生态系统服务与环境健康

基于SSP-RCP不同情景的京津冀地区土地覆被变化模拟

  • 范泽孟 , 1, 2, 3
展开
  • 1.中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101
  • 2.中国科学院大学资源与环境学院,北京 100049
  • 3.江苏省地理信息资源开发与利用协同创新中心,南京 210023

范泽孟(1977-), 男, 云南镇雄人, 博士, 研究员, 研究方向为土地覆被情景曲面建模、生态模型与系统模拟。E-mail:

收稿日期: 2021-02-25

  要求修回日期: 2021-11-10

  网络出版日期: 2022-03-25

基金资助

国家重点研发计划(2017YFA0603702)

国家自然科学基金项目(41971358)

国家自然科学基金项目(41930647)

中国科学院战略性先导科技专项(XDA20030203)

资源与环境信息系统国家重点实验室自主部署创新研究计划项目

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Simulation of land cover change in Beijing-Tianjin-Hebei region under different SSP-RCP scenarios

  • FAN Zemeng , 1, 2, 3
Expand
  • 1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China

Received date: 2021-02-25

  Request revised date: 2021-11-10

  Online published: 2022-03-25

Supported by

National Key R&D Program of China(2017YFA0603702)

National Natural Science Foundation of China(41971358)

National Natural Science Foundation of China(41930647)

Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20030203)

Innovation Research Project of State Key Laboratory of Resources and Environment Information System, CAS

Copyright

Copyright reserved © 2022

摘要

如何实现自然与人文双重驱动下的特大城市群地区土地覆被变化的情景模拟,不仅是当前土地覆被变化研究领域的热点问题,也是城镇化可持续发展研究的核心主题之一。本文在对现有土地覆被变化情景模型缺陷进行分析和修正的基础上,构建了自然要素与人文要素耦合驱动的土地覆被情景曲面建模(SSMLC)方法。结合IPCC 2020年发布的共享社会经济路径(SSPs)与典型浓度路径(RCPs)组合的CMIP6 SSP1-2.6、SSP2-4.5和SSP5-8.5的气候情景数据,以及人口、GDP、交通、政策等人文参数,分别实现了SSP1-2.6、SSP2-4.5和SSP5-8.5情景下的京津冀土地覆被变化的情景模拟。模拟结果表明:SSMLC对京津冀地区土地覆被变化模拟的总体精度为93.52%;京津冀地区的土地覆被在2020—2040时段内的变化强度最高(3.12%/10a),2040年以后的变化强度将逐渐减缓;在2020—2100年间,建设用地增加速度最快,增加率为5.07%/10a。湿地的减少速度最快,减少率为3.10%/10a。2020—2100时段内的京津冀土地覆被在SSP5-8.5情景下的变化强度整体高于在SSP1-2.6和SSP2-4.5情景下的变化强度;GDP、人口、交通和政策等人文因子对京津冀地区耕地、建设用地、湿地和水体的影响强度高于对其他土地覆被类型的影响强度。研究结果证实了SSMLC模型能够有效模拟和定量刻画京津冀地区土地覆被空间分布格局在未来不同情景的时空变化趋势和强度,模拟结果可为京津冀协同一体化的国土空间优化配置与规划、以及生态环境建设提供辅助依据和数据支撑。

本文引用格式

范泽孟 . 基于SSP-RCP不同情景的京津冀地区土地覆被变化模拟[J]. 地理学报, 2022 , 77(1) : 228 -244 . DOI: 10.11821/dlxb202201016

Abstract

How to simulate the scenarios of land cover change, driven by climate change and human acitivities, is not only a hot issue in the field of land cover research, but also one of the core topics in the sustainable urbanization. A new method of scenarios of surface modeling in land cover (SSMLC) was developed to simulate the scenarios of land cover driven by the coupling of natural and human factors. Based on the climatic scenario data of CMIP6 SSP1-2.6, SSP2-4.5 and SSP5-8.5 released by IPCC in 2020 that combined the shared socio-economic paths (SSPS) and typical concentration paths (RCPs), the observation climatic data, the human data of population, GDP and transportation, the current data of land cover in 2020, and the related policies, scenarios of land cover in Beijing-Tianjin-Hebei (BTH) region are simulated under scenarios of SSP1-2.6, SSP2-4.5 and SSP5-8.5 during the periods of 2040, 2070 and 2100, respectively. The simulation results show that the overall accuracy of SSMLC in the BTH region is up to 93.52%. During the period from 2020 to 2100, change intensity of land cover in the BTH region is the highest (an increase of 3.29% per decade) between 2020 and 2040, and it would gradually decrease after 2040. Built-up land would have the highest increasing rate (an increase of 4.741% per decade), and the wetland would have the highest decreasing rate (a decrease of 2.64% per decade) between 2020 and 2100. The change intensity of land cover under the scenario SSP5-8.5 is higher than that under the scenarios of SSP1-2.6 and SSP1-2.6 between 2020 and 2100. The impacts of GDP, population, transportation and policies on the changes in cultivated land, built-up land, wetland and water body are generally higher than on other types of land cover. Moreover, the research results indicate that the SSMLC method could be used to explicitly project the changing trend and intensity of land cover under different sceaniros, which will benefit the spatial optimal allocation and planing of land cover, and could be used to obtain the key data for carrying out the eco-environment conservation measures in the BTH region in the future.

