川西高寒山地土壤有机碳与铁、铝矿物复合体分布特征
车明轩(1992-), 男, 博士生, 主要从事水土保持及土壤碳循环研究。E-mail: cmxstbc@163.com |
收稿日期: 2020-08-17
要求修回日期: 2021-09-19
网络出版日期: 2022-03-25
基金资助
四川省科技厅重点课题(2015FZ0022)
版权
Distribution of soil organic carbon associated with Al and Fe minerals within alpine mountain soils in western Sichuan
Received date: 2020-08-17
Request revised date: 2021-09-19
Online published: 2022-03-25
Supported by
Science and Technology Department Project of Sichuan(2015FZ0022)
Copyright
为了量化川西高寒山地土壤与铁、铝矿物相关的有机碳含量以及探讨川西高寒山地土壤铁、铝矿物对有机碳稳定性和累积方式的影响,采用选择性提取法研究了川西高寒山地的山地灰化土(MP)和高山草甸土(AM)中土壤有机碳与晶质金属氧化物(DH)提取、短程有序(HH)提取、矿物复合体以及有机—金属配合物(PP)提取中的有机碳和铁、铝的分布。结果表明,MP中DH,HH和PP提取的碳含量分别为(10.91±6.23) g/kg、(5.92±1.66) g/kg和(8.76±2.29) g/kg,分别占有机碳的20.92%,12.07%和19.93%;而AM中DH、HH和PP提取的碳含量分别为(9.05±1.33) g/kg、(5.52±1.02) g/kg和(9.12±3.21) g/kg,分别占有机碳的21.04%、12.47%和19.34%。3种提取剂提取的碳含量以及其占有机碳的百分比在MP和AW的A层土壤中均表现为PP > DH > HH,而在B层土壤中则表现为DH > PP ≈ HH。随着土壤深度的增加,深层土壤中次级矿物和晶体矿物丰度的显著增加,导致有机碳与铁、铝矿物复合体由有机—金属配合物主导转变为有机碳与晶质金属氧化物形成的复合体主导。PP提取的碳和其所占有机碳的百分比表现为A层高于B层,而DH和HH提取的碳含量和其所占有机碳的百分比大体表现为A层低于B层。由于MP特殊的土壤性质,这种差异在MP中更为明显。3种提取剂提取的金属(Al+Fe)含量在两种土壤中均表现为DH > HH > PP。而其提取的碳与金属的摩尔比表现为DH < HH < PP,说明随着铁、铝矿物的结晶度增加,其与有机质的作用从共沉淀、络合而向吸附作用转变。DH,HH和PP提取的碳与SOC的相关分析表明,MP中土壤有机碳的累积在一定程度上受晶质铁、铝矿物与有机质的相互作用而驱动;AM中土壤有机碳的累积在一定程度上受短程有序矿物与有机质的相互作用以及有机—金属配合物的驱动。本文研究表明,土壤中的铁、铝矿物与有机碳形成的复合体在一定程度上驱动着川西高寒山地土壤有机碳的积累,不同土壤类型中,与矿物相关的有机碳的分布不同,其有机碳的积累方式也不同。
车明轩 , 吴强 , 方浩 , 康成芳 , 吕宸 , 许蔓菁 , 宫渊波 . 川西高寒山地土壤有机碳与铁、铝矿物复合体分布特征[J]. 地理学报, 2022 , 77(1) : 93 -105 . DOI: 10.11821/dlxb202201007
The chemical protection mechanism of soil organic carbon (SOC) was explored to quantify the distribution of organic carbon protected by iron (Fe) and aluminum (Al) minerals in two alpine soils. Selective extraction methods were used in mountain podzolic (MP) soil and alpine meadow (AM) soil to investigate the distribution of SOC, as well as Fe and Al contents of SOC associated with crystalline metal oxides extracted by (dithionite-HCl, DH), short-range-order minerals extracted by (hydroxylamine-HCl, HH) and organo-mineral complexes extracted by (Na-pyrophosphate, PP). Results showed that the carbon concentrations extracted by DH, HH, and PP in MP soils were (10.91±6.23) g/kg, (5.92±1.66) g/kg, and (8.76±2.29) g/kg, respectively. These oxides, minerals, and complexes accounted for 20.92%, 12.07%, and 19.93% of SOC, respectively. Comparatively, the carbon concentrations for