, 4 ,
  • YANG Heyi 1, 4 ,
  • HU Jinpeng 1, 4 ,
  • YANG Wenqian 1, 4 ,
  • JIA Wei 5 ,
  • MA Weidong 2, 5 ,
  • JIANG Lu 2, 4, 5 ,
  • ZHANG Gangfeng 1, 4 ,
  • PU Xiaoyan 6 ,
  • HAO Lizhuang 6 ,
  • WANG Jing'ai 4 ,
  • ZHU Wenquan 4 ,
  • MA Yonggui 2, 5 ,
  • TANG Haiping 4 ,
  • CHEN Zhi 2, 5
Expand
  • 1. State Key Laboratory of Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
  • 2. Academy of Plateau Science and Sustainability, People's Government of Qinghai Province and Beijing Normal University, Xining 810016, China
  • 3. Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management and Ministry of Education, Beijing Normal University, Beijing 100875, China
  • 4. Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
  • 5. Qinghai Normal University, Xining 810016, China
  • 6. Qinghai University, Xining 810016, China
  • 7. Sichuan University, Chengdu 610065, China

Received date: 2022-10-08

  Revised date: 2023-02-10

  Online published: 2023-03-27

Supported by

The Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0606)

摘要

青藏高原地表氧含量是海拔、地势、气候、水域、植被、土壤综合作用的结果,其中海拔、气温、植被覆盖度与叶面积指数的相对贡献分别为-39.58%、35.50%、24.92%。青藏高原地表氧含量首先呈现东南向西北递减的差异,这主要与依赖水热条件的植被产氧有关;其次是东西延伸、南北更替的差异,这主要与依赖气温与地势的大气压对氧含量的影响有关;第三是随海拔变化的垂直分异,这主要与依赖地势、气温的大气压,以及依赖温度与水分的植被产氧有关。地表氧含量可以定量展现地表自然地理特征的时空格局,据此,本文把青藏高原自然地带划分为3个一级区、17个二级区,即:东南部亚热带森林—森林草原区域,地表年均氧含量为20.35%,7月平均值为20.45%,1月平均值为20.27%,含2个二级区;东部温带森林—草原—草甸区域,地表年均氧含量为20.10%,7月平均值为20.23%,1月平均值为20.00%,含5个二级区;西部寒带温带草原—荒漠—草甸区域,地表年均氧含量为20.00%,7月平均值为20.10%,1月平均值为19.91%,含10个二级区。

本文引用格式

史培军 , 胡小康 , 陈彦强 , 张慧 , 杨合仪 , 胡金鹏 , 杨雯倩 , 贾伟 , 马伟东 , 姜璐 , 张钢锋 , 蒲小燕 , 郝力壮 , 王静爱 , 朱文泉 , 马永贵 , 唐海萍 , 陈志 . 青藏高原地表大气氧含量空间格局及自然地带“三维分异”的新认识[J]. 地理学报, 2023 , 78(3) : 532 -547 . DOI: 10.11821/dlxb202303002

Abstract

The earth surface oxygen concentration on the Qinghai-Tibet Plateau is the result of the combined effect of multi-factors, such as elevation, topography, climate, water, vegetation, and soil, among them, the relative contributions of altitude, temperature, vegetation coverage and leaf area index are -39.58%, 35.50%, and 24.92%, respectively. The earth surface oxygen concentration on the plateau primarily shows the difference from southeast to northwest, which is mainly related to the effect of vegetation on oxygen production depending on precipitation; secondly shows the difference on east-west extension and north-south turnover, which is mainly related to the effect of atmospheric pressure on relative oxygen concentration depending on temperature and terrain; thirdly shows the vertical zonation, which is mainly related to the effect of atmospheric pressure on the relative oxygen concentration depending on the terrain and temperature, bond with the effect of vegetation on oxygen production depending on temperature and precipitation. The earth surface oxygen concentration can quantitatively reveal the spatio-temporal pattern of the physiographical characteristics of the earth surface. Accordingly, we divide the natural zone of the Qinghai-Tibet Plateau into 3 first-grade regions and 17 second-grade zones. In the southeastern subtropical forest-forest steppe region, including 2 second-grade zones, the annual average oxygen concentration is 20.35%, the average oxygen concentration in July is 20.45%, and the average oxygen concentration in January is 20.27%. In the eastern temperate forest-steppe region, including 5 second-grade zones, the annual average oxygen concentration is 20.10%, the average oxygen concentration in July is 20.23%, and the average oxygen concentration in January is 20.00%. In the western cold temperate grassland-desert-steppe region, including 10 second-grade zones, the annual average oxygen concentration is 20.00%, the average oxygen concentration in July is 20.10%, and the average oxygen concentration in January is 19.91%.

1 引言

自第一次青藏高原综合科学考察开展以来的近50年,青藏高原自然与社会环境发生了剧烈变化,气候变暖幅度是同期全球平均值的两倍[1],是全球变暖背景下环境变化不确定性最大的地区之一。第二次青藏科考围绕青藏高原地球系统变化及其影响这一关键科学问题,揭示青藏高原地球系统变化机理,优化青藏高原生态安全屏障体系,提出“亚洲水塔”与生态安全屏障保护、“第三极”国家公园群建设和绿色发展途径的科学方案[2]
第一次青藏科考取得的重大科学成果之一就是对青藏高原自然地带的划分,提出了“高原地带”植被,并将西藏植被地带划分为两个地区,即:西南季风山地森林植被地区与高原高寒草甸、草原、荒漠植被地区[3]。与此同时,提出由水平地带和垂直带紧密结合而形成的“三维地带”,并将青藏高原自然地带划分为亚热带及热带北缘、青藏高原两个区域[4]。20世纪50年代Troll在研究喜马拉雅高山自然地带时,首先提出“三维地带”的概念[5],对开展青藏高原自然地带的划分起到了积极的推动作用。
本文依据第二次青藏高原综合科学考察研究中“缺氧环境及其健康效应”科考小分队(以下称“科考小分队”)于2017—2022年对青藏高原地表氧含量(以下简称“氧含量”)测量的数据,发现青藏高原地表氧含量与海拔、地势、气候、水域、植被、土壤等因素综合作用有密切关系,其中海拔、气温、植被覆盖度的相对贡献分别为-47%、32%、3%,解释了氧含量的82%,海拔不是绝对控制因素[6-10]。测量与模拟计算的结果表明:青藏高原氧含量呈现明显的“三维”地带性规律,据此,本文试图对青藏高原自然地带分异规律提出我们的一些看法,以期完善对青藏高原自然地带分异规律的认识。