全球变化是21世纪人类面临的最大和最复杂的生态环境问题[1]。自国际地圈—生物圈计划(IGBP)全球环境变化研究中的人文领域计划(IHDP)1995年联合提出“土地利用和土地覆被变化”(LUCC)核心研究计划以来,土地覆被变化作为全球变化的重要组成部分和导致全球变化的主要原因,一直是全球变化领域的研究核心和焦点内容之一[2,3]。土地覆被变化作为全球环境变化的主要承载形式[4],直接影响着生物地球化学循环[5]、水土流失和生物多样性[6],并引起生态系统服务功能结构的改变[7],从而影响生态系统满足人类需求的承载能力,进而影响生态系统与人类社会的可持续发展[8,9,10]。因此,如何构建以一种科学有效的土地覆被变化空间预测模拟方法,对于全球气候变化生态效应的模拟和预测,以及如何改进全球变化适应性战略和减缓气候变化对土地覆被的影响等均具有重要的科学和现实意义。
自20世纪90年代以来,国内外学者从不同视角,结合不同研究目相继构建了系列土地覆被变化情景预测模型。具有代表性的模型主要包括分析区域土地覆被变化经济效用的I-O(Input-Output)模型[11]、模拟农业生态过程的IMAGE(Integrated Model to Assess the Greenhouse Effect)综合模型[12]、模拟土地利用转换及影响的CLUE (Conversion of Land Use and its Effects)[13,14]、模拟城市用地变化元胞自动机(CA)模型[15]和系统动力学(SD)模型[16]、集成CA与SD模型的FLUS(future land use simulation model)模型[17],以及基于自然气候变化驱动的SMLC(Surface Modeling of Land Cover)模型[3-4, 7]。以上这些模型可概括为统计模型、随机模型、动态模型和综合模型4种类型。然而,由于这些模型存在一定的局限性,仅适用于某些研究区域或研究对象。譬如,IMAGE模型主要考虑农业用地需求,未考虑气候变化和社会经济发展对土地覆被变化的驱动影响;CA模型主要用于模拟城市用地变化,侧重于模拟城市发展过程中各种城市用地之间的相互转换,缺乏气候变化对森林、草地等土地覆被类型驱动的有效模拟;SD模型由于考虑的系统要素过于复杂,常用于中小时间尺度的土地覆被变化模拟,因此无法满足在长时间尺度上进行自然和人文因素耦合驱动下的土地覆被情景模拟需求;集成CA模型和SD模型的FLUS模型虽然很好地解决了区域尺度的城市用地模拟,但由于未考虑全球气候变化对土地覆被的驱动影响,在森林、草地、荒地等土地覆被类型的模拟方面具有较大的局限性。现有的SMLC模型能够在长时间尺度上,有效模拟气候变化驱动下的林草荒等人类活动干扰强度相对较低的土地覆被变化情景[3-4, 7, 18]。因此,选择SMLC模型可以实现京津冀西部及北部地区的主要土地覆被类型的情景模拟。但是,现有的SMLC模型在实现经济、人口、政策等人文因子对土地覆被变化的驱动效应方面,尤其是在模拟受人类活动干扰强度较大的建设用地耕地等土地覆被类型存在一定的局限性[18]
此外,自21世纪以来,国内外学者在作为国家经济发展的战略核心区和新型城镇化主体区的特大城市群地区[19,20],针对其社会经济快速发展过程中的资源与生态环境胁迫问题,相继开展了特大城市群地区的城镇化与生态环境交互耦合效应解析的理论框架及技术路径构建[21,22]、城市群用地扩张动态特征分析[23]等方面的研究工作。尤其是在京津冀特大城市群地区的陆路交通网络发展过程[24,25,26]、城镇化扩展格局及驱动力分析[27,28]、产业升级与整合[29]等取得了系列研究进展。但现有研究主要集中在京津冀地区的城镇扩展模式、城市土地利用结构的变化趋势、以及都市圈产业结构升级等方面,而缺乏对土地覆被未来变化的情景模拟。京津冀地区作为京津冀特大城市群的承载区域(图1),区域内的人口及产业高度集聚,尤其是京津冀协同一体化发展上升为国家战略以来,人地关系矛盾日益突出。定量模拟和分析气候变化与人类活动双重驱动下的京津冀地区土地覆被变化情景,将有助于京津冀高度协同发展和生态可持续保护二者间的优化和平衡。
图1 研究区范围及其海拔

Fig. 1 The boundary and DEM of the Beijing-Tianjin-Hebei region

鉴于上述分析,针对SMLC模型现有的局限性,在气候变化和人类活动双重驱动下,如何构建适用于京津冀区域的土地覆被情景模拟方法,定量模拟和揭示不同情景下的京津冀地区土地覆被变化情景,是实现该区域协同快速发展与生态环境可持续二者平衡优化亟需研究的关键性问题之一。本文旨在对SMLC情景模型进行修正和改进的基础上,基于IPCC 2020年发布的共享社会经济路径(SSPs)与典型浓度路径(RCPs)组合的CMIP6 SSP1-2.6、SSP2-4.5和SSP5-8.5的气候情景数据,结合人口、GDP、交通现状等人文数据,以及京津冀协同发展规划战略、基本农田保护、自然保护区等政策措施,构建自然气候要素和人文要素耦合驱动下的土地覆被情景模拟模型,实现不同情景下的京津冀地区2020—2100年间土地覆被时空变化的模拟分析,为京津冀地区城镇化与生态环境的优化配置和可持续发展战略指定提供数据支撑。

