气候变化与地表过程

喀斯特山地土壤侵蚀和产水量的最优解释力

  • 高江波 , 1 ,
  • 张怡博 1, 2 ,
  • 左丽媛 1, 2
展开
  • 1.中国科学院地理科学与资源研究所 中国科学院陆地表层格局与模拟重点实验室,北京 100101
  • 2.中国科学院大学,北京 100049

高江波(1984-), 男, 山东临沂人, 研究员, 博导,主要从事综合自然地理学、山地生态系统服务、气候变化影响与适应研究。E-mail:

收稿日期: 2021-08-30

  修回日期: 2022-04-07

  网络出版日期: 2022-12-27

基金资助

国家自然科学基金项目(42071288)

国家自然科学基金项目(41671098)

中国科学院地理科学与资源研究所可桢—秉维青年人才计划(2020RC002)

The optimal explanatory power of soil erosion and water yield in karst mountainous area

  • GAO Jiangbo , 1 ,
  • ZHANG Yibo 1, 2 ,
  • ZUO Liyuan 1, 2
Expand
  • 1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-08-30

  Revised date: 2022-04-07

  Online published: 2022-12-27

Supported by

National Natural Science Foundation of China(42071288)

National Natural Science Foundation of China(41671098)

Programme of Kezhen-Bingwei Excellent Young Scientists of the Institute of Geographic Sciences and Natural Resources Research, CAS(2020RC002)

摘要

喀斯特生态系统服务主导影响因子识别是科学治理石漠化的前提,然而环境因子对生态系统服务空间分布的解释力受尺度变换的影响,其尺度效应的定量研究仍需进一步加强。为定量厘定环境因子解释力的尺度效应,本文从多尺度视角出发,利用地理探测器定量分析不同空间分辨率下环境因子对土壤侵蚀和产水量的解释力,并探求其在不同地貌形态类型区的差异性规律。结果表明,坡度和植被覆盖度是影响土壤侵蚀空间分布的主导因子,两者的交互作用对土壤侵蚀空间分布的解释力更强。受研究区地形起伏普遍性和景观破碎化的影响,坡度和土地利用类型在低分辨率下解释力最优。降水、海拔和土地利用类型是产水量空间分异的主导因子。降水和土地利用类型的交互作用对产水量的解释力达95%以上,海拔在不同地貌形态类型区的空间变异性影响其最优解释力水平。具体表现为:在台地、丘陵类型区海拔空间变异性较小,在高分辨率下其解释力最优;在山地类型区,海拔空间变异性较大,在低分辨率下其解释力更强。本文通过多尺度分析定量甄别生态系统服务变量的最优解释力,以期为喀斯特山地生态系统服务的主导因子精准辩识和分区优化提供途径和依据。

本文引用格式

高江波 , 张怡博 , 左丽媛 . 喀斯特山地土壤侵蚀和产水量的最优解释力[J]. 地理学报, 2022 , 77(11) : 2920 -2934 . DOI: 10.11821/dlxb202211015

Abstract

Accurately identifying the dominant factor of karst ecosystem services is a prerequisite for the rocky desertification control. However, the explanatory power of environmental factors for the spatial distribution of ecosystem services is affected by scaling, and the quantitative research on the scale effect still needs to be further strengthened. This study used Geodetector to access the explanatory power of environmental factors on soil erosion and water yield at different spatial resolutions, and then explored their differences in three geomorphological types. Results showed that slope and vegetation coverage were the dominant factors of soil erosion, and the interactive explanatory power between the two factors was stronger. Affected by the universality of topographic relief and landscape fragmentation in the study area, the explanatory of slope and land use type on soil erosion was optimal at a low resolution. Precipitation, elevation, and land use type were the dominant factors for the spatial heterogeneity of water yield, and the interaction between precipitation and land use type could explain more than 95% of water yield. The spatial variability of elevation in different geomorphological types affected its optimal explanatory power, especially in the terrace and hill type areas. The spatial variability of elevation was weak, and its explanatory power was optimal at a high resolution. However, in the mountainous areas, the spatial variability of elevation was strong, and its explanatory power was optimal at a low resolution. This study quantitatively identified the optimal explanatory power of ecosystem service variables through multi-scale analysis, which aimed to provide a way and basis for accurate identification of the dominant factors of karst mountain ecosystem services and zoning optimization.