2 青藏高原氧含量测定及影响因素

氧气在生物地球化学循环中扮演着不可替代的角色。青藏高原平均海拔4000 m以上,空气稀薄,生态环境极为脆弱,缺氧是极其重要的环境风险因子之一。然而,一直以来鲜有开展氧含量监测及其变化分析研究。第二次青藏高原综合科学考察从地球表层系统的角度出发,通过对青藏高原地理环境与生态系统的综合考察研究,在青藏高原部署了“7横5纵”的综合科考路线和9处定点观测小区。

2.1 氧含量的测量

2017—2022年科考小分队在青藏高原开展了14次路线/样点式的野外科考测量(图1),共计得到807个测量点的地理环境数据,并利用地表覆盖大样方(1 km×1 km)测量得到青藏高原51个测量点的地表覆盖度。
图1 2017—2022年夏季、冬季青藏高原氧含量科考采样点分布

Fig. 1 Samples distribution for scientific research on oxygen concentration on Qinghai-Tibet Plateau in summer and winter from 2017 to 2022

2.2 氧含量与影响因素

2.2.1 地理位置与海拔

2018—2020年实测氧含量数据表明,青藏高原氧含量随经度/纬度的增大均呈现波动的状态。2018—2020年所有夏季测点,其海拔与氧含量呈显著的负相关关系(n = 369、R2 = 0.7367、p < 0.001)。从平均值看,海拔每上升1000 m,夏季的地表氧含量下降约0.15%[7]

2.2.2 气候因素

为进行青藏高原野外观测的对照观测,以定量分析影响青藏高原氧含量的各种地理要素,于2019年3月—2020年2月在北京房山对太阳总辐射和光合有效辐射进行了观测。房山站观测结果表明,光合有效辐射与日间总辐射、气温呈显著的正相关(R2分别为0.9881、0.5286,p < 0.001),日间平均光合有效辐射每增加100 μmol (m2 s)-1,氧含量增加约0.12%。2018—2020年青藏高原夏季氧含量与气温呈现显著的正相关关系(n = 369、R2 = 0.5661、p < 0.001),平均温度每上升10 ℃,地表大气氧含量上升约0.21%[7]。从2019年3月—2020年2月所有观测点近16万条的实测数据来看,氧含量与气温呈现显著的正相关关系(R2 = 0.9446,p < 0.001)。
房山站对比观测结果表明,日降水与氧含量的变化没有特别明显的对应关系。房山站夏季较大的降水量一般对应着较低的氧含量,且二者通过了显著性检验(n = 24,R2 = -0.3397,p < 0.005)。在温度相对较高的夏季,白天降水量越大,对应降水时间越长,植被接收的太阳辐射越少,日间平均气温相对越低,可导致较低的氧含量水平。
2018—2020年青藏高原夏季的氧含量与空气相对湿度在统计上呈现显著的负相关关系(n = 369,R2 = -0.0286,p < 0.001),空气相对湿度降低20%,氧含量降低约0.04%。房山站夏季实测氧含量与大气相对湿度呈现出显著的负相关关系(n = 41000,R2 = -0.5489,p < 0.001),其与降水的作用机制类似,生态系统中植被能接收到的太阳辐射越少,光合作用水平降低,导致产氧量也处于较低水平。

2.2.3 植被因素

基于2018—2020年夏季野外实测33个地表覆盖大样方的植被覆盖度数据[12],发现青藏高原植被覆盖度对大气氧含量起到正向作用(n = 33、R2 = 0.1247、p < 0.05)[7]。基于2018—2020年夏季369组数据,氧含量与遥感反演的植被覆盖度、叶面积指数呈显著的正相关关系(R2分别为0.0767、0.1805,p < 0.001)。植被覆盖度每增加10%,氧含量增加约0.02%;植被叶面积指数每增加1,氧含量增加0.06%[6-7]
基于2018—2020年夏季野外采样点获取对应位置的青藏高原夏季植被日均产氧量数据,发现植被日均产氧量与氧含量呈现显著正相关关系,拟合优度R2达到0.2804,且通过了0.001水平的显著性检验(图2)。青藏高原不同植被类型的净初级生产力与氧含量均呈现正相关关系。草地类型净初级生产力与氧含量的相关系数为0.3906(p < 0.001),灌丛荒漠类型净初级生产力与氧含量的相关系数为0.2374(p < 0.05),森林带氧含量测量点受山地垂直地带性空间分异的影响,虽然相关系数为0.2699,但未通过显著性检验(p = 0.1062)[13]。此外,氧含量与GPP、NPP均呈现显著正相关关系,这与氧含量与植被覆盖度、叶面积指数的关系一致,表明在样点尺度上,植被产氧能力越强,氧含量相对越高[14]
图2 青藏高原夏季植被日均产氧量与实测氧含量关系

注:植被日均产氧量数据测定时间为2019年7—9月;氧含量测定时间为2018—2020夏季;红色线为其函数关系拟合曲线,红色阴影为95%置信区间。

Fig. 2 Relationship between oxygen concentration and average daily oxygen production of vegetation on Qinghai-Tibet Plateau in summer from 2018 to 2020

2.2.4 土壤因素

基于在9处定点观测小区测量的光合作用、呼吸作用等数据,计算了净生态系统生产力(NEP),结果显示NEP均为正值,即均为生态系统碳汇,而氧含量也与NEP呈现显著正相关关系,表明在样点尺度上,碳汇越大,植被产氧能力越强,氧含量相对越高[14],这也间接反映了土壤和植被对氧含量的协同影响。基于2018年青海省碳汇数据[15]与夏季植被日均产氧量均值数据分析显示,青海省格网碳汇数据与夏季植被日均产氧量均值数据呈显著正相关(n = 705665、R2 = 0.14、p < 0.001)。利用2018年1 km ×1 km青海省网格碳汇数据提取的青海省内各采样点对应的氧含量数据,并将二者进行线性拟合,发现二者存在正相关关系,虽未通过显著性检验(n = 93、R2 = 0.0412、p = 0.052),但也在一定程度表明,碳汇越大,氧含量越高;反之,碳汇越小,氧含量越低。