1 数据与模型

1.1 基础数据收集分析

自然气候变化及人类活动耦合作用驱动下的京津冀地区土地覆被变化情景模拟的基础数据包括气候数据、地形数据、社会经济数据及自然保护区数据。 ① 气候数据包括观测数据和模式情景数据。气候观测数据为1961—2020年间分布在京津冀地区及其周围的176个气象台站观测数据[30];气候情景数据为IPCC 2020年发布的2020—2100年的共享社会经济路径(SSPs)与典型浓度路径(RCPs)组合的CMIP6 SSP1-2.6、SSP2-4.5和SSP5-8.5情景数据。其中,SSP1-2.6情景代表低减缓压力和低辐射强迫影响下的未来情景,也称之为可持续发展情景。SSP2-4.5情景,代表中等辐射强迫下的未来情景,是指维持当前社会经济和科学技术发展趋势的情景。SSP5-8.5 代表高辐射强迫下的未来情景,是指以化石燃料为主的高速发展路径强迫下的情景[31,32]。② 社会经济数据包括2010年的GDP、人口和交通数据,以及2020—2100年人口和GDP的情景数据。其中,2010年的1 km×1 km分辨率的人口和GDP数据来源于全球变化科学研究数据出版系统[33,34]http://www.geodoi.ac.cn/WebCn/Default.aspx)。2010年的交通数据来源于国家科技基础条件平台—国家地球系统科学数据中心( http://www.geodata.cn),并利用ArcGIS空间分析模块获得1 km×1 km格网的交通密度空间数据。人口和GDP的未来情景数据采用IPCC 共享社会经济路径下SSP1、SSP2和SSP5情景的0.5°×0.5°分辨率数据[35,36],并分别利用ArcGIS空间插值方法获取 1 km×1 km格网的3种情景2020—2100年的人口和GDP交通密度空间分布数据。③ 地形数据。DEM的基础数据来源于美国NASA发布的SRTM数据( http://srtm.csi.cgiar.org/),其分辨率为1 km×1 km,利用ArcGIS空间分析模块获得1 km×1 km格网的坡度分布数据。④ 自然保护区边界数据。根据从环保部、林业局、国家测绘局和国家基础地理信息中心等数据来源收集到的基础资料,以及部分高分辨率遥感影像数据,利用ArcGIS软件矢量化获得[37,38]。⑤ 土地覆被数据。在对IGBP 分类1990年和2020年的土地覆被数据[39,40]的基础上,结合京津冀地区的土地覆被分布特征和IGBP土地覆被分类原则,将该区域的土地覆被类型分为常绿针叶林、落叶针叶林、落叶阔叶林、混交林、灌丛、草地、湿地、耕地、建设用地、裸露或稀少植被、水体等11种类型。

1.2 气候参数的高精度模拟

年平均生物温度和年平均降水等关键气候参数的空间数据精度,直接关系到土地覆被情景模型模拟结果的可靠性和有效性[18]。为了保证气候参数空间模拟精度,分别采用反距离加权模型(IDW)、克里格模型(Kriging)、样条插值模型(Spline)和高精度曲面建模(HASM)方法[41,42,43,44,45,46],结合经纬度及高程数据,对1991—2020年(T0)京津冀地区平均生物温度和年平均降水进行空间插值对比。对比结果显示,HASM、IDW、Kriging和Spline模型对京津冀地区年平均降水的模拟误差分别为26.21 mm、107.52 mm、51.79 mm和87.6 mm;对其年平均生物温度的模拟误差分别为0.27 ℃、0.98 ℃、0.61 ℃和0.83 ℃。这一结果表明HASM方法对年平均降水和平均生物温度的模拟精度均高于其他模型。因此,在验证的基础上,采用HASM方法分别实现了京津冀地区3种情景SSP1-2.6、SSP2-4.5和SSP5-8.5下1 km×1 km分辨率的2020年、2040年、2070年和2100年4个时段的年平均生物温度、平均年降水和潜在蒸散比率数据。