1 引言

独特的地质背景、典型的二元水文结构与不合理的人类活动相叠加,导致喀斯特地区石漠化问题严峻[1]。石漠化所引发的生态系统退化不仅降低了区域生态系统服务的供给,同时还限制了喀斯特山地生态屏障功能的有效发挥,严重制约区域社会经济的可持续发展,威胁区域生态安全格局的稳定性[2]。在此背景下,如何实现生态系统服务的优化与提升成为中国喀斯特研究领域的关键议题[3]。而精准探析喀斯特地区生态系统服务的环境影响因子,可为石漠化科学治理提供理论参考,是实现生态系统服务优化与提升的有效途径[4]。已有研究表明,环境影响因子识别结果受尺度变换的影响[5]。因此,厘定喀斯特生态系统服务相关环境变量的适用尺度与最优解释力,成为环境影响因子识别过程中的关键科学问题。
目前喀斯特地区生态系统服务影响因子识别的研究,多采用相关或回归统计方法,如李瑞等[6]采用二次多项式回归的方法揭示了贵州典型喀斯特小流域降雨因子与土壤侵蚀的关系。赵斯琦等[7]通过对比不同地形因子与土壤侵蚀线性回归方程的相关系数,识别影响土壤侵蚀的主导地形因子。上述研究缺乏对生态系统服务和环境因子空间属性的考虑,且对于多因子及其交互作用的定量研究不足[8]。同时,Martinez等[9]研究表明,生态系统服务影响因子识别具有空间尺度效应。在不同幅度和粒度情况下,环境因子与生态系统服务的作用关系存在差异[10]。但目前对喀斯特生态系统服务影响因子识别的研究,其尺度多采用单一空间粒度。如Deng等[11]研究了基础数据统一为0.125°分辨率时,中国喀斯特地区降水、温度和NDVI与土壤水分的作用关系;魏梦瑶等[12]以1 km×1 km为统一网格大小,研究不同土地利用方式和地形特点与土壤侵蚀的作用关系。与此类工作相比,从多尺度视角开展喀斯特生态系统服务的精准归因工作,可以有效避免单一尺度在采用低分辨率数据时丢失局部限制因素的作用信息,在采用高精度数据时,掩盖宏观控制因素信息的尺度问题。
除受空间粒度的影响,环境因子与生态系统服务之间的作用关系也会随空间幅度的变化而产生差异[13]。例如,Wu等[14]研究指出影响草地生产力的主导环境因子在全国尺度上为温度和降水,而在喀斯特地区由温度主导。Li等[15]研究指出在全流域尺度上,影响土壤侵蚀的主导环境因子是温度和NDVI,在红水子流域尺度则为径流和降水。目前生态系统服务的归因研究多集中于区域尺度,对区域内部的固有异质性关注较少[16]。中国西南喀斯特地区包含岩溶河谷、峰丛洼地、断陷盆地、岩溶高原、中高山等多种地貌类型,区域内部景观异质性显著。地貌的区域分异直接影响地表水分与光照强度,从而在一定程度上控制着生态系统服务的驱动因子[17]。高度不连续且破碎的景观特征,使得该地区生态系统服务及环境影响因子的空间分布在不同地貌类型区之间差异显著。因此从不同地貌形态类型区尺度,分析喀斯特地区生态系统服务影响因子的差异,可为石漠化针对性治理提供科学参考。
石漠化是地表植被破坏后,经水土流失作用而产生的表土损失、基岩裸露、土地农业利用价值丧失和生态环境退化现象[18],因而土壤保持与产流服务是遏制喀斯特地区石漠化发展的关键[19]。尽管目前已有研究揭示了降水、地形和土地利用类型等要素与土壤侵蚀和产水量的关系[20],但对于多因子综合分析以及双因子交互作用的研究较少,关注尺度效应对归因结果影响的研究更为不足。地理探测器具有能够定量化显示影响因子对研究对象解释力的特点[21],通过比对不同环境因子的解释力可以实现多因子综合分析。同时,地理探测器还可以通过对比单因子和双因子作用大小的差异,获取双因子交互作用关系。基于此,本文以多尺度为视角,选取坡度、海拔、降水、岩性、植被覆盖度、土地利用类型等多种环境因子,运用地理探测器定量分析不同环境因子对土壤侵蚀和产水量空间分布的解释力及其多尺度变化规律,识别环境因子的最优解释力,进而精准判识不同地貌形态类型区内主导影响因子及因子间交互作用。

2 研究方法与数据来源

2.1 研究区概况

乌江发源于贵州省西部乌蒙山东麓威宁县境内的香炉山,流经贵州省铜仁、遵义等8个地级市(自治州)后从东北部流出汇入长江(图1)。贵州省境内乌江流域(26°12′N~28°42′N, 104°48′E~108°48′E)总面积为4.98×104 km2,流域地貌类型以山地丘陵为主,地形起伏度大且破碎化程度高。气候类型属亚热带季风气候,年均降水量约为1200 mm。流域基岩以碳酸盐岩为主,碳酸盐岩成土速率低,其风化形成的浅薄土层在水力侵蚀作用下极易出现基岩裸露的石漠化现象。流域人口稠密、适耕土地稀缺[22],毁林开荒、坡地耕种等人类不合理的行为使石漠化问题更加突出。
图1 研究区位置及海拔

Fig. 1 The location and elevation of the Wujiang River Basin

2.2 研究框架

本文从驱动因子解释力的多尺度效应视角出发,识别不同环境因子对土壤侵蚀和产水量空间分布的最优解释力,研究框架如下:① 研究数据主要包括:气象数据、土壤数据、土地利用数据、岩性数据、地貌类型数据、数字高程模型(DEM)和归一化植被指数(NDVI)(数据来源见表1),其中气象数据、土地利用数据和NDVI的数据时间为2015年。通过ArcGIS10.2将上述研究数据重采样为30 m、100 m、300 m、500 m、1 km和2 km共6种空间分辨率,选用RUSLE和InVEST模型优化模拟不同分辨率下的土壤侵蚀模数和产水量;② 根据地形起伏特征,将研究区低海拔平原、低海拔丘陵、中海拔台地、小起伏中山等11种地貌类型[23]合并为台地、丘陵和山地3种地貌形态类型区。地理探测器应用于不同地貌形态类型区,识别不同分辨率下单因子和因子间交互作用对土壤侵蚀和产水量的解释力;③ 根据环境因子解释力随分辨率变化的趋势及其最佳分辨率(最大解释力所对应的分辨率)大小,判定环境因子为宏观、局地或平稳因子。若解释力随分辨率降低而增大,最佳分辨率大于或等于1 km,即为宏观因子;若解释力随分辨率降低而减小,最佳分辨率小于或等于300 m,则为局地因子;若解释力随分辨率降低无明显变化,则为平稳因子。④ 以最佳分辨率所对应的解释力为环境因子对土壤侵蚀和产水量的最优解释力,对比不同地貌形态类型区内环境因子最优解释力的大小,从而识别出影响土壤侵蚀和产水量空间分布的主导因子。
表1 数据来源

Tab. 1 Data sources

数据类型 数据来源
气象数据 国家气象科学数据中心(http://data.cma.cn)
土壤数据 世界土壤数据库(HWSD)、全国第二次土壤普查数据库
土地利用
岩性、地貌
中国科学院资源环境科学数据中心(http://www.resdc.cn)
DEM Google Earth影像
NDVI 美国地质调查局官网(https://glovis.usgs.gov)