2.2.5 土地利用因素

2018年“拉萨—日喀则—聂拉木—萨嘎—阿里—叶城”段野外科考实测结果表明,除森林植被外,青稞等农作物的单位面积产氧量最高。实测青稞地大气氧含量为20.38%,大于海拔、温度相近情况下的高寒草原(氧含量为20.30%)和荒漠灌丛(氧含量为20.24%)。因而关注气候变暖下青藏高原青稞等农作物种植面积变化,对分析氧含量空间格局也有重要意义[16-17]
青海玉树地区冰雪消融区岩漠时空动态变化特征显示,冰雪消融区高原裸地正在不断扩展,玉树地区冰雪消融区裸地面积增加了2450.34 km2,占到全州(含格尔木管辖的唐古拉山镇)面积的2%[18]。此外,过牧与土地超载也是青藏高原裸地增加的一个因素。青藏高原裸地面积占比很大,因裸地区气候普遍寒冷干燥,植被分布稀少,几乎没有产氧。裸地面积占比增大,对生态系统产氧有很大的负面影响。
水电站建设因改变了库区及其周围小气候,对库区及其周围植被生态系统产氧有促进作用。光伏、风力发电改变了电厂的生态环境,影响了地气交换和生态系统第一生产力,近而影响生态系统产氧和氧含量。尽管目前对光伏、风力发电改变厂区小气候及其如何影响局部温度和降水还没有开展系统观测或模拟评价,但对其生态系统生产力及生态系统产氧和氧含量的短期观测表明利弊均有表现[19-20]。总体而言,青藏高原清洁能源建设对氧含量影响利大于弊。
基于2018—2020年夏季测得的数据,取相关系数法与主成分分析法计算贡献率的均值,得到海拔、气温、叶面积指数对氧含量的相对贡献率分别为-39.58%、35.50%、24.92%[14]。由此认为,可依据氧含量定量展现青藏高原综合自然地理特征的时空格局。

3 青藏高原氧含量时空格局

2017—2022年在青藏高原获取的807组测量点氧含量数据的统计结果表明,不同科考路线/测量点夏季、秋冬季氧含量存在显著差异。基于实测数据构建的夏季(7月)、冬季(1月)青藏高原氧含量呈现出明显的时空差异,并显示突出的东西、南北与高度空间分异规律。

3.1 夏、冬(秋)季差异

2017—2022年青藏高原氧含量数据的统计结果显示(表1),青藏高原氧含量存在明显的季节差异,夏季氧含量平均值明显大于冬(秋)季氧含量,并且所有数据都与一般认为的氧含量20.946%[21]有显著差异。
表1 不同年份青藏高原夏、冬(秋)季氧含量统计特征

Tab. 1 Statistical characteristics of oxygen concentration on Qinghai-Tibet Plateau in summer and winter

季节 年份 样本量(个) 氧含量(%) 与20.946%的差异
最小值 最大值 平均值 标准差 显著性水平 95%置信区间
夏季 2017 65 20.37 21.67 20.72 0.26 0.001 20.65~20.78
2018 80 19.94 20.66 20.19 0.16 0.001 20.15~20.22
2019 113 20.02 20.78 20.37 0.16 0.001 20.34~20.40
2020 176 19.97 20.73 20.30 0.18 0.001 20.28~20.33
2021 95 19.91 20.41 20.20 0.10 0.001 20.18~20.22
2022 186 19.47 20.82 20.38 0.31 0.001 20.34~20.43
冬(秋)季 2019 53 19.98 20.43 20.16 0.11 0.001 20.13~20.19
2021 39 19.77 20.24 20.01 0.12 0.001 19.97~20.05

3.2 科考路线所及三级地貌单元差异

2017—2022年在青藏高原科考路线所及地貌单元主要有青藏高原上的高海拔和高起伏山系,如喜马拉雅山、冈底斯山、唐古拉山、昆仑山、喀喇昆仑山、祁连山、横断山系等;高海拔、低起伏的高平原,如羌塘高原、可可西里高原、江河源区等(多为青藏高原的三级夷平面);中高海拔、低起伏高原盆地,如柴达木盆地、共和盆地、塔里木盆地南缘、四川盆地西缘、滇中盆地西北缘等;高海拔河谷,如雅鲁藏布江、长江上游河谷、黄河上游河湟谷地、澜沧江上游河谷、怒江上游河谷等;中低海拔、低起伏山地丘陵,如滇西北山地丘陵、川西北山地丘陵、甘南丘陵、青东北与甘中部山地黄土丘陵等。在27个三级地貌区中[22],平均氧含量最高的为四川盆地西部洪积冲积平原区,为20.69%,标准差为0.07%;最低为喜马拉雅山极高山高山区,仅为20.17%,标准差为0.14%。

3.3 青藏高原氧含量空间格局

3.3.1 青藏高原氧含量的模拟

首先对实测的青藏氧含量主要影响因子数据进行标准化,对其分别进行加权求和(以各因子对氧含量的相对贡献为权重),对计算结果(中间量)与实测氧含量进行拟合,得到二者的对应关系式,同时对已有的青藏高原氧含量主要影响因子栅格数据进行标准化,同样对其分别进行加权求和(以各因子对氧含量的相对贡献为权重),得到计算结果(中间量),根据由青藏高原实测数据建立的氧含量与主要影响因子的关系式,可反算得到各格点对应的氧含量。在这一过程中,假定青藏高原氧含量各主要影响因子的作用及其相对贡献保持不变;综合考虑样本量、数据可得性和结果可靠性,实测氧含量使用2018—2020年在青藏高原野外获得的369组数据;氧含量影响因子选取海拔、气温和叶面积指数(图3a~3c);模拟的氧含量在时间上主要考虑夏季(7月)、冬季(1月)和年平均温度[14]
图3 青藏高原地表主要自然要素特征图

Fig. 3 Main natural elements on the Qinghai-Tibet Plateau

3.3.2 青藏高原氧含量模拟值的时空格局

首先,年平均氧含量东西分异明显,即东部高于西部,且自东而西,递减明显,从20.68%减少到19.39%,差值为1.29%,东部高值区比西部低值区约高6.65%,这与植被产氧有很大关系(图4d),亦是温湿气候与冷干气候的差异,显示了经度地带性(干湿度地带性)的规律。其次,南北带状更替、东西延伸,东西延绵山脉区自南而北从19.39%增加到19.97%,差值为0.58%(由高海拔到低海拔东西延伸);东西山脉间的河谷、盆地与高平原区,自南向北从20.68%减少到20.06%,差值为0.62%(由低纬度偏高温向高纬度偏低温),高值区比低值区约高3.55%,这与海拔、温度的综合影响有很大关系,亦是高原高寒冰雪气候与寒冷气候的差异,显示了纬度地带性(山脉间低地)与高度地带(山脉区)交替的规律。最后,周边高于腹地,且自低而高,递减明显,从20.31%减少到19.39%,差值为0.92%,周边高值区比腹地低值区约高4.80%,这与地势和温度有很大关系,亦是温干(北周边)、温湿气候(东、东南、南周边)与冷干(中东腹地)、冷湿(中西腹地)气候的差异,显示了高度地带性(垂直分异)的规律。
图4 青藏高原地表氧含量分布