1.3 土地覆被情景曲面建模方法

基于年平均生物温度、年平均降水和潜在蒸散比率等关键气候参数,运用自然植被生态系统HLZ(Holdridge life zone)改进模型[43, 47-48],分别实现京津冀地区3种情景SSP1-2.6、SSP2-4.5和SSP5-8.5下1 km×1 km分辨率的2020年、2040年、2070年和2100年4个时段的自然植被生态系统的未来变化情景。在此基础上,深入分析和定量揭示自然植被生态系统类型与土地覆被类型在空间分布上的空间相似性和一致性特征,并结合土地覆被现状及其各类型的空间分布比率量化因子的基础上,综合考虑交通密度、人口密度、人均GDP等人文要素,以及京津冀地区协同发展规划、基本农田保护、自然保护区等政策措施对土地覆被变化的驱动和影响作用,对自然要素和人文要素共同驱动下的土地覆被情景曲面建模(Scenario of Surface Modelling in Land Cover, SSMLC)方法进行构建。该方法主要包括以下3个关键技术步骤。
1.3.1 自然植被生态系统类型与土地覆被类型之间的对应概率计算 首先,在将自然植被生态系统HLZ模型的输入参数模式,从不连续的离散点修正为连续的空间栅格单元的基础上,实现不同时段内的自然植被生态系统类型的空间分布模拟[3]。修正后的模型公式可表征为:
D i x , y , t = BT x , y , t - LB T i 0 2 + LR x , y , t - LR T i 0 2 + LP x , y , t - LP T i 0 2
式中:BT(x, y, t)、LR(x, y, t)和LP(x, y, t)分别是t时段栅格单元(x, y)的年平均生物温度、年平均降水量及潜在蒸散比率的以2为底的对数值;LBTi0LRTi0LPTi0则分别为HLZ模型判别体系中第i种自然植被生态系统类型所代表的空间位置的年平均生物温度、年降水量及年潜在蒸散率的标准值;当Dj(x, y, t) = min{Di(x, y, t)}时,t时段栅格单元(x, y)的值被赋值为第j类自然植被生态系统类型。根据3种情景SSP1-2.6、SSP2-4.5和SSP5-8.5下1 km×1 km分辨率的2020年、2040年、2070年和2100年4个时段的年平均生物温度、平均年降水和潜在蒸散比率数据,运行修正后的自然植被生态系统HLZ模型,分别以上3种情景的4个时段的自然植被生态系统未来情景的空间分布数据。
其次,运用ArcGIS的空间叠加分析方法,对整个研究范围内每一个栅格单元的土地覆被类型数据和与之对应时段的自然植被生态系统类型的空间分布数据进行空间叠加,进而二者空间分布的相似性和一致性进行对比分析。并在此基础上,加入需要模拟时段的自然植被生态系统类型空间数据,从而实现对自然植被生态系类型与土地覆被类型在空间分布上的对应概率进行求算,具体计算的理论公式可表征为:
HL _ P x , y k , t + 1 = 1 2 1 + HLZP x , y k , t + 1 - HLZP x , y k , t HLZP x , y k , t + 1 + HLZP x , y k , t
式中:HLZP(x, y)k, tHLZP(x, y)k, t+1分别表示tt+1时期栅格单元(x, y)的自然植被生态系统类型对应 t时期的第 k种土地覆被类型的概率;HL_P(x, y)k, t+1表示综合考虑tt+1两个时期的栅格单元(x, y)的自然植被生态系统类型与第 k种土地覆被类型的综合对应概率。
1.3.2 土地覆被变化最大可能性概率的空间分析模型 为了克服人口、GDP、交通、t时段的土地覆被类型分布概率、以及t+1时段的自然植被生态系统类型分布概率等数据的数值差异过大或分布不一致,对模型运算可能造成的不确定性影响,分别将以上参数的空间栅格数据进行均值为0,方差为1的归一化处理,具体计算公式可表达为:
$\overline{P I(x, y)_{k, t}}=\frac{P N(x, y)_{k, t}-\overline{P N_{k, t}}}{\sigma\left(P N(x, y)_{k, t}\right)}$
${\overline{E I(x, y)_{k, t}}}=\frac{G D P(x, y)_{k, t}-\overline{G D P_{k, t}}}{\sigma\left(G D P(x, y)_{k, t}\right)}$
$\overline{T I(x, y)_{k, t}}=\frac{T D(x, y)_{k, t}-\overline{T D_{k, t}}}{\sigma\left(T D(x, y)_{k, t}\right)}$
$\overline{L P(x, y)_{k, t}}=\frac{L P(x, y)_{k, t}-\overline{L P_{k, t}}}{\sigma\left(L P(x, y)_{k, t}\right)}$
$\overline{H L_{-} P(x, y)_{k, t+1}}=\frac{H L\_P(x, y)_{k, t+1}-\overline{H L_{-} P_{k, t+1}}}{\sigma\left(H L_{-} P(x, y)_{k, t+1}\right)}$
式中:$\overline{P I(x, y)_{k, t}}$、${\overline{E I(x, y)_{k, t}}}$、$\overline{T I(x, y)_{k, t}}$和$\overline{L P(x, y)_{k, t}}$分别表示经过归一化后的t时段栅格单元(x, y)第k类土地覆被类型所对应的人口空间分布密度系数、人均GDP空间分布密度系数、交通可达性空间分布密度系数和土地覆被类型分布百分比系数;$\overline{H L_{-} P(x, y)_{k, t+1}}$表示经过归一化后的t+1时段栅格单元(x, y)的第k类土地覆被类型所对应自然植被生态系统类型分布概率系数;PN(x, y)k, tGDP(x, y)k, tTD(x, y)k, tLP(x, y)k, t分别表示表示t时段栅格单元(x, y)的第k类土地覆被类型所对应的人口密度值、交通可达性值、人均GDP值和土地覆被类型分布概率值;HL_P(x, y)k, t+1表示t+1时段栅格单元(x, y)的第k类土地覆被类型所对应自然植被生态系统类型分布概率值;$\overline{PN_{k, t}}$、$\overline{GDP_{k, t}}$、$\overline{TD_{k, t}}$和$\overline{LP_{k, t}}$分别表示t时段研究区域所有栅格单元(x, y)内分布的人口密度、人均GDP、交通可达性和土地覆被类型分布概率的均值;$\overline{PN(x, y)_{k, t}}$为t时段研究区域所有栅格单元(x, y)内分布的自然植被生态系统的均值; σ表示参数的总体标准偏差。
其次,考虑人类活动和政策对京津冀建成区、近郊区和农村土地覆被变化驱动效应的不同,基于归一化获取的人口分布密度系数(PI)、人均GDP密度系数(EI)、交通可达性系数(TI)、土地覆被类型分布概率系数(LP)和自然植被生态系统类型分布概率系数(HL_P),采用地理加权回归(Geographically weighted regression, GWR)方法,构建了能在栅格单元上对土地覆被变化最大可能性概率进行定量识别的空间分析模型,其理论公式可表达为:
$\begin{aligned} L C_{-} P\left(x_{i}, y_{j}\right)_{k, t+1}=& \alpha\left(x_{i}, y_{j}\right) \times \overline{P I\left(x_{i}, y_{j}\right)_{k, t}}+\beta\left(x_{i}, y_{j}\right) \times \overline{E I\left(x_{i}, y_{j}\right)_{k, t}}+\gamma\left(x_{i}, y_{j}\right) \times \\ & \overline{T I\left(x_{i}, y_{j}\right)_{k, t}}{+\delta\left(x_{i}, y_{j}\right)} \times \overline{L P\left(x_{i}, y_{j}\right)_{k, t}}+\omega\left(x_{i}, y_{j}\right) \times \overline{H L_{-} P(x, y)_{k, t+1}} \end{aligned}$
LC _ T x i , y j t + 1 = Value k Max { LC _ P x i , y j k , t + 1 | k = 1,2 , , 12 }
式中:LC_P(xi, yj)k, t+1t+1时段栅格单元(xi, yj)出现第k类土地覆被类型的可能性概率;LC_T(xi, yi)t+1t+1时段栅格单元(xi, yj)处最有可能分布的土地覆被类型;k =1, 2, …, 11分别表示11种土地覆被类型的数值编码;αβγδεω分别为各因子对土地覆被类型影响的权重系数,分别采用K-最邻近核函数求解获得,α+β+γ+δ+ε+ω =1;其余参数含义同上。
1.3.3 政策措施对土地覆被变化影响的限定规则 在京津冀协同发展战略背景下,京津冀地区土地资源的开发利用,必须遵循坚持生态优先为前提和坚持区域一体和协同发展原则。因此,在构建政策因素对京津冀地区土地覆被变化影响的过程中,分别根据该区域范围内的国家自然包保护区(NR)、重点生态功能区(ER)、退耕还林还草和基本农田(BC)保护的相关规定和政策,以及参考京津冀协同发展战略,制订如下土地覆被变化的限定规则:在NR区域内的土地覆被类型禁止转换为耕地和建设用地、在ER区域内的土地覆盖类型禁止转换为建设用地、坡度(SLOPE)大于25°以上的土地覆被类型禁止转化农业用地、以及在BC区域内的土地覆被类型禁止转换成为耕地以外的其它土地覆被类型。以上限定规则可用以下逻辑判断公式进行表达。
LC _ T x i , y j t NR , LC _ T x i , y j t + 1 Lcrop Lbuilt LC _ T x i , y j t ER , LC _ T x i , y j t + 1 Lbuilt SLOPE x i , y j 25 , LC _ T x i , y j t + 1 Lcrop LC _ T x i , y j t BC , LC _ T x i , y j t + 1 = Lcrop
式中:LC_T(x, y)t表示t时段栅格单元(x, y)处的土地覆被类型;SLOPE(x, y)表示t时期栅格单元(x, y)的坡度;LcropLbuilt分别表示耕地和建设用地类型。
在进行t+1时段土地覆被类型空间分布的模拟的过程中,首先利用公式(8)求解t+1时段整个研究区域范围内所有栅格单元出现各种土地覆被类型的可能性概率,运用最大可能性概率计算公式(9)对t+1时段栅格单元(x, y)的具有最大可能性概率的土地覆被类型进行识别,并结合土地覆被类型限定规则的逻辑判断公式(10),对t+1时段的每一个栅格单元(xi, yj)的土地覆被类型最大可能值进行赋值和求解。在利用限定规则的判别条件的过程中,如果公式(9)的最大值,不满足公式(10)的任何一个条件,则利用公式(9)中土地覆被类型可能性概率值为第二的类型进行赋值,以此类推,直至t+1时段的每一个栅格单元(xi, yj)的土地覆被类型均赋值完成,最终实现整个研究区域t+1时段的土地覆盖空间模拟分析。另外,为了避免模拟所跨的时间尺度太长,而使得模拟结果出现不确定性,在获得t+1时段的土地覆被空间分布模拟结果后,重新以t+1时段模拟土地覆被数据作为t+2时段模拟的起始和验证数据,重复以上步骤,进而实现对t+2时段的土地覆被空间分布进行模拟。在模拟过程中,重复以上方法和步骤,直至实现所有时段的土地覆被变化模拟。