DH, HH, and PP in AM soils were (9.05±1.33) g/kg, (5.52±1.02) g/kg, and (9.12±3.21) g/kg, accounting for 21.04%, 12.47%, and 19.34% of SOC, respectively. The distribution of carbon contents and their proportions to SOC extracted through three extractants showed an order of PP > DH > HH in the A horizon and an order of DH > PP ≈ HH in the B horizon, for both MP and AM soils. An increase in soil depth, together with increasing abundance of secondary minerals and crystalline minerals in deeper soils, leads to organo-mineral associations changing from being dominated by organo-metal complexes to being dominated by the crystalline mineral-associated organic carbon. PP-extracted carbon contents and its relative proportion to SOC were higher in the A horizon than those in the B horizon, whereas DH- and HH- extracted carbon contents and their proportions to SOC were generally lower in the A horizon than those in the B horizon. These differences were more pronounced in MP because of its special soil property. The distribution of metal (Al+Fe) contents extracted by the three extractants showed the order DH > HH > PP in both soil types. However, the molar ratio of carbon-to-metal showed the order DH < HH < PP, suggesting that as the degree of mineral crystallization increases, the interaction between minerals and carbon changed from precipitation dominant to adsorption dominant. A correlation analysis of DH, HH, PP, and SOC suggested that the accumulation of SOC was driven to a certain extent by the association of crystalline Fe and Al minerals and organic matter in MP, as well as the association of short-range-order minerals and organic matter as well as organo-metal complexes in AM soils. The organomineral associations are, to some extent, driving the accumulation of SOC in alpine mountain soils in western Sichuan. The distribution of organic carbon associated with minerals and the accumulation ways of organic carbon is different across various soil types.
表1 山地灰化土和高山草甸土的基本理化性质与生长植被Tab. 1 Basic physicochemical properties and vegetation of mountain podzolic soil and alpine meadow soil |
土壤类型 | 土壤层次 | SOC(g/kg) | SWC(%) | pH | 砂粒(%) | 粉粒(%) | 粘粒(%) | 主要植物物种 |
---|---|---|---|---|---|---|---|---|
山地灰化土 | A | 37.79 (3.08) Aa | 33.44 (9.67) Aa | 5.07 (0.25) Aa | 17.38 (5.90) Aa | 66.66 (3.98) Aa | 15.96 (2.04) Aa | 杜鹃,高山柏,云杉,冷杉,小檗 |