Fig. 4 Oxygen concentration on the Qinghai-Tibet Plateau

青藏高原7月地表大气氧含量整体高于全年平均,高于20.06%的面积达72.79%(表2)。从分布看(图4b),首先是东西分异,即东部明显高于西部,且自东而西递减,从大于20.55%减少到19.86%,差值为0.69%,明显小于全年,低值区面积明显减少,东部高值区比西部低值区约高3.47%,突显温湿气候与温干气候的差异,显示了明显经度地带性规律。第二是南北带状更替、东西延伸,东西延绵山脉区从小于19.86%增加到河谷、盆地与高平原区的20.55%,差值为0.69%(由高海拔到低海拔);山脉带比河谷、盆地与高平原高约3.47%,与东西的差异相当,显示了明显高度地带性的规律。第三南北差异较小、且北高南低,山脉带从小于19.93%减少到19.86%,差值仅为0.07%;河谷、盆地与高平原从20.55%减少到20.18%,差值为0.37%;明显小于东、西差值的0.69%,这与海拔、温度的综合影响有很大关系,亦是高原寒冷气候与温冷气候的差异,显示了纬度地带性(山脉间低地)与高度地带(山脉区)交替的规律。
表2 格点尺度青藏高原1月、7月氧含量及年均各分级面积占比(%)

Tab. 2 Area proportion of oxygen concentration in different grades on the Qinghai-Tibet Plateau (%)

分级 ≤19.86 19.86~19.93 19.93~19.97 19.97~20.01 20.01~20.06 20.06~20.18 20.18~20.24 20.24~20.31 20.31~20.55 >20.55
1月 20.13 28.57 14.23 8.59 8.62 14.42 2.38 1.16 1.73 0.17
7月 0.23 1.18 2.47 6.24 17.09 36.19 9.93 10.75 14.36 1.56
年均 2.62 12.47 16.27 15.76 17.04 19.54 8.03 3.86 3.83 0.57
青藏高原1月氧含量整体小于全年平均,低于20.06%的面积达80.14%,其中极低值区(小于19.86%)面积达20.13%(表3)。从分布看(图4a),首先表现为明显的垂直分异,从20.55%减少到小于19.86%,差值为0.69%,显示了高度地带性(山脉间低地向山脉顶部区的快速递减)。第二是高原周边向腹地的递减,类似高度地带性。第三是东西的差异,且主要是高原东部山地河谷的高值区与西部大面积低值区间的突出差异,但相比夏季,明显不突出,从20.31%减少到小于19.86%,差值为0.42%,低于夏季的0.69%,和垂直差异相当。图4中氧含量的最高分级(>20.55%),在1月的面积占比仅有0.17%,而同期氧含量的最低分级(≤ 19.86%)面积占比为20.13%;相对应7月的氧含量最高分级面积占比为1.56%,最低分级面积占比仅为0.23%,突显青藏高原冬、夏季氧含量明显有别的同时,分布格局的差异,夏季东、西分异为主,高度分异为辅;冬季高度分异为主,东、西分异为辅。
表3 青藏高原自然带海拔、气温、叶面积指数和氧含量特征

Tab. 3 Elevation, temperature, leaf area index, and oxygen concentration in different natural zones on the Qinghai-Tibet Plateau

注:① Ⅰ 东南部亚热带森林—森林草原区域:Ⅰ1 藏东南暖热湿润山地河谷森林—森林草原带,Ⅰ2 横断山区南部暖温湿润河谷森林—森林草原带;Ⅱ 东部温带森林—草原—草甸区域:Ⅱ1 藏东—横断山区北部温暖湿润半湿润森林—草原带,Ⅱ2 川西高原温凉半湿润灌丛草原—草甸带,Ⅱ3 那曲高原温冷半湿润半干旱草原—草甸带,Ⅱ4 青东—甘南高原温凉半湿润半干旱森林草原—草原带,Ⅱ5 祁连山温冷半干旱半湿润森林草原—草甸带;Ⅲ 西部寒带温带草原—荒漠—草甸区域:Ⅲ1 喜马拉雅山地温冷半湿润半干旱灌丛草原—草甸带,Ⅲ2 雅鲁藏布江高原河谷温凉半湿润半干旱灌丛草原—农田带,Ⅲ3 冈底斯山寒冷半干旱干旱灌丛草原带,Ⅲ4 念青唐古拉山寒冷半干旱灌丛草原—草甸带,Ⅲ5 藏北层状高原温冷半干旱干旱灌丛草原—荒漠草原带,Ⅲ6 羌塘波状高原寒冷干旱半干旱荒漠—灌丛草原—草甸带,Ⅲ7 青南高原温冷半干旱草原—草甸带,Ⅲ8 柴达木盆地温暖干旱半干旱荒漠—荒漠草原带,Ⅲ9 喀喇昆仑山—昆仑山—阿尔金山温凉干旱荒漠—荒漠草原—草甸带,Ⅲ10 东昆仑山—阿尼玛卿山温冷半干旱干旱草原、荒漠草原—草甸带;② 表中气温数据源于参考文献[23],各指标面积数据占比基于青藏高原范围和面积计算[25]

从空间分布上看(图4c)同一格点7月与1月氧含量的差值介于0.08%~0.33%之间,7月与1月氧含量差值较大的区域集中在青藏高原的东北部(零星向西逐渐过渡到偏中部),以及塔里木盆地南缘的小部分地区,说明这些地区气温和植被条件(表4)的年变率较大(同一地点冬夏季海拔无变化);而7月与1月大气氧含量差值较小的区域集中在青藏高原的南部,尤其是喜马拉雅山脉中段北部区域和藏南地区,说明这些地区气温和植被条件的年内变化相对较小。同时,7月与1月氧含量的差值在空间上呈现出很明显的东西和南北分异交织格局:东北部高、西南部低;北部较高、南部较低。
表4 青藏高原自然带土地利用和覆盖类型特征

Tab. 4 Type of land use and land cover in different natural zones on the Qinghai-Tibet Plateau