2 结果分析

2.1 模型精度验证

为保证模拟结果的可靠性,运用总体精度评估方法和Kappa系数验证方法,对京津冀地区2020年土地覆被的模型模拟数据和现状数据进行对比分析和精度检验。模拟精度验证的计算方式如下:
P ATA = i = 1 k p ii N
KI = N i = 1 k p ii - i = 1 r p i + p + i N 2 - i = 1 m p i + p + i
式中:PATA为模型模拟的总体精度;KI为模型模拟的Kappa系数;N表示京津冀地区的栅格总数;k表示土地覆盖类型数量(k =11);pii表示第i种土地覆盖类型模拟值与与现状数据值相同的栅格数量;pi+表示现状数据第i种土地覆被类型的栅格数量;p+i表示模拟数据第i种土地覆被类型的栅格数量。
模拟精度验证显示,模型对京津冀2020年土地覆被模拟的总体精度为93.52%,Kappa系数为93.07%。另外,为了对模型模拟的各类土地覆被类型的精度进行验证分析,基于京津冀2020年的土地覆被模拟数据和现状数据,分别计算了每一种土地覆被类型的现状值、模拟值和模拟精度(表1)。除了落叶阔叶林的模拟精度为87.90%以外,其余土地覆被类型的模拟精度均高于90%。以上验证分析表明,该模型能够有效对京津冀地区的土地覆被类型进行模拟。
表1 每种土地覆被类型的模拟精度对比分析

Tab. 1 Comparative analysis of accuracy in each land cover type

土地覆被
类型
2020年土地覆被
现状值(km2)
2020年土地覆被
模拟值(km2)
模拟
精度(%)
常绿针叶林 1206 1275 94.28
落叶针叶林 2561 2801 90.63
落叶阔叶林 20456 22931 87.90
混交林 1507 1582 95.02
灌丛 17490 19079 90.91
草地 32923 31153 94.62
湿地 3007 2879 95.74
耕地 124170 121162 97.58
建设用地 8901 9475 93.55
裸露或稀少植被 709 665 93.79
水体 1979 1907 96.36

2.2 京津冀土地覆被分布的空间格局及变化

对基于3种情景SSP1-2.6、SSP2-4.5和SSP5-8.5的模拟结果(图2~图4)分析表明,京津冀地区土地覆被空间分布呈如下格局:常绿针叶林主要集中分布在太行山东部800~1500 m山区;落叶针叶林分主要分布在太行山北部、海河平原东北部低山丘陵地区及燕山部分地区;落叶阔叶林主要集中分布在燕山山区及太行山东北部山区;混交林主要集中分布太行山东北部与燕山之间的过渡区域,灌丛分布范围较广,主要分布在京津冀地区海拔500 m以上的山区地带;草地空间分布在京津冀地区的分布范围最广,其中比较连片集中分布的区域包括邯郸、邢台、石家庄和保定的西部300~600 m低山及山前地带,张家口中部海拔600~1800 m,以及承德、唐山和秦皇岛400~1000 m等低山丘陵地区;水体主要分布于滦河流域和海河流域范围内的湖泊、河流、水库和洼地等,而湿地则主要分布在水体周围的湿润和低洼地区;裸露或稀少植被主要分布河北西北部少雨地带、怀来县的天漠地区、以及环渤海的盐碱地带;耕地主要分布在海河平原、燕山低山及山前地带、以及张家口西北部高原地区;建设用地则主要分布在京津冀区域内河流水系及交通发达的平原地区。
图2 SSP1-2.6情景的京津冀土地覆被时空分布变化