2.3 分析方法

2.3.1 RUSLE模型

RUSLE模型是目前国内外土壤侵蚀研究中应用最为广泛的模型之一。本文以岩性为依据,将研究区划分为非喀斯特和喀斯特地区两类。将非碳酸盐岩分布的地区归为非喀斯特地区,采用传统RUSLE模型模拟土壤侵蚀[24]。将碳酸盐岩分布的地区归为喀斯特地区,采用Gao等[25]针对喀斯特地区基于基岩裸露率修正的RUSLE模型进行土壤侵蚀量的模拟,方程基本形式为:
A = ( 1 - 0 . 076 2 × α ) × R × K × L S × C × P
式中:A是年均土壤侵蚀模数(t hm-2 a-1);α为石漠化系数,依据不同石漠化程度的基岩裸露率获得(表2);R为降雨侵蚀力因子(MJ mm hm-2 h-1 a-1),采用章文波等[26]所提出的基于日降雨量数据的降雨侵蚀力估算方法,并针对喀斯特地区进行修正。在喀斯特地区采用≥ 30 mm作为侵蚀性降雨标准,在非喀斯特地区则以≥ 12 mm为标准[27]K为土壤可蚀性因子(t hm h MJ-1 mm-1 hm-2),计算采用Williams等[28]提出的侵蚀力影响计算器(EPIC);LS为地形因子,选用由McCool等[29]提出、Zhang等[30]修正的LS计算方法得出;C为植被覆盖与管理因子,应用蔡崇法等[31]的研究算法得出;P为水土保持措施因子,参考Gao等[25]针对喀斯特地区的赋值标准。LSCP无量纲。
表2 不同石漠化程度土壤侵蚀修正系数

Tab. 2 Correctional coefficient for different degrees of rocky desertification

石漠化程度 潜在 轻微 中度 极高
基岩裸露率(%) < 20 20~30 31~50 51~70 71~90 > 90
α 10 25 40 60 80 95

2.3.2 InVEST模型

选用InVEST模型[32]模拟流域产水量,模型的产水量模块基于Budyko水热耦合平衡假设,公式如下:
Y ( x ) = 1 - A E T ( x ) P ( x ) × P ( x )
式中:Y(x)为研究区每个栅格单元的年产水量;AET(x)为每个栅格单元的年实际蒸散量;P(x)为每个栅格单元的年降水量,单位均为mm。
其中:实际蒸散量与降水量比值AET(x)/P(x)的计算,同样基于Budyko水热耦合平衡假设公式。
A E T ( x ) P ( x ) = 1 + P E T ( x ) P ( x ) - 1 + P E T ( x ) P ( x ) ω 1 / ω
式中:PET(x)为研究区的潜在蒸散量,可根据植物蒸散系数和参考作物蒸散量计算得到,公式如下:
P E T ( x ) = K c ( l x ) × E T 0 ( x )
式中:Kc(lx)为植物蒸散系数,体现不同植被对产流量的影响;ET0(x)为参考作物蒸散量,可通过彭曼公式计算得到。
ω ( x ) = Z × A W C ( x ) P ( x ) + 1.25
式中:ω(x)为表征自然气候土壤性质的非物理参数;AWC(x)为土壤有效含水量,Z为经验常数,代表季节性因素的影响。

2.3.3 地理探测器

地理探测器是一种探测、利用空间异质性并揭示其驱动因子的新兴统计方法[33],主要包括因子、生态、风险和交互四个探测部分。地理探测器通过探测各因子的空间分异性,给出表征影响因子对土壤侵蚀和产水量作用程度的q值。因子探测器的计算公式如下:
q = 1 - h = 1 L N h σ h 2 N σ 2
式中:q为自变量对因变量的解释力,值域为[01],q值越大,自变量对因变量的解释力越大,即表明各环境影响因子对土壤侵蚀和产水量空间分布的解释力越大;L为自变量X的类别数,N为研究区所有栅格单元总数,Nh为自变量X的类型h的栅格单元总数,σ2为研究区所有样本的总方差,q为自变量X的类型h的总方差。
交互作用探测器用来识别不同影响因子的交互作用,通过对比单因子和双因子作用大小的差异性来获取其作用关系(表3)。
表3 双因子交互作用类型[33]

Tab. 3 Types of interaction between two factors

判断依据 交互类型
q(X1∩X2) < Min(q(X1), q(X2)) 非线性减弱
Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) 单因子非线性减弱
q(X1∩X2) > Max(q(X1), q(X2)) 双因子增强
q(X1∩X2) = q(X1)+q(X2) 独立
q(X1∩X2) > q(X1)+q(X2) 非线性增强

3 结果分析

3.1 不同分辨率下土壤侵蚀和产水量模拟

RUSLE模型模拟结果显示,2015年乌江流域土壤侵蚀模数在不同分辨率情况下均值范围为17.64~17.95 t hm-2 a-1,以微度侵蚀和轻度侵蚀为主。与Zeng等[34]应用RUSLE模型模拟典型喀斯特地区——贵州省印江县的土壤侵蚀模数(18.84 t hm-2 a-1)较为接近。随分辨率降低,乌江流域的土壤侵蚀模数均值呈小幅减小,各分辨率下的侵蚀模数均值都在18 t hm-2 a-1左右。同时,随分辨率的降低,流域内土壤侵蚀模数的最大值显著减小,30 m分辨率的土壤侵蚀模数最大值为1419.61 t hm-2 a-1,2 km分辨率的最大值降至357.20 t hm-2 a-1,最小值均为0值,没有随分辨率发生改变。
InVEST模型的模拟结果显示,产水量在不同分辨率情况下均值在967.59~968.18 mm之间,其空间分布呈现北低南高的特点(图2)。这一结果与前人研究喀斯特地区产水量的结果较为吻合[35-36]。随着分辨率的降低,产水量的均值和最大值小幅减小,各分辨率均值、最大值分别保持在968 mm和1442 mm左右。产水量的最小值则随分辨率降低而显著增加,30 m分辨率的产水量最小值为403.38 mm,2 km分辨率的产水量最小值升至487.17 mm。土壤侵蚀模数与产水量均值随分辨率的变化规律与Martinez等[9]应用大块样地(3.05 m×9.1 m)和小块样地(0.61 m×1.22 m)两个尺度的田间试验数据,分析尺度差异对牧场产水量和土壤侵蚀量的影响较为一致,均表现为随分辨率降低,模拟值减小。
图2 乌江流域不同分辨率下土壤侵蚀和产水量的空间分布

Fig. 2 Spatial distribution of soil erosion and water yield at different resolutions in the Wujiang River Basin