注:① Ⅰ 东南部亚热带森林—森林草原区域:Ⅰ1 藏东南暖热湿润山地河谷森林—森林草原带,Ⅰ2 横断山区南部暖温湿润河谷森林—森林草原带;Ⅱ 东部温带森林—草原—草甸区域:Ⅱ1 藏东—横断山区北部温暖湿润半湿润森林—草原带,Ⅱ2 川西高原温凉半湿润灌丛草原—草甸带,Ⅱ3 那曲高原温冷半湿润半干旱草原—草甸带,Ⅱ4 青东—甘南高原温凉半湿润半干旱森林草原—草原带,Ⅱ5 祁连山温冷半干旱半湿润森林草原—草甸带;Ⅲ 西部寒带温带草原—荒漠—草甸区域:Ⅲ1 喜马拉雅山地温冷半湿润半干旱灌丛草原—草甸带,Ⅲ2 雅鲁藏布江高原河谷温凉半湿润半干旱灌丛草原—农田带,Ⅲ3 冈底斯山寒冷半干旱干旱灌丛草原带,Ⅲ4 念青唐古拉山寒冷半干旱灌丛草原—草甸带,Ⅲ5 藏北层状高原温冷半干旱干旱灌丛草原—荒漠草原带,Ⅲ6 羌塘波状高原寒冷干旱半干旱荒漠—灌丛草原—草甸带,Ⅲ7 青南高原温冷半干旱草原—草甸带,Ⅲ8 柴达木盆地温暖干旱半干旱荒漠—荒漠草原带, Ⅲ9 喀喇昆仑山—昆仑山—阿尔金山温凉干旱荒漠—荒漠草原—草甸带,Ⅲ10 东昆仑山—阿尼玛卿山温冷半干旱干旱草原、荒漠草原—草甸带;② 植被与土地覆盖数据源于参考文献[24],各指标面积数据占比基于青藏高原范围和面积[25]计算。

4 青藏高原自然地带“三维分异”的新认识

本文以氧含量空间格局为基础,参考前人相关研究成果,依据吴绍洪等提出的“主导因素原则、空间连续性原则、相对一致性原则”和“自上而下的演绎法和自下而上的归纳法相结合”[26],以基于氧含量为主导因素的青藏高原自然地理地带划分指标体系,对青藏高原自然地理地带“三维分异”提出了新的认识,即把青藏高原自然地带划分为区域、地带二级,构成青藏高原自然地理区—带二级区划体系。

4.1 基于氧含量为主导因素的青藏高原自然地理地带划分指标体系

一级区指标:以年均氧含量20.24%、20.06%,海拔平均3000 m、4500 m,森林、草原(草甸)植被类型的任何一类占比大于区域的60%、荒漠植被占比大于区域的30%,热带、温带、寒带气候区占比大于区域的50%左右,作为划分一级区的指标。参考郑度对青藏高原温度带的划分[27],以7月平均气温>18 ℃作为热带(含亚热带)、7月平均气温≥ 10 ℃且≤ 18 ℃作为温带、7月平均气温<10 ℃作为寒带的划分指标。
二级区指标:依据1月、7月氧含量、年均植被叶面积指数,在Ⅰ区,以7月、1月平均氧含量分别≥ 20.31%、≥ 20.18%、年均植被叶面积指数>300;在Ⅱ区,以7月、1月平均氧含量分别≥ 20.18%、≥ 19.93%、年均植被叶面积指数>40;在Ⅲ区,以7月、1月平均氧含量分别≥ 20.01%、<19.97%、年均植被叶面积指数<40;参考青藏高原年均降水量≥ 800 mm(湿润区)、800~401 mm(半湿润区)、400~200 mm(半干旱区)、 <200 mm(干旱区)的分区[28-29],并参考程维明等青藏高原的3级地貌分区[22],综合协调,作为划分二级区的划分依据(表3表4)。

4.2 青藏高原自然地理地带划分

依据前述一、二级区划指标体系,按地域分异规律,把青藏高原自然地理地带划分为3个区域,分别用罗马符号Ⅰ、Ⅱ、Ⅲ表示。按地带分异规律,将3个区域共划分为17个带,分别用罗马符号后加数字编号组成,如Ⅰ1、Ⅰ2、Ⅱ1…Ⅱ5、Ⅲ1…Ⅲ10表示(图5)。
图5 青藏高原自然地域区划

Fig. 5 Natural regionalization of the Qinghai-Tibet Plateau

4.2.1 东南部亚热带森林—森林草原区域(Ⅰ)

以年均氧含量20.24%为界,将其值大于此值的区域归本区。这一区域是中国东部亚热带季风性气候区向西延伸受高原山地影响的产物,即中国东部纬度自然地带与青藏高原高度自然带分异叠加的结果,分布有南亚热带季雨林、中亚热带季风性常绿阔叶林、北亚热带季风性落叶阔叶、常绿阔叶林与温带落叶阔叶林。本区年均氧含量为20.35%,平均海拔为2435 m,热带气候区(含亚热带)占比为54.29%,森林植被(含山地灌丛草原)占79.20%。这一区域与张新时划分的“西南季风山地森林植被地区”[3]、郑度等划分的“亚热带及热带北缘”[4]相当。依据上述二级区划分的指标,将其进一部划分为2个自然地带:Ⅰ1藏东南暖热湿润山地河谷森林—森林草原带和Ⅰ2横断山区南部暖温湿润河谷森林—森林草原带。

4.2.2 东部温带森林—草原—草甸区域(Ⅱ)

以年均氧含量在20.06%~20.24%的区域划为本区,年均氧含量20.24%等值线为与Ⅰ区的分界线,年均氧含量20.06%等值线为与Ⅲ区的分界线。这一区域是中国东部温带季风性气候区向西延伸受高原山地影响的产物,即中国东部经度自然地带与青藏高原高度自然带分异叠加的结果,分布有温带森林、森林草原与草甸、温带草原与草甸。本区年均氧含量为20.10%,平均海拔为3933 m,温带气候区占比为56.68%,草原植被(含草甸)区占69.54%。依据上述二级区划分的指标,将其进一步划分为5个自然地带:Ⅱ1藏东—横断山区北部温暖湿润半湿润森林—草原带、Ⅱ2川西高原温凉半湿润灌丛草原—草甸带、Ⅱ3那曲高原温冷半湿润半干旱草原—草甸带、Ⅱ4青东—甘南高原温凉半湿润半干旱森林草原—草原带和Ⅱ5祁连山温冷半干旱半湿润森林草原—草甸带。

4.2.3 西部寒带温带草原—荒漠—草甸区域(Ⅲ)