Fig. 2 Spatiotemporal distribution and changes in the Beijing-Tianjin-Hebei region under the scenario SSP1-2.6

图3 SSP2-4.5情景的京津冀土地覆被时空分布变化

Fig. 3 Spatiotemporal distribution and changes in the Beijing-Tianjin-Hebei region under the scenario SSP2-4.5

图4 SSP5-8.5情景的京津冀土地覆被时空分布变化

Fig. 4 Spatiotemporal distribution and changes in the Beijing-Tianjin-Hebei region under the scenario SSP5-8.5

在SSP1-2.6、SSP2-4.5和SSP5-8.5 3种情景下,随着气温的不断升高、降水的不断增加及人类活动强度的不断加强,尤其是京津冀协同一体化发展的背景下,在2020—2100年期间,京津冀地区2020年、2040年、2070年和2100年4个未来时段土地覆被变化总体呈如下趋势:耕地将呈减少趋势,且主要转换为建设用地及落叶阔叶林等土地覆被类型;建设用地总体将呈增加趋势,尤其是在京津冀陆地交通网络邻域、现有城镇建设用地近郊地区、环渤海临海地带等区域将呈现出不同程度的扩张状态;常绿针叶林、落叶阔叶林、落叶针叶林、灌丛和混交林等土地覆被类型总体上都将呈增加趋势,尤其是随着退耕还林还草及生态文明建设等政策的驱动下,京津冀北部山区的部分坡度大于25度的耕地将逐渐转换为林地;另外,随着降水量的有所增加,以及在京津冀北部荒漠化防治措施的推动下,相应地区的裸露或稀少植被类型将呈逐渐收缩趋势。

2.3 土地覆被类型的面积变化

SSP1-2.6情景下的京津冀地区土地覆被变化模拟结果的统计分析(图2表2)表明:2020—2100年间京津冀地区的建设用地增长速度最快,其面积将增加3011 km2,平均每10 a增加4.23%;常绿针叶林、落叶针叶林、落叶阔叶林、混交林和灌丛的面积呈增加趋势,其面积平均每10 a将分别增加0.92%、1.93%、1.01%、0.91%和0.39%;草地、湿地、耕地、水体、裸露或稀少植被类型的面积呈减少趋势,其面积平均每10 a将分别减少0.29%、2.16%、0.44%、0.11%和1.55%,其中耕地面积减少最多,在2020—2100年间,平均每10 a将减少551 km2
表2 SSP1-2.6情景的京津冀土地覆被面积变化(km2)

Tab. 2 Land cover change in the Beijing-Tianjin-Hebei region under the scenario SSP1-2.6 (km2)

土地覆被类型 2020年 2040年 2070年 2100年 10 a变化率(%)
常绿针叶林 1206 1251 1291 1295 0.92
落叶针叶林 2561 2795 2953 2957 1.93
落叶阔叶林 20456 21427 22008 22103 1.01
混交林 1507 1598 1601 1617 0.91
灌丛 17490 17667 17703 18033 0.39
草地 32923 32732 32281 32162 -0.29
湿地 3007 2736 2495 2487 -2.16
耕地 124170 121692 120104 119761 -0.44
建设用地 8901 10377 11875 11912 4.23
裸露或稀少植被 709 663 633 621 -1.55
水体 1979 1971 1965 1961 -0.11
SSP2-4.5情景下的京津冀地区土地覆被变化模拟结果的统计分析(图3表3)表明:在2020—2100年间,京津冀地区的建设用地、常绿针叶林、落叶针叶林、落叶阔叶林、混交林和灌丛的面积呈持续增加趋势,其面积平均每10 a将分别增加4.56%、1.02%、2.08%、1.52%、2.96%和0.85%;草地、湿地、耕地、水体、裸露或稀少植被类型的面积呈持续减少趋势,其面积平均每10 a将分别减少0.58%、2.46%、0.56%、0.14%和1.87%;耕地面积减少最多,在未来80 a间平均每10 a将减少693 km2,而建设用地的增长速度最快,平均每10 a增加近406 km2
表3 SSP2-4.5情景的京津冀土地覆被面积变化(km2)

Tab. 3 Land cover change in the Beijing-Tianjin-Hebei region under the scenario SSP2-4.5 (km2)

土地覆被类型 2020年 2040年 2070年 2100年 10 a变化率(%)
常绿针叶林 1206 1258 1295 1304 1.02
落叶针叶林 2561 2897 2957 2987 2.08
落叶阔叶林 20456 21273 22051 22937 1.52
混交林 1507 1509 1636 1864 2.96
灌丛 17490 17604 17593 18675 0.85
草地 32923 32453 32217 31397 -0.58
湿地 3007 2679 2529 2415 -2.46
耕地 124170 121502 120273 118625 -0.56
建设用地 8901 11093 11794 12145 4.56
裸露或稀少植被 709 672 601 603 -1.87
水体 1979 1969 1963 1957 -0.14
SSP5-8.5情景下的京津冀地区土地覆被变化模拟结果的统计分析(图4表4)表明:在2020—2100年间,在京津冀地区,仍然是建设用地、常绿针叶林、落叶针叶林、落叶阔叶林、混交林和灌丛的面积呈持续增加趋势,其面积平均每10 a将分别增加5.42%、1.09%、2.08%、2.83%、0.14%和1.65%;草地、湿地、耕地、水体、裸露或稀少植被类型的面积呈持续减少趋势,其面积平均每10 a将分别减少0.60%、3.29%、0.88%、0.54%和3.46%;耕地面积减少最多,在未来80 a间,平均每10 a减少面积达1088 km2,而建设用地的增长速度最快,平均每10 a将增加482 km2
表4 SSP5-8.5情景的京津冀土地覆被面积变化(km2)