3.2 土壤侵蚀和产水量的多尺度定量归因

空间尺度的变换显著影响环境因子对土壤侵蚀空间分布的解释力(图3)。台地类型区坡度的解释力在1 km分辨率时为18%,而在2 km分辨率时升至27%。随分辨率降低,不同环境因子解释力的变化趋势不同。坡度、土地利用类型的解释力均随分辨率降低而增大,在1 km或2 km分辨率时达到最优,为宏观因子。其他环境因子的解释力随分辨率的变化情况,在不同地貌形态类型区内存在差异。植被覆盖度在台地、丘陵类型区的解释力随分辨率的降低而增大,在山地类型区随分辨率降低解释力减小,这可能与不同地貌形态类型区内植被分布的差异性有关。表4显示了环境因子最优解释力之间的相对位次。其中坡度、植被覆盖度和土地利用类型是土壤侵蚀的主要影响因子,其他因子的解释力有限(< 3%)。不同地貌形态类型区内土壤侵蚀的主导影响因子存在差异。在地形起伏度相对较小的台地和丘陵类型区,坡度对土壤侵蚀的解释力最强。在地形起伏度较大的山地类型区,植被覆盖度成为控制土壤侵蚀空间格局的主导因子。
图3 不同地貌类型区内环境因子对土壤侵蚀的解释力随分辨率的变化

Fig. 3 Variation of explanatory power of environmental factors on soil erosion with resolutions in different geomorphological areas

表4 不同地貌类型区内环境因子对土壤侵蚀的最优解释力排序

Tab. 4 The rank of optimal explanatory power of environmental factors on soil erosion in different geomorphological areas

地貌类型区 排序 环境因子 因子类型 最佳分辨率(m) 最优解释力(q值)
台地 1 坡度 宏观 2000 0.27
2 土地利用类型 宏观 1000 0.17
3 植被覆盖度 宏观 2000 0.06
4 岩性 宏观 2000 0.02
5 海拔 宏观 2000 0.01
6 降水 宏观 2000 0.01
丘陵 1 坡度 宏观 2000 0.18
2 土地利用类型 宏观 1000 0.11
3 植被覆盖度 宏观 2000 0.09
4 降水 局地 1000 0.02
5 海拔 局地 100 0.01
6 岩性 宏观 2000 0.01
山地 1 植被覆盖度 局地 300 0.17
2 坡度 宏观 1000 0.15
3 土地利用类型 宏观 2000 0.08
4 降水 宏观 2000 0.02
5 海拔 局地 300 0.01
6 岩性 平稳 30 0.01
海拔在台地类型区对产水量的解释力在不同分辨率下差异显著,其解释力在300 m分辨率时为45%,在2 km分辨率时降至34%。其他环境因子的解释力虽然对于分辨率的响应程度较小,但也呈现一定规律(图4):降水和海拔均表现为在台地、丘陵类型区随分辨率的降低其解释力减小,在山地类型区随分辨率的降低其解释力增大。由表5可知,降水、海拔、土地利用类型是影响研究区产水量空间分布的主要影响因子,岩性、植被覆盖度和坡度的解释力较低(< 10%)。降水在所有地貌形态类型区内均为产水量的主导影响因子,解释力高达75%以上,显著高于其他环境因子。影响产水量空间分布的第二因子在不同地貌形态类型区中存在差异,在台地类型区为海拔,在山地、丘陵类型区则为土地利用类型。
图4 不同地貌类型区内环境因子对产水量的解释力随分辨率的变化

Fig. 4 Variation of explanatory power of environmental factors on water yield with resolutions in different geomorphological areas

表5 不同地貌类型区内环境因子对产水量的最优解释力排序

Tab. 5 The rank of optimal explanatory power of environmental factors on water yield in different geomorphological areas

地貌
类型区
排序 环境因子 因子类型 最佳
分辨率(m)
最优解释力
(q值)
台地 1 降水 局地 300 0.80
2 海拔 局地 300 0.45
3 土地利用类型 宏观 1000 0.25
4 岩性 宏观 1000 0.07
5 植被覆盖度 宏观 1000 0.05
6 坡度 宏观 1000 0.04
丘陵 1 降水 局地 100 0.76
2 土地利用类型 宏观 2000 0.29
3 海拔 局地 30 0.20
4 岩性 局地 100 0.06
5 植被覆盖度 平稳 2000 0.02
6 坡度 平稳 2000 0.00
山地 1 降水 宏观 2000 0.77
2 土地利用类型 平稳 500 0.19
3 海拔 宏观 2000 0.14
4 岩性 局地 100 0.05
5 植被覆盖度 平稳 500 0.01
6 坡度 平稳 2000 0.00

3.3 不同尺度下土壤侵蚀和产水量对双因子交互作用的响应

交互作用探测器的结果显示,环境因子两两叠加均会增强其对土壤侵蚀的解释力,表现为双因子增强或非线性增强。植被覆盖度、坡度单因子作用时对山地类型区土壤侵蚀的解释力分别为0.17、0.08,双因子叠加作用时解释力升至0.32。空间尺度的变换对双因子交互作用的影响也十分显著。在台地类型区,坡度和植被覆盖度的交互作用对土壤侵蚀的解释力在300 m分辨率时为31%,在2 km分辨率时升至53%(图5)。随分辨率降低,不同交互作用解释力的变化趋势存在差异。坡度与其他环境因子叠加的解释力均随分辨率降低而增大,在2 km分辨率时达到最优,为宏观交互作用。其他因子间交互作用的解释力随分辨率变化的情况在不同地貌形态类型区表现不同,植被覆盖度和土地利用类型叠加的解释力在台地、丘陵类型区随分辨率降低而增大,在山地类型区不同分辨率下差异较小。由表6可知,坡度和植被覆盖度之间的交互作用对土壤侵蚀空间分布的解释力最强。第二交互作用在不同地貌形态类型区中存在差异,在台地类型区为坡度和土地利用类型交互,在山地、丘陵类型区则为植被覆盖度和土地利用类型交互。
图5 不同地貌类型区内双因子交互作用对土壤侵蚀的解释力随分辨率的变化