以年均氧含量20.06%为界,将其值小于此值的区域归本区。这一区域是大陆性气候在青藏高原上的产物,即青藏高原纬度、经度、高度自然地带综合叠加的结果,分布有寒带、温带草原—荒漠草原—荒漠、温带草甸。本区年均氧含量为20.00%,平均海拔为4623 m,寒带气候区占比为64.59%,荒漠植被(含山地荒漠草原、裸地、冰雪)区占32.45%以上。依据上述二级区划分的指标,将其进一步划分为10个自然地带:Ⅲ1喜马拉雅山地温冷半湿润半干旱灌丛草原—草甸带、Ⅲ2雅鲁藏布江高原河谷温凉半湿润半干旱灌丛草原—农田带、Ⅲ3冈底斯山寒冷半干旱干旱灌丛草原带、Ⅲ4念青唐古拉山寒冷半干旱灌丛草原—草甸带、Ⅲ5藏北层状高原温冷半干旱干旱灌丛草原—荒漠草原带、Ⅲ6羌塘波状高原寒冷干旱半干旱荒漠—灌丛草原—草甸带、Ⅲ7青南高原温冷半干旱草原—草甸带、Ⅲ8柴达木盆地温暖干旱半干旱荒漠—荒漠草原带(虽然本区有绿洲灌溉农田、人工林分布,使年均氧含量有所提高,但对年均植被叶面积指数影响甚微)、Ⅲ9喀喇昆仑山—昆仑山—阿尔金山温凉干旱荒漠—荒漠草原—草甸带和Ⅲ10东昆仑山—阿尼玛卿山温冷半干旱干旱草原、荒漠草原—草甸带。
上述17个青藏高原自然带的氧含量,以及海拔、气温、植被叶面积指数、土地利用与土地覆盖特征见表3表4

4.3 青藏高原自然地理地带划分相关问题的讨论

4.3.1 关于青藏高原自然地带的认识

张新时[3]认为西藏植被的成带现象自东南向西北变化为:森林—草甸—草原—荒漠。这些高原地带性植被的形成主要取决于高原巨大幅度的隆升及其所引起的特殊大气环流状况。潮湿的西南季风乃是西藏东南部热带和亚热带山地森林发育的基本因素。高原面处在西风环流和“青藏高压”控制下,在这种大陆性高原的气候条件下,形成了高寒草甸、草原和荒漠植被。据此,将西藏植被划分为植被地区—植被纬度地带(高原地带)二级划分体系,即2个植被地区,2个植被纬度地带、5个植被高原地带[3]
郑度等在明确了青藏高原存在“三维地带”性基础上[4],视青藏高原为一独特的自然地域单元,受大气环流和高原地势格局的制约,形成了高原温度、水分状况地域组合的不同,呈现从东南温暖湿润向西北寒冷干旱的变化。郑度依高原自然地域系统的划分遵循生物气候原则,即地带性原则,按照温度条件、水分状况和地形差异依次加以划分,即高原自然地域系统—高原自然地带—自然区三级划分体系。以日均温≥ 10 ℃的日数作为主要指标、最暖月均温为辅助指标,划分出高原亚寒带、高原温带和山地亚热带,后者为喜马拉雅南翼,已属高原外缘区域;以年干燥度为主要指标、年降水量为辅助指标,区分出湿润、半湿润、半干旱和干旱等不同水分状况的地域类型,据此,考虑大地势结构和大气环流的影响,在温度、水分条件组合上呈现共同特征,具有地带性植被和土壤的、范围较大的自然地域,划分为11个自然地带;基于一定的区域地形单元、具有相互联系的地形类型组合,划分为28个自然区[27]
本文在深入理解“高原地带”“三维地带”和“高原自然地域系统”的基础上,提出将青藏高原划分为3个高原自然地域系统、17个高原自然地带,并以年均氧含量等值线、7月平均气温、年均植被叶面积指数、地表植被与土地覆盖类型、海拔等作为自然地域系统划界的主要依据。实际上,年均氧含量已包含了海拔、气温、植被等的信息,但为突出植被产氧,以及海拔、气温对大气压的影响,本文把地表植被与土地覆盖类型、7月平均气温、海拔等在青藏高原自然地域系统划分时,作为主要的自然要素指标予以考虑。在此基础上,主要以7月、1月氧含量、年均植被叶面积指数、年均降水量,并参考地貌区划等作为高原自然地带划分的依据。

4.3.2 关于青藏高原自然地域与自然地带量化指标的厘定

张新时在西藏植被地区—植被纬度地带(高原地带)二级区划的具体划界时,主要依据植被区系与类型、水热条件、植被群落类型的分布,选用了海拔高程、年均温度和降水量、季节性降雪量、建群种和优势种[3]。郑度在高原温度带—高原自然地带—自然区三级区划的具体划界时,主要依据了温度条件、水分状况和地形差异的特征,选用了日均温≥ 10 ℃、≥ 5 ℃的日数、最暖月平均气温、植被与土地利用特征、年干燥度、年降水量、土壤特征等[27]
本文在对青藏高原自然地域系统—自然地带二级区划的具体划界时,主要基于网格(1 km×1 km)年均氧含量、7月、1月氧含量、年均植被叶面积指数、海拔、7月温度、主要植被与地表覆盖类型占比分布,以及地貌区划、年降水量等进行划分。其中,年均氧含量20.24%是东南部亚热带森林—森林草原区域与东部温带森林—草原—草甸区域的分界线,年均氧含量20.06%是东部温带森林—草原—草甸区域与西部寒带温带草原—荒漠—草甸区域的分界线。据此,在东南部亚热带森林—森林草原区域,针对地势造成的温度和地形起伏差异,将其划分为东西2个地带,即:纬度地带性基础上的高度地带性的具体呈现。在东部温带森林—草原—草甸区域,针对温度南北地带与地势分异将其划分为南北5个地带,即:主体为纬度地带性的具体呈现;其中川西高原温凉半湿润灌丛草原—草甸带与那曲高原温冷半湿润半干旱草原—草甸带的东西分异,主要是地势西高东低造成的,即:纬度地带性基础上的高度地带性的具体呈现。在西部寒带温带草原—荒漠—草甸区域,针对温度、地势南北分异与降水东西分异,将其划分为南北10个地带,即:纬度地带性基础上的高度、经度地带性的具体呈现;其中冈底斯山寒冷半干旱干旱灌丛草原带与念青唐古拉山寒冷半干旱灌丛草原—草甸带的东西分异、喀喇昆仑山—昆仑山—阿尔金山温凉干旱荒漠—荒漠草原—草甸带与东昆仑山—阿尼玛卿山温凉半干旱干旱草原、荒漠草原—草甸带的东西分异,主要都是降水东高西低,即:纬度地带性基础上的经度地带性的具体表现。