Tab. 4 Land cover change in the Beijing-Tianjin-Hebei region under the scenario SSP5-8.5 (km2)

土地覆被类型 2020年 2040年 2070年 2100年 10 a变化率(%)
常绿针叶林 1206 1272 1315 1311 1.09
落叶针叶林 2561 2901 3011 2987 2.08
落叶阔叶林 20456 22305 22814 25095 2.83
混交林 1507 1533 1581 1524 0.14
灌丛 17490 17502 17899 19797 1.65
草地 32923 32524 33107 31351 -0.60
湿地 3007 2632 2492 2216 -3.29
耕地 124170 120601 118241 115463 -0.88
建设用地 8901 11047 11991 12759 5.42
裸露或稀少植被 709 667 557 513 -3.46
水体 1979 1925 1901 1893 -0.54

2.4 3种情景下的土地覆被变化对比分析

京津冀地区土地覆被变化在SSP1-2.6、SSP2-4.5和SSP5-8.5 3种情景驱动下的模拟结果(图5)对比分析显示,在2020—2100年间,京津冀地区的建设用地增加的速度最快,平均每10 a将增加5.07%。湿地的减少速度最快,平均每10 a将减少3.10%。其中,SSP5-8.5情景下的京津冀土地覆被在2020—2040年、2040—2070年和2070—2100年3个时段的变化强度高于在SSP1-2.6和SSP2-4.5情景下的土地覆被变化强度;在2020—2100期间,3种情景的土地覆被在2020—2040年时段的变化强度最高(平均每10 a变化3.12%),在2070—2100年时段的变化强度最低(平均每10 a变化0.98%);2020—2040时段内,常绿针叶林、落叶针叶林、草地、湿地、耕地、建设用地和水体在SSP1-2.6情景下平均每10 a的动态变化强度分别为0.93%、2.28%、0.15%、2.25%、0.50%、4.15%和0.10%,以上变化强度均低于SSP2-4.5和SSP5-8.5情景下的变化强度;在2040—2070时段内的所有土地覆被类型中,SSP2-4.5情景下的灌丛动态变化度最低(平均每10 a变化仅为0.01%),SSP5-8.5情景下的裸露或稀少植被动态变化度最高(平均每10 a变化2.75%);在2070—2100年时段内的所有土地覆被类型中,SSP1-2.6情景下的水体动态变化度最小(平均每10 a变化仅为0.03%),而湿SSP5-8.5情景下的混交林的动态变化度最高(平均每10 a变化度为2.32%)。总之,在自然气候变化和人类活动的双重耦合驱动下,2020—2100年时段内的京津冀地区土地覆被在SSP5-8.5情景下的变化强度整体高于在SSP1-2.6和SSP2-4.5情景下的变化强度。
图5 不同情景下的京津冀土地覆被变化强度

Fig. 5 Change intensity of land cover in the Beijing-Tianjin-Hebei region under the scenarios of SSP1-2.6, SSP2-4.5 and SSP5-8.5

3 讨论

3.1 土地覆被情景曲面建模方法的优势

土地覆被情景曲面建模方法(SSMLC),是针对现有土地覆被模拟I-O、IMAGE、CLUE、CA、SD和FLUS模型的模型缺陷[11,12,13,14,15,16,17,18],对自然气候变化驱动下的SMLC模型[3-4, 7]进行拓展和修正,进而发展起来能够同时兼顾自然气候和人类活动对土地覆被变化驱动效应的中大尺度土地覆被情景的空间模拟方法[47,48]。SSMLC模型的主要优势包括:克服了I-O模型注重土地覆被变化的经济效用分析而忽视气候变化对土地覆被变化驱动影响的机理缺陷;克服了IMAGE模型主要侧重农业生态过程驱动,忽略从生态格局上考虑自然人文因子对土地覆被变化的驱动效应,而且对于较大区域的生态过程参数获取困难的局限性;弥补了CLUE模型在模拟过程中,需要首先限定各种土地覆被类型在各种情景下的未来总量,才能实现各种土地覆被类型在各种情景下的空间分布最大概率模拟的模型缺陷;拓展了CA模型多用于人类干扰强度大的城市区域的各种用地类型转换模拟而无法满足非城市用地以外的土地覆被类型的模拟,而且忽略了在中大尺度上自然气候变化对人类强度干扰较小的林草荒等土地覆被类型的驱动效应;克服了SD模型系统驱动循环结构过于复杂,尤其是在大区域尺度上要素间驱动作用难以界定和区分的模型缺陷;有效弥补了FLUS模型在大区域尺度上多用于人类活动干扰强度大的耕地和各种城市用地降尺度模拟的模型缺陷。总之,SSMLC模型在京津冀地区土地覆被变化的模拟结果表明,该方法能有效地兼顾自然气候要素、人文因子以及政策措施等对土地覆被变化的驱动效应,能够实现京津冀地区土地覆被变化的未来情景模拟。另外,在对各情景下未来各个时段土地覆被变化的空间模拟过程中,能够将上一时段的模拟结果,作为后一时段模拟的基础数据,从而克服了由于模拟时间尺度过大而造成累计误差产生的不确定性缺陷,进而保证了模型能够用于长时间尺度的土地覆被变化模拟。但是,由于目前SSMLC模型主要针对于土地覆被大类在自然气候和人文因子驱动下的时空格局变化模拟,所以目前模拟在在对人类活动干扰强度大的建设用地和耕地的内部结构进行深入细致刻画方面还存在一定的局限性,在以后的研究工作种,将进一步吸取现有模型对各种建设用地和耕地的结构转换机理分析方法,进而对模型进行补充和完善。