Fig. 5 Variation of explanatory power of interactions between two factors on soil erosion with resolutions in different geomorphological areas

表6 不同地貌类型区内双因子交互作用对土壤侵蚀的最优解释力排序

Tab. 6 The rank of optimal explanatory power of interactions between two factors on soil erosion in different geomorphological areas

地貌
类型区
排序 交互因子 因子类型 最佳
分辨率(m)
最优解释力
(q值)
台地 1 坡度∩植被覆盖度 宏观 2000 0.53
2 坡度∩土地利用类型 宏观 2000 0.39
3 植被覆盖度∩土地利用类型 宏观 2000 0.32
4 坡度∩海拔 宏观 2000 0.31
5 坡度∩降水 宏观 2000 0.31
6 坡度∩岩性 宏观 2000 0.31
丘陵 1 坡度∩植被覆盖度 宏观 2000 0.44
2 植被覆盖度∩土地利用类型 宏观 1000 0.29
3 坡度∩土地利用类型 宏观 2000 0.27
4 坡度∩降水 宏观 2000 0.23
5 坡度∩海拔 宏观 2000 0.22
6 坡度∩岩性 宏观 2000 0.21
山地 1 植被覆盖度∩坡度 宏观 2000 0.47
2 植被覆盖度∩土地利用类型 平稳 2000 0.32
3 坡度∩土地利用类型 宏观 2000 0.22
4 植被覆盖度∩降水 局地 100 0.20
5 植被覆盖度∩岩性 局地 30 0.19
6 植被覆盖度∩海拔 局地 300 0.19
与单因子作用相似,环境因子间的交互作用对产水量的解释力对于分辨率的响应程度较小,但仍表现出一定规律(图6)。海拔和土地利用类型交互作用的解释力,在台地类型区随分辨率的降低而减小,在山地、丘陵类型区则随分辨率的降低而增大。降水与其他环境因子(除土地利用)间交互作用的解释力,在台地、丘陵类型区随分辨率的降低而减小,在山地类型区随分辨率降低而增大,在2 km分辨率下最优。环境因子间的两两交互作用会增强其对产水量的解释力,在台地类型区,降水和土地利用类型单因子作用时其解释力分别为0.80和0.45,交互作用时升至0.98。由表7可知,降水和土地利用类型的交互是影响产水量空间分布的主导交互作用,解释力高达95%以上,显著高于其他环境因子间的交互作用。解释力在75%~80%之间的交互作用,均为降水与其他环境因子的叠加。
图6 不同地貌类型区内双因子交互作用对产水量的解释力随分辨率的变化

Fig. 6 Variation of explanatory power of interactions between two factors on water yield with resolutions in different geomorphological areas

表7 不同地貌类型区内双因子交互作用对产水量的最优解释力排序

Tab. 7 The rank of optimal explanatory power of interactions between two factors on water yield in different geomorphological areas

地貌
类型区
排序 交互因子 因子类型 最佳
分辨率(m)
最优解释力
(q值)
台地 1 降水∩土地利用类型 局地 30 0.98
2 降水∩岩性 局地 300 0.80
3 降水∩植被覆盖度 局地 300 0.80
4 降水∩海拔 局地 300 0.80
5 降水∩坡度 局地 300 0.80
6 海拔∩土地利用类型 局地 300 0.67
丘陵 1 降水∩土地利用类型 宏观 1000 0.97
2 降水∩海拔 局地 100 0.76
3 降水∩岩性 局地 100 0.76
4 降水∩植被覆盖度 局地 100 0.76
5 降水∩坡度 局地 100 0.76
6 海拔∩土地利用类型 宏观 2000 0.50
山地 1 降水∩土地利用类型 宏观 2000 0.97
2 降水∩海拔 宏观 2000 0.79
3 降水∩岩性 宏观 2000 0.78
4 降水∩植被覆盖度 宏观 2000 0.78
5 降水∩坡度 宏观 2000 0.78
6 海拔∩土地利用类型 宏观 2000 0.33

4 讨论与结论

4.1 讨论

基于发生学视角,6种环境因子均为土壤侵蚀和产水量的重要影响因子,但不同环境因子对土壤侵蚀和产水量的控制程度存在差异[37]。精准辨识研究区生态系统服务变量的主导影响因子,可为当地石漠化科学治理提供针对性参考。研究结果表明,坡度和植被覆盖度是土壤侵蚀的主导影响因子,两因子间的交互作用对土壤侵蚀的解释力最强,这与王尧等[38]研究得出乌江流域高强度土壤侵蚀多发生在坡地和低植被覆盖度地区的结论相符。产水量的主导影响因子为降水,与胡奕等[39]研究表明降雨是影响我国西南喀斯特地区产水量的主要因子的结论较为一致。降水和土地利用类型的交互作用对产水量空间分布的解释力高达95%以上。不同土地利用类型下,产水量差异显著。林地、草地地区植被覆盖度高,对降水的截流作用明显,产水量较低,地表径流有效减少,水土流失减弱[40]。而裸岩石质地、城镇工矿用地等地区,在自然或人为因素作用下形成地表不透水层,产水量较高[41]。大量地表径流从裸露地区向土壤覆盖区冲刷,加重水土流失,从而形成恶性循环。因此在今后石漠化防治工作中,需加强裸岩石质地和矿业废弃地的生态修复和管理,增加其地表植被覆盖。同时在城镇地区推行“海绵城市”建设,减少不透水地面的分布,从而有效减缓水土流失。
环境因子对生态系统服务变量的解释力及其尺度变化规律,受地貌宏观控制作用的显著影响[16]。不同地貌形态类型区,生态系统服务变量的主导影响因子存在差异,具体表现为:土壤侵蚀的主导影响因子在台地、丘陵类型区为坡度,在山地类型区则为植被覆盖度。这与Wang等[8]提出坡度对土壤侵蚀的解释力,随地形起伏度的增大而减小的结论相符合。环境因子在不同地貌形态类型区的空间变异性,影响其最优解释力水平[5]。在台地、丘陵类型区,地形较为平缓,海拔的空间变异性较小,提高分辨率能够保留更多细微变化信息,因而在高精度分辨率下解释力最优。而在山地类型区,地形起伏剧烈,海拔的空间变异性较大,降低分辨率能更好地从总体上反映其变化特点,因而表现为在低精度分辨率下解释力更强[42]。因此在今后开展石漠化治理工作和研究时,应综合考虑不同地貌形态类型区喀斯特生态系统服务影响机制与空间异质性。
尺度效应是指由尺度所引起的对象表达和分析结果上的变化[43]。地理过程具有明显的尺度特征,环境因子与生态系统服务的作用关系在不同尺度上存在差异[10]。若仅选用单一高精度分辨率进行生态系统服务归因,可能会掩盖宏观因子的控制作用;若仅选用单一低精度分辨率,则会导致局地因子大量的细节信息被忽略,从而降低其对生态系统服务的解释力[44]。以山地类型区的土壤侵蚀为例,植被覆盖度在山地类型区表现为局地因子,坡度则表现为宏观因子。若采用单一30 m分辨率作为研究尺度,植被覆盖度是土壤侵蚀的主导影响因子;若采用单一1 km分辨率作为研究尺度,土壤侵蚀为坡度和植被覆盖度共同主导(图4)。因选取尺度不同而造成归因结果的差异印证了尺度效应的存在[45]。在石漠化防治工作中,若忽视尺度效应的影响,很可能导致土壤侵蚀和产水量核心驱动因子识别有误,从而造成石漠化防治重点的偏差。为规避尺度效应对管理决策正确性可能带来的影响,建议今后从多尺度视角探讨环境因子与生态系统服务的关系[46]
生态系统服务之间存在复杂的相互作用关系,一种服务的增加可能会带来另一种服务的增加或减少[19]。为了实现生态系统服务综合效益的最大化,生态系统服务权衡与协同研究成为目前的热点之一[47]。同样,权衡与协同关系也会受到尺度效应的影响[48],因而未来可以将本文的研究框架应用于对服务关系及其影响因子的多尺度特征探讨中。