B | 61.23 (8.51) Ba | 22.36 (4.58) Ba | 5.67 (0.32) Ba | 23.53 (13.45) Aa | 58.72 (9.30) Aa | 17.75 (4.59) Aa | ||
高山草甸土 | A | 57.01 (11.02) Ab | 22.45 (7.93) Aa | 5.70 (0.13) Ab | 29.85 (6.07) Ab | 48.04 (3.98) Ab | 22.11 (2.34) Ab | 高山柏,杜鹃,小檗,委陵菜,狼毒 |
B | 37.23 (9.22) Bb | 25.96 (4.22) Aa | 6.13 (0.35) Bb | 28.52 (2.87) Aa | 49.95 (1.71) Ab | 21.53 (2.28) Aa |
注:表中数据以平均值(标准差)表示;SOC为土壤有机碳、SWC为土壤含水率;不同大写字母表示同一土壤类型不同土层显著差异,不同小写字母表示同一土层不同土壤类型差异显著(P < 0.05)。 |
图1 不同有机金属复合体中的有机碳在山地灰化土(MP)和高山草甸土(AW)中的分布注:箱体范围在第一4分位数和第三4分位数之间,箱体中黑线为中位数,空心方形为平均值,箱体外实心菱形为异常值;DH为连二亚硫酸钠—盐酸;HH为盐酸羟胺;PP为焦磷酸钠;A为山地灰化土的灰化层或高山草甸土的淋溶层;B为山地灰化土的铁铝层或高山草甸土的淀积层;不同大写字母表示同一土壤类型不同土层显著差异,不同小写字母表示同一土层不同土壤类型差异显著(p < 0.05)。 Fig. 1 Distribution of organic carbon from various mineral-organo associations in mountain podzolic soil and alpine meadow soil |
表2 土壤类型和土壤层次对3种提取剂提取的碳含量和其占有机碳的百分比的双因素方差分析Tab. 2 Two-way analysis of variance (ANOVA) analysis of soil type and horizon to the carbon contents and their proportions to SOC, extracted by three extractants |
提取碳含量 | 提取碳占有机碳的百分比 | ||||||
---|---|---|---|---|---|---|---|
DH | HH | PP | DH | HH | PP | ||
ST | NS | NS | NS | NS | NS | NS | |
SH | *** | ** | *** | *** | ** | *** | |
ST×SH | *** | ** | NS | NS | ** | *** |
注:DH为连二亚硫酸钠—盐酸、HH为盐酸羟胺、PP为焦磷酸钠、ST为土壤类型、SH为土壤层次;NS表示差异不显著,**、***分别表示p < 0.01和p < 0.001。 |
表3 不同有机金属复合体中的金属和摩尔比在山地灰化土(MP)和高山草甸土(AW)中的分布Tab. 3 Distribution of metal and molar ratio of carbon-to-metal from various mineral-organo associations in mountain podzolic soil and alpine meadow soil |
土壤类型 | 土壤层次 | DH | HH | PP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Al(g/kg) | Fe(g/kg) | C/M | Al(g/kg) | Fe(g/kg) | C/M | Al(g/kg) | Fe(g/kg) | C/M | ||
山地灰化土(MP) | A | 2.30(0.60)Aa | 3.25(0.61)Aa | 3.34(1.24)Aa | 0.69(0.19)Aa | 0.24(0.12)Aa | 12.91 (1.55)Aa | 0.11(0.02)Aa | 0.07(0.02)Aa | 176.62(47.28)Aa |
B | 10.53 (1.32)Ba | 5.99 (0.58) Ba | 2.68(0.55)Aa | 1.51(0.45)Ba | 2.00(0.63)Ba | 6.81(1.71)Ba | 0.21(0.12)Ba | 0.60(0.17)Ba | 35.37(18.48)Ba | |
高山草甸土(AM) | A | 4.37(0.35)Ab | 6.93(0.65)Ab | 2.39(0.19)Aa | 1.33(0.17)Ab | 1.48(0.22)Ab | 5.92(0.46)Ab | 0.35(0.05)Ab | 0.50(0.03)Ab | 56.20(14.47)Ab |
B | 8.55(0.47)Bb | 6.60 (0.48) Aa | 1.89 (0.19)Bb | 1.57(0.36)Aa | 1.73(0.65)Aa | 5.35(0.85)Aa | 0.22(0.03)Ba | 0.42(0.04)Bb | 28.97(9.94)Ba | |
双因素方差分析 | ST | NS | *** | ** | ** | ** | *** | *** | NS | *** |
SH | *** | *** | NS | *** | *** | *** | NS | *** | ** | |
ST×SH | *** | *** | NS | ** | ** | *** | *** | *** | ** |