4.3.3 基于氧含量的青藏高原自然地域与自然地带划分的人畜缺氧健康效应

已有的青藏高原自然地带和青藏高原自然地域系统的划分[3-4,27]对指导青藏高原生态保护与生态屏障建设起到了重要的科技支撑作用。本文基于氧含量的青藏高原自然地域与自然地带划分,期望对青藏高原人畜缺氧健康效应的认识和其风险防范有一定的指导价值。对于人口缺氧健康来说,年均氧含量20.24%比全球平均含氧量20.946%[21]少0.706%,高于此值的东南部亚热带高原山地河谷森林—森林草原区,一般很少会形成因缺氧的慢性高原病(低于县域人口的10%);年均氧含量20.06%比全球平均含氧量20.946%少0.886%,低于此值的西部温带寒带草原—荒漠—草甸区域,一般会明显形成因缺氧引起的慢性高原病(可达县域人口的25%以上);介于20.06%~20.24%之间的东部温带森林—草原—草甸区与西部温带寒带草原—荒漠—草甸区域,因缺氧的慢性高原病一般在10%~25%之间。对于饲养家畜缺氧健康来说,年均氧含量低于20.24%的东南部亚热带高原山地河谷森林—森林草原区,一般会影响饲养家畜(牛、羊)的出栏率,低于东部平原的50%(牛)~25%(羊);年均含氧量低于20.06%的西部温带寒带草原—荒漠—草甸区域,一般会明显影响对饲养家畜(牛、羊)的出栏率,低于东部平原的70%(牛)~50%(羊);介于20.06%~20.24%之间的东部温带森林—草原—草甸区与西部温带寒带草原—荒漠—草甸区域,饲养家畜(牛、羊)的出栏率,低于东部平原的50%~70%(牛)和25%~50%(羊)。总之,基于氧含量的青藏高原自然地域与自然地带划分,可为青藏高原高寒草地生产系统中“人”和“畜”的“生态、生产、生活”和谐可持续发展提供支撑。

5 结语

本文对青藏高原自然地带所取得的重要成果基础上,基于第二次青藏高原综合科学考察研究“缺氧环境及其健康效应”科考小分队6年的野外观测测量数据,发现氧含量因受海拔、地势、地貌、气候、水文、植被、土壤、土地利用等地理要素的综合影响,其数值可以比较客观地定量展现青藏高原地表综合自然地理特征。据此,提出对青藏高原自然地带“三维分异”的新认识,即:基于青藏高原氧含量的时空格局,构建了一个青藏高原自然地域系统与自然地带划分方案,求教于同行。这一探讨的目的是进一步完善对青藏高原地域系统空间分异规律的认识,量化其空间差异,为青藏高原生态文明建设,特别是生态屏障保护与建设、人畜缺氧健康风险防范提供科学依据。持续开展青藏高原自然地域系统的区划研究,在全球变暖大背景下,对全面理解中国自然地域的分异规律有着极为重要的作用。这正如郑度等所指出的“区划是地理学的传统工作和重要研究内容,是从区域角度观察和研究地域综合体,探讨区域单元的形成发展、分异组合、划分合并和相互联系,是对过程和类型综合研究的概括和总结”[30],亦是落实全球和区域可持续性发展纲要,“尊重自然、顺应自然、保护自然”的科学基础。
[1]
Cheng Guodong, Zhao Lin, Li Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chinese Science Bulletin, 2019, 64(27): 2783-2795.

[程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响. 科学通报, 2019, 64(27): 2783-2795.]

[2]
Yao Tandong. Environmental changes and countermeasures in the Pan-Third Pole region. Bulletin of Chinese Academy of Sciences, 2018, 33 (Suppl.2): 44-46.

[姚檀栋. 泛第三极环境变化与对策. 中国科学院院刊, 2018, 33 (Suppl.2): 44-46.]

[3]
Zhang Xinshi. The plateau zonality of vegetation in Xizang. Acta Botanica Sinica, 1978, 20(2): 140-149.

[张新时. 西藏植被的高原地带性. 植物学报, 1978, 20(2): 140-149.]

[4]
Zheng Du, Zhang Rongzu, Yang Qinye. On the natural zonation in the Qinghai-Xizang Plateau. Acta Geographica Sinica, 1979, 34(1): 1-11.

DOI

[郑度, 张荣祖, 杨勤业. 试论青藏高原的自然地带. 地理学报, 1979, 34(1): 1-11.]

DOI

[5]
Troll C. The three-dimensional zonation of the Himalayan system//Troll C. Geoecology of the High-mountain Regions of Eurasia. Wiesbaden: Steiner, 1972.

[6]
Shi Peijun, Chen Yanqiang, Zhang Anyu, et al. Factors contribution to oxygen concentration in Qinghai-Tibetan Plateau. Chinese Science Bulletin, 2019, 64(7): 715-724.

[史培军, 陈彦强, 张安宇, 等. 青藏高原大气氧含量影响因素及其贡献率分析. 科学通报, 2019, 64(7): 715-724.]

[7]
Shi Peijun, Chen Yanqiang, Ma Heng, et al. Further research on the factors contributing to oxygen concentration over the Qinghai-Tibetan Plateau. Chinese Science Bulletin, 2021, 66(31): 4028-4035.

[史培军, 陈彦强, 马恒, 等. 再论青藏高原近地表大气相对氧含量影响因素的贡献率. 科学通报, 2021, 66(31): 4028-4035.]

[8]
Shi P J, Chen Y Q, Zhang G F, et al. Factors contributing to spatial-temporal variations of observed oxygen concentration over the Qinghai-Tibetan Plateau. Scientific Reports, 2021, 11(1): 17338. DOI: 10.1038/s41598-021-96741-6.

DOI PMID

[9]
Chen Y Q, Zhang G F, Chen Z Y, et al. A warming climate may reduce health risks of hypoxia on the Qinghai-Tibet Plateau. Science Bulletin, 2022, 67(4): 341-344.

DOI PMID

[10]
Liu D, Tang H P. Environmental factors affecting near-surface oxygen content vary in typical regions of the Qinghai-Tibet Plateau. Frontiers in Environmental Science, 2022, 10: 902006. DOI: 10.3389/fenvs.2022.902006.

DOI

[11]
China Meteorological Administration. QX/T 50-2007 Specifications for Surface Meteorological Observation (Part 6): Measurement of Air Temperature and Humidity. Beijing: China Meteorological Press, 2007.