4.2 结论

生态系统服务主导因子的定量精准辨识,尤其是对于异质性剧烈的山地生态系统,需要综合考虑不同尺度的变化规律。以空间异质性显著的典型喀斯特流域——乌江流域为研究区,基于环境因子对土壤侵蚀和产水量空间分布的解释力在不同分辨率下的变化规律,厘定了不同环境因子的适用尺度和最优解释力,进而对比分析生态系统服务变量主导因子的区域性规律。主要结论如下:
(1)坡度在解释土壤侵蚀空间分布时,表现为宏观因子。无论是坡度单因子作用还是坡度与其他环境因子的交互作用,其解释力均随分辨率的降低而增大,在低分辨率下(≥ 1 km)达到最优。对比不同环境因子的最优解释力,坡度是影响台地、丘陵类型区土壤侵蚀空间分布的主导因子。而在山地类型区,受景观破碎与地形切割普遍性的影响,主导影响因子则为植被覆盖度。因子间的交互作用增强了相应单因子的解释力,坡度与植被覆盖度的交互对土壤侵蚀空间分布的解释力最强。
(2)降水在不同地貌形态类型区的空间变异性,影响其对产水量空间分布的最优解释力水平。降水单因子作用和降水与其他环境因子(除土地利用类型)间的交互作用,在台地、丘陵类型区,均表现为在高分辨率(≤ 300 m)下的解释力最优,而在山地类型区则表现为在低分辨率(2 km)下的解释力更强。降水是决定产水量空间异质的主导因子。第二主导因子在台地类型区为海拔,在山地、丘陵类型区则为土地利用。降水与土地利用类型的交互作用对产水量空间分布的解释力达95%以上。
(3)本文在多尺度的框架下,借助地理探测器方法,实现了多因子及其交互、多区域及其集成的研究,对于最优解释力的定量辨识以及主导因子精准化分析具有学术贡献。此外,将研究技术框架应用于典型喀斯特流域,有助于推动喀斯特生态系统服务科学的发展。
[1]
Li S L, Liu C Q, Chen J N, et al. Karst ecosystem and environment: Characteristics, evolution processes, and sustainable development. Agriculture, Ecosystems & Environment, 2021, 306: 107173. DOI: 10.1016/j.agee.2020.107173.

DOI

[2]
Xu Erqi. Spatial variation in drivers of karst rocky desertification based on geographically weighted regression model. Resources Science, 2017, 39(10): 1975-1988.

DOI

[许尔琪. 基于地理加权回归的石漠化影响因子分布研究. 资源科学, 2017, 39(10): 1975-1988.]

DOI

[3]
Wang Kelin, Yue Yuemin, Chen Hongsong, et al. The comprehensive treatment of karst rocky desertification and its regional restoration effects. Acta Ecologica Sinica, 2019, 39(20): 7432-7440.

[王克林, 岳跃民, 陈洪松, 等. 喀斯特石漠化综合治理及其区域恢复效应. 生态学报, 2019, 39(20): 7432-7440.]

[4]
Zuo Liyuan, Gao Jiangbo. Quantitative attribution analysis of NPP in karst peak cluster depression based on geographical detector. Ecology and Environmental Sciences, 2020, 29(4): 686-694.

[左丽媛, 高江波. 基于地理探测器的喀斯特植被NPP定量归因. 生态环境学报, 2020, 29(4): 686-694.]

[5]
Zhu Q, Liao K H, Lai X M, et al. Scale-dependent effects of environmental factors on soil organic carbon, soil nutrients and stoichiometry under two contrasting land-use types. Soil Use and Management, 2021, 37(2): 243-256.

DOI

[6]
Li Rui, Zhang Chi, Gu Zaike, et al. Response of soil erosion to main influencing factors on hillslope of typical watersheds in Guizhou karst area. Research of Soil and Water Conservation, 2018, 25(3): 1-5.

[李瑞, 张弛, 顾再柯, 等. 贵州喀斯特区典型小流域坡面土壤侵蚀与主要影响因子的响应. 水土保持研究, 2018, 25(3): 1-5.]