注:表中数据以 平均值(标准差)表示;DH为连二亚硫酸钠—盐酸、HH为盐酸羟胺、PP为焦磷酸钠;A在山地灰化土为灰化层,高山草甸土为淋溶层;B在山地灰化土为铁铝层,在高山草甸土为淀积层;ST在土壤类型;SH在土壤层次;数据后的字母表示单因素方差分析结果,不同大写字母表示同一土壤类型不同土层显著差异,不同小写字母表示同一土层不同土壤类型差异显著(p < 0.05);NS表示差异不显著,**和***分别表示p < 0.01和p < 0.001。 |
表4 不同提取剂提取的碳与金属(Al+Fe)和土壤有机碳(SOC)的相关分析Tab. 4 Correlation analysis of different extracted carbons and extracted metals (Al+Fe) and soil organic carbons |
土壤类型 | 碳组分 | 金属组分(Al + Fe) | SOC | ||
---|---|---|---|---|---|
DH | HH | PP | |||
山地灰化土 | DH | 0.916** | 0.713** | 0.631* | 0.783* |
HH | 0.888** | 0.787** | 0.647* | 0.762** | |
PP | -0.816** | -0.736** | -0.779** | -0.881** | |
高山草甸土 | DH | 0.732** | 0.708** | -0.493 | -0.072 |
HH | 0.227 | 0.800** | -0.187 | 0.362 | |
PP | -0.828** | -0.228 | 0.888** | 0.878** |
注:DH为连二亚硫酸钠—盐酸、HH为盐酸羟胺、PP为焦磷酸钠、SOC为土壤有机碳;*和**分别表示p < 0.05和p < 0.01。 |
表5 不同提取剂提取的碳与金属和土壤有机碳的回归分析Tab. 5 Regression analysis of different extracted carbons and extracted metals and soil organic carbons |
土壤类型 | 碳组分 | 对应金属组分(Al+Fe) | SOC | ||||||
---|---|---|---|---|---|---|---|---|---|
DH | HH | PP | |||||||
线性回归方程 | R2 | 线性回归方程 | R2 | 线性回归方程 | R2 | 线性回归方程 | R2 | ||
山地灰化土 | DH | y=0.854x+1.722 | 0.838 | y=0.163x+0.437 | 0.509 | y=0.037x+0.085 | 0.398 | y=1.704x+30.931 | 0.613 |
HH | y=3.129x-7.479 | 0.789 | y=0.681x-1.808 | 0.619 | y=0.145x-0.364 | 0.418 | y=6.261x+12.464 | 0.581 | |
PP | y=-2.090x+29.343 | 0.667 | y=-0.463x+6.272 | 0.542 | y=-0.127x+1.603 | 0.607 | y=-5.257x+95.572 | 0.775 | |
高山草甸土 | DH | y=1.155x+2.764 | 0.536 | y=0.386x-0.435 | 0.502 | - | - | - | - |
HH | - | - | y=0.569x-0.084 | 0.640 | - | - | - | - | |
PP | y=-0.543x-18.174 | 0.685 | - | - | y=0.034x+0.431 | 0.789 | y=3.879+11.760 | 0.772 |
注:DH为连二亚硫酸钠—盐酸、HH为盐酸羟胺、PP为焦磷酸钠、SOC为土壤有机碳。 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
[ 康成芳, 宫渊波, 车明轩, 等. 川西高寒山地灌丛草甸不同海拔土壤有机碳矿化的季节动态. 生态学报, 2020, 40(4): 244-252.]
|
[26] |
[ 康成芳, 宫渊波, 车明轩, 等. 川西高寒山地灌丛草甸不同海拔土壤碳矿化特征. 应用与环境生物学报, 2019, 25(5): 1030-1035.]
|
[27] |
[ 杜凯, 康宇坤, 张德罡, 等. 不同放牧方式对祁连山高寒草甸有机碳、氮库的影响. 草地学报, 2020, 28(5): 1412-1420.]
|
[28] |
[ 蒙程, 牛书丽, 常文静, 等. 增温和刈割对高寒草甸土壤呼吸及其组分的影响. 生态学报, 2020, 40(18): 150-160.]
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
[ 王良健, 李显明, 林致远. 也论我国西南高山地区暗针叶林下发育的土壤. 地理学报, 1995, 50(6): 542-551.]
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
[ 熊国炎, 赵其国, 王明珠. 大兴安岭北部的灰化土. 土壤学报, 1979, 16(2): 110-126, 205.]
|
[43] |
|
[44] |
|
[45] |
|
/
〈 |
|
〉 |