[中国气象局. QX/T 50-2007地面气象观测规范(第6部分): 空气温度和湿度观测. 北京: 气象出版社, 2007.]

[12]
Lin D G, Gao Y, Wu Y Y, et al. A conversion method to determine the regional vegetation cover factor from standard plots based on large sample theory and TM images: A case study in the eastern farming-pasture ecotone of Northern China. Remote Sensing, 2017, 9(10): 1035. DOI: 10.3390/rs9101035.

DOI

[13]
Zhang Ying. Exploring the relationship between vegetation types and near-surface atmospheric oxygen content on the Qinghai-Tibet Plateau[D]. Beijing: Beijing Normal University, 2022.

[张颖. 青藏高原植被类型与近地表大气氧含量关系探讨[D]. 北京: 北京师范大学, 2022.]

[14]
Chen Yanqiang. Spatial patterns of near-surface oxygen concentration and population health risks of hypoxia on the Qinghai-Tibet Plateau[D]. Beijing: Beijing Normal University, 2022.

[陈彦强. 青藏高原近地表大气氧含量空间格局及其人口缺氧健康风险分析[D]. 北京: 北京师范大学, 2022.]

[15]
Yu Deyong, Shi Peijun, Zhou Tao, et al. Quantification of the Total Value and Spatial-temporal Difference of Ecosystem Services in Qinghai Province. Beijing: Science Press, 2022.

[于德永, 史培军, 周涛, 等. 青海省生态系统服务价值总量及时空差异的量化. 北京: 科学出版社, 2022.]

[16]
Ma Weidong. Evaluation of impact of climate change on highland barley cultivation in Qinghai-Tibet Plateau[D]. Xining: Qinghai Normal University, 2022.

[马伟东. 气候变化对青藏高原青稞种植的影响评估[D]. 西宁: 青海师范大学, 2022.]

[17]
Du Jun, Liu Yilan, Jian Jun, et al. Research on the Impact of Climate Change on Tibetan Highland Barley Planting. Beijing: China Meteorological Press, 2017.

[杜军, 刘依兰, 建军, 等. 气候变化对西藏青稞种植的影响研究. 北京: 气象出版社, 2017.]

[18]
Jia W, Ma W D, Shi P J, et al. Monitoring rock desert formation caused by ice-snow melting in the Qinghai-Tibet Plateau using an optimized remote sensing technique: A case study of Yushu prefecture. Remote Sensing, 2022, 14: 570. DOI: 10.3390/rs14030570.

DOI

[19]
Wang Zhike, Zhang Jiachen, Li Tingshan, et al. Discussion on environmental impact of wind farm project construction in high altitude area and soil and water conservation on prevention: Taking the 1000 MW wind power project in Qieji township of Gonghe county as an example. Journal of Green Science and Technology, 2020(20): 140-142.

[王志科, 张嘉宸, 李廷山, 等. 高海拔地区风电场建设对环境的影响及水土保持对策探讨: 以共和县切吉乡1000 MW风电项目为例. 绿色科技, 2020(20): 140-142.]

[20]
Li Peidu, Gao Xiaoqing. The impact of photovoltaic power plants on ecological environment and climate: A literature review. Plateau Meteorology, 2021, 40(3): 702-710.

DOI

[李培都, 高晓清. 光伏电站对生态环境气候的影响综述. 高原气象, 2021, 40(3): 702-710.]

DOI

[21]
Machta L, Hughes E. Atmospheric oxygen in 1967 to 1970. Science, 1970, 168(3939): 1582-1584.

PMID

[22]
Cheng Weiming, Zhou Chenghu, Li Bingyuan, et al. Geomorphological regionalization theory system and division methodology of China. Acta Geographica Sinica, 2019, 74(5): 839-856.

DOI

[程维明, 周成虎, 李炳元, 等. 中国地貌区划理论与分区体系研究. 地理学报, 2019, 74(5): 839-856.]

DOI

[23]
Peng S Z, Ding Y X, Liu W Z, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 2019, 11: 1931-1946.

DOI

[24]
Zhang Hui, Zhao Cenliang, Zhu Wenquan. A new vegetation map for Qinghai-Tibet Plateau by integrated classification from multi-source data products. Journal of Beijing Normal University (Natural Science), 2021, 57(6): 816-824.

[张慧, 赵涔良, 朱文泉. 基于多源数据产品集成分类制作的青藏高原现状植被图. 北京师范大学学报(自然科学版), 2021, 57(6): 816-824.]

[25]
Zhang Yili, Li Bingyuan, Zheng Du. A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 2002, 21(1): 1-8.

DOI

[张镱锂, 李炳元, 郑度. 论青藏高原范围与面积. 地理研究, 2002, 21(1): 1-8.]

[26]
Wu Shaohong, Pan Tao, Liu Yanhua, et al. Comprehensive climate change risk regionalization of China. Acta Geographica Sinica, 2017, 72(1): 3-17.

DOI

[吴绍洪, 潘韬, 刘燕华, 等. 中国综合气候变化风险区划. 地理学报, 2017, 72(1): 3-17.]

DOI

[27]
Zheng Du. A study on the natural geographical system of the Qinghai-Tibet Plateau. Science in China: Earth Science, 1996, 26(4): 336-341.

[郑度. 青藏高原自然地域系统研究. 中国科学: 地球科学, 1996, 26(4): 336-341.]

[28]
Yang Wei, He Jinhai, Wang Panxing, et al. Inhomogeneity characteristics of intra-annual precipitation over the Tibetan Plateau in recent 42 years. Acta Geographica Sinica, 2011, 66(3): 376-384.

DOI

[杨玮, 何金海, 王盘兴, 等. 近42年来青藏高原年内降水时空不均匀性特征分析. 地理学报, 2011, 66(3): 376-384.]

[29]
Gong Chengqi, Dong Xiaohua, Wei Chong, et al. Precipitation division of the Qinghai-Tibet Plateau from 1978 to 2018 and spatiotemporal evolution characteristics of each zone. Journal of Water Resources & Water Engineering, 2022, 33(5): 96-108.

[龚成麒, 董晓华, 魏冲, 等. 1978—2018年青藏高原降水区划及各区降水量时空演变特征. 水资源与水工程学报, 2022, 33(5): 96-108.]

[30]
Zheng Du, Ge Quansheng, Zhang Xueqin, et al. Regionalization in China: Retrospect and prospect. Geographical Research, 2005, 24(3): 330-344.

DOI

[郑度, 葛全胜, 张雪芹, 等. 中国区划工作的回顾与展望. 地理研究, 2005, 24(3): 330-344.]

文章导航

/