[7]
Zhao Siqi, Wang Xiaohong, Shu Tianzhu, et al. Research on topographic factors in relation to regional soil erosion in karst region. Journal of Arid Land Resources and Environment, 2018, 32(5): 97-103.

[赵斯琦, 王晓红, 舒天竹, 等. 喀斯特地区区域尺度土壤侵蚀地形因子研究. 干旱区资源与环境, 2018, 32(5): 97-103.]

[8]
Wang Huan, Gao Jiangbo, Hou Wenjuan. Quantitative attribution analysis of soil erosion in different morphological types of geomorphology in karst areas: Based on the geographical detector method. Acta Geographica Sinica, 2018, 73(9): 1674-1686.

DOI

[王欢, 高江波, 侯文娟. 基于地理探测器的喀斯特不同地貌形态类型区土壤侵蚀定量归因. 地理学报, 2018, 73(9): 1674-1686.]

DOI

[9]
Martinez G, Weltz M, Pierson F B, et al. Scale effects on runoff and soil erosion in rangelands: Observations and estimations with predictors of different availability. CATENA, 2017, 151: 161-173.

DOI

[10]
Steur G, Verburg R W, Wassen M J, et al. Shedding light on relationships between plant diversity and tropical forest ecosystem services across spatial scales and plot sizes. Ecosystem Services, 2020, 43: 101107. DOI: 10.1016/j.ecoser.2020.101107.

DOI

[11]
Deng Y H, Wang S J, Bai X Y, et al. Spatiotemporal dynamics of soil moisture in the karst areas of China based on reanalysis and observations data. Journal of Hydrology, 2020, 585: 124744. DOI: 10.1016/j.jhydrol.2020.124744.

DOI

[12]
Wei Mengyao, Zhang Zhuodong, Liu Yingna, et al. Characteristics of soil erosion in Guangxi based on CSLE. Research of Soil and Water Conservation, 2020, 27(1): 15-20.

[魏梦瑶, 张卓栋, 刘瑛娜, 等. 基于CSLE模型的广西土壤侵蚀规律. 水土保持研究, 2020, 27(1): 15-20.]

[13]
Gao J B, Zuo L Y, Liu W L. Environmental determinants impacting the spatial heterogeneity of karst ecosystem services in Southwest China. Land Degradation & Development, 2021, 32(4): 1718-1731.

DOI

[14]
Wu F, Deng X Z, Yin F, et al. Projected changes of grassland productivity along the representative concentration pathways during 2010-2050 in China. Advances in Meteorology, 2013, 2013: 812723. DOI: 10.1155/2013/812723.

DOI

[15]
Li Z W, Xu X L, Zhu J X, et al. Scale-specific controls of sediment yield in karst watersheds. Journal of Hydrology, 2020, 583: 124301. DOI: 10.1016/j.jhydrol.2019.124301.

DOI

[16]
Wang H, Liu L B, Yin L, et al. Exploring the complex relationships and drivers of ecosystem services across different geomorphological types in the Beijing-Tianjin-Hebei region, China (2000-2018). Ecological Indicators, 2021, 121: 107116. DOI: 10.1016/j.ecolind.2020.107116.

DOI

[17]
Jiang C, Yang Z Y, Li M T, et al. Exploring soil erosion trajectories and their divergent responses to driving factors: A model-based contrasting study in highly eroded mountain areas. Environmental Science and Pollution Research, 2021, 28(12): 14720-14738.

DOI

[18]
Dai Quanhou, Yan Youjin. Research progress of karst rocky desertification and soil erosion in southwest China. Journal of Soil and Water Conservation, 2018, 32(2): 1-10.

[戴全厚, 严友进. 西南喀斯特石漠化与水土流失研究进展. 水土保持学报, 2018, 32(2): 1-10.]

[19]
Gao Jiangbo, Zuo Liyuan, Wang Huan. The spatial trade-offs and differentiation characteristics of ecosystem services in karst peak-cluster depression. Acta Ecologica Sinica, 2019, 39(21): 7829-7839.

[高江波, 左丽媛, 王欢. 喀斯特峰丛洼地生态系统服务空间权衡度及其分异特征. 生态学报, 2019, 39(21): 7829-7839.]

[20]
Wang Yongping, Zhou Zike, Teng Haowei, et al. Characteristics of soil erosion and nutrient losses in three land use patterns in the small watershed of southern Dianchi. Research of Soil and Water Conservation, 2021, 28(1): 11-18.

[王永平, 周子柯, 滕昊蔚, 等. 滇南小流域3种土地利用方式下土壤侵蚀及养分流失特征. 水土保持研究, 2021, 28(1): 11-18.]

[21]
Zhu L J, Meng J J, Zhu L K. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecological Indicators, 2020, 117: 106545. DOI: 10.1016/j.ecolind.2020.106545.

DOI

[22]
Jia Yangwen, Hao Chunfeng, Niu Cunwen, et al. Spatio-temporal variations of precipitation and runoff and analyses of water-heat-human-land matching characteristics in typical mountainous areas of China. Acta Geographica Sinica, 2019, 74(11): 2288-2302.

DOI

[贾仰文, 郝春沣, 牛存稳, 等. 典型山地降水径流时空演变及“水—热—人—地”匹配性分析. 地理学报, 2019, 74(11): 2288-2302.]

DOI

[23]
Zhou Chenghu, Cheng Weiming, Qian Jinkai, et al. Research on the classificaton system of digital land geomorphology of 1:1000000 in China. Journal of Geo-Information Science, 2009, 11(6): 707-724.

DOI

[周成虎, 程维明, 钱金凯, 等. 中国陆地1:100万数字地貌分类体系研究. 地球信息科学学报, 2009, 11(6): 707-724.]

[24]
Benavidez R, Jackson B, Maxwell D, et al. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrology and Earth System Sciences, 2018, 22: 6059-6086.

DOI

[25]
Gao J B, Wang H. Temporal analysis on quantitative attribution of karst soil erosion: A case study of a peak-cluster depression basin in Southwest China. CATENA, 2019, 172: 369-377.

DOI

[26]
Zhang Wenbo, Fu Jinsheng. Rainfall erosivity estimation under different rainfall amount. Resources Science, 2003, 25(1): 35-41.