3.2 京津冀地区土地覆被情景模拟结果的解析

基于SSMLC模型,对3种情景SSP1-2.6、SSP2-4.5和SSP5-8.5下的京津冀地区土地覆被未来变化的模拟结果显示,在2020—2040年间京津冀地区的土地覆被变化将处于一个变化强度较高的时期,其每10 a的变化强度为3.11%,进入2040年后其变化速度将逐渐减缓,2040—2070年和2070—2100年两个时段的每10 a的变化强度分别为1.36%和0.98%。这一模拟结果证实了,在《京津冀协同发展土地利用总体规划(2015—2020)》《京津冀城市群发展规划》《河北雄安新区建设规划》《北京城市规划2016—2035》《天津城市规划(2015—2030)》和《河北城镇体系规划(2016—2030)》等京津冀地区发展规划的引导下,将使得该区域的土地覆被变化在2020—2040年间处于高强度变化时期,尤其是建设用地将达到0.58%的年增长速度,而耕地面积将以每年0.06%的速度在减少。同时,在脱贫攻坚效果巩固政策、生态防护林建设策,以及京津冀地区平均气温和降水量增加[30]的驱动下,京津冀地区的山区林地面积将呈现快速增加趋势。另外,由于京津冀地区城市化进程的快速推进,京津冀都市圈内各节点城镇发展和人口快速聚集[22, 25],以及生态旅游的快速发展[21],将引起用水需求的快速增加,将会导致该区域原本缺乏的水资源供给状况更加严峻,进而致使湿地与水体面积将呈现出不同程度的减少。
从不同共享社会经济路径(SSPs)与典型浓度路径(RCPs)组合情景来说[31,32],SSP1-2.6情景作为可持续发展情景,在其驱动下模拟的京津冀地区土地覆被的未来时空变化,更加接近于在京津冀协同发展和该区域各种土地资源开发政策和生态建设措施共同驱动作用下的土地覆被未来情景;SSP2-4.5情景作为延续历史趋势及现状的发展模式,在土地覆被变化过程中,对生态保护和资源可持续利用方面的考虑要低于SSP1-2.6情景,因此也就导致了该情景下的土地覆被未来变化强度要高;SSP5-8.5情景作为以经济快速发展为核心而轻视生态可持续的发展路径,将导致京津冀地区土地覆被变化呈现出高于其余两种情景的发展态势,尤其是建设用地呈快速增加和耕地面积的大幅度减少。

3.3 京津冀地区土地覆被情景模拟结果的启示

京津冀特大城市群作为国家经济发展的战略核心区和新型城镇化主体区[22, 25],其社会经济的快速发展,不仅会占用大量的耕地资源[49],也将引起相应的城市热岛效应[50]。因此,在京津冀协同发展的过程中,必须全面分析京津冀特大城市群与生态环境交互耦合效应[21, 23],寻求最优的可持续发展模式。譬如,随着京津冀快速城市化的推进,到2050年的城镇化率将达到82%[51],而城镇人口将达到1.18亿[52,53],这将进一步加剧京津冀地区可以利用水资源的压力,使得水体和湿地面积减少和退缩。根据模拟结果显示,在京津冀协同发展的过程中,建议从以下两个方面严格控制京津冀地区土地资源可持续开发利用,从而实现京津冀地区社会经济高速发展和生态环境保护二者的最优平衡[22,23]。首先,必须严格控制建设用地对耕地资源的侵占,遏制城市快速进程中耕地面积快速减少的趋势;其次,进一步科学规划京津冀地区生态用地的可持续利用模式,尤其是在京津冀城市群的郊区及山区地带,在大力发展生态旅游的同时,必须加强水资源和湿地资源的保护,建立禁止开发区,从而遏制京津冀地区水体和湿地的减少趋势。总之,京津冀协同发展过程中,应该将京津冀地区作为一个整体进行城市发展规划、产业结构调整布局、生态环境保护规划等,实现对京津冀地区土地资源的科学合理开发利用,进而减少人文因素对各种土地覆被变化的不合理干扰强度。

4 结论

研究结果表明,运用不同共享社会经济路径(SSPs)与典型浓度路径(RCPs)组合情景的CMIP6的气候情景数据和社会经济数据,在综合考虑GDP、人口、交通和政策因子对土地覆被变化驱机理的基础上,本文构建的土地覆被情景曲面建模方法(SSMLC),可以对未来不同情景下的京津冀地区土地覆被时空分布格局的变化趋势和强度进行空间模拟和定量刻画;京津冀地区作为全国的特大城市群区域,各种人类活动和宏观政策的制定,对该区域易受干扰的土地覆被类型(建设用地、耕地、水体和湿地)的驱动影响高于其他的土地覆被类型;京津冀地区的各种林地在降水增加和各种生态建设工程实施的过程种,在2020—2040年间将呈现出快速增长趋势。以上研究结果,不仅能够为京津冀协同一体化的国土空间优化配置与规划提供数据支撑,也为该地区土地资源的可持续开发利用和和重点生态保护规划提供辅助依据。在未来的研究工作中,将进一步结合京津冀一体化协同发展的总体布局和规划、产业结构调整和生态建设与环境保护规划等相关的政策措施,实现京津冀地区的重点城市建设区、重点生态功能区等不同区域的生态环境脆弱性的综合分析、定量评估和模拟预测。
[1]
Turner B L I, Skole D L, Sanderson S, et al. Land-use and land-cover change, Science/research plan. Global Change Report, 