[章文波, 付金生. 不同类型雨量资料估算降雨侵蚀力. 资源科学, 2003, 25(1): 35-41.]

[27]
Qian Qinghuan, Wang Shijie, Bai Xiaoyong, et al. Assessment of soil erosion in karst critical zone based on soil loss tolerance and source-sink theory of positive and negative terrains. Acta Geographica Sinica, 2018, 73(11): 2135-2149.

DOI

[钱庆欢, 王世杰, 白晓永, 等. 基于允许流失量和正负地形源汇理论的喀斯特关键带土壤侵蚀研究. 地理学报, 2018, 73(11): 2135-2149.]

DOI

[28]
Williams J R, Jones C A, Kiniry J R, et al. The EPIC crop growth model. Transactions of the American Society of Agricultural Engineers, 1989, 32(2): 497-511.

DOI

[29]
Mccool D K, Foster G R, Mutchler C K, et al. Revised slope length factor for the universal soil loss equation. Transactions of the American Society of Agricultural Engineers, 1989, 32(5): 1571-1576.

DOI

[30]
Zhang H M, Yang Q K, Li R, et al. Extension of a GIS procedure for calculating the RUSLE equation LS factor. Computers & Geosciences, 2013, 52: 177-188.

DOI

[31]
Cai Chongfa, Ding Shuwen, Shi Zhihua, et al. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed. Journal of Soil and Water Conservation, 2000(2): 19-24.

[蔡崇法, 丁树文, 史志华, 等. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究. 水土保持学报, 2000(2): 19-24.]

[32]
Sharp R, Tallis H T, Ricketts T, et al. InVEST 3.7.0 User's Guide. The Natural Capital Project, 2018.

[33]
Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective. Acta Geographica Sinica, 2017, 72(1): 116-134.

DOI

[王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017, 72(1): 116-134.]

DOI

[34]
Zeng C, Wang S J, Bai X Y, et al. Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS. Solid Earth, 2017, 8(4): 721-736.

DOI

[35]
Peng J, Tian L, Zhang Z M, et al. Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China. Ecosystem Services, 2020, 46: 101199. DOI: 10.1016/j.ecoser.2020.101199.

DOI

[36]
Lang Y Q, Song W, Deng X Z. Projected land use changes impacts on water yields in the karst mountain areas of China. Physics and Chemistry of the Earth, 2018, 104: 66-75.

[37]
Xu E Q, Zhang H Q. Change pathway and intersection of rainfall, soil, and land use influencing water-related soil erosion. Ecological Indicators, 2020, 113: 106281. DOI: 10.1016/j.ecolind.2020.106281.

DOI

[38]
Wang Yao, Cai Yunlong, Pan Mao. Analysis on the relationship between soil erosion and land use in Wujiang river basin in Guizhou province. Research of Soil and Water Conservation, 2013, 20(3): 11-18.

[王尧, 蔡运龙, 潘懋. 贵州省乌江流域土地利用与土壤侵蚀关系研究. 水土保持研究, 2013, 20(3): 11-18.]

[39]
Hu Yi, Dai Quanhou, Wang Peijiang. Runoff features and the influencing factors on karst sloping farmland. Journal of Soil and Water Conservation, 2012, 26(6): 46-51.

[胡奕, 戴全厚, 王佩将. 喀斯特坡耕地产流特征及影响因素. 水土保持学报, 2012, 26(6): 46-51.]

[40]
Xiong Kangning, Li Jin, Long Mingzhong. Features of soil and water loss and key issues in demonstration areas for combating karst rocky desertification. Acta Geographica Sinica, 2012, 67(7): 878-888.

DOI

[熊康宁, 李晋, 龙明忠. 典型喀斯特石漠化治理区水土流失特征与关键问题. 地理学报, 2012, 67(7): 878-888.]

[41]
Li X, Yu X, Wu K N, et al. Land-use zoning management to protecting the regional key ecosystem services: A case study in the city belt along the Chaobai River, China. Science of the Total Environment, 2021, 762: 143167. DOI: 10.1016/j.scitotenv.2020.143167.

DOI

[42]
Li Shuangcheng, Cai Yunlong. Some scaling issues of geography. Geographical Research, 2005, 24(1): 11-18.

DOI

[李双成, 蔡运龙. 地理尺度转换若干问题的初步探讨. 地理研究, 2005, 24(1): 11-18.]

[43]
Liu Xuejun, Lu Huaxing, Ren Zheng, et al. Scale issues in digital terrain analysis and terrain modeling. Geographical Research, 2007, 26(3): 433-442.

DOI

[刘学军, 卢华兴, 仁政, 等. 论DEM地形分析中的尺度问题. 地理研究, 2007, 26(3): 433-442.]

[44]
Yang M H, Gao X D, Zhao X N, et al. Scale effect and spatially explicit drivers of interactions between ecosystem services: A case study from the Loess Plateau. Science of the Total Environment, 2021, 785: 147389. DOI: 10.1016/j.scitotenv.2021.147389.

DOI

[45]
Guo L J, Liu R M, Men C, et al. Multiscale spatiotemporal characteristics of landscape patterns, hotspots, and influencing factors for soil erosion. Science of the Total Environment, 2021, 779: 146474. DOI: 10.1016/j.scitotenv.2021.146474.

DOI

[46]
Cui F Q, Tang H P, Zhang Q, et al. Integrating ecosystem services supply and demand into optimized management at different scales: A case study in Hulunbuir, China. Ecosystem Services, 2019, 39: 100984. DOI: 10.1016/j.ecoser.2019.100984.

DOI

[47]
Xu S N, Liu Y F, Wang X, et al. Scale effect on spatial patterns of ecosystem services and associations among them in semi-arid area: A case study in Ningxia Hui Autonomous Region, China. Science of the Total Environment, 2017, 598: 297-306.

DOI

[48]
Xu J, Wang S, Xiao Y, et al. Mapping the spatiotemporal heterogeneity of ecosystem service relationships and bundles in Ningxia, China. Journal of Cleaner Production, 2021, 294: 126216. DOI: 10.1016/j.jclepro.2021.126216.

DOI

文章导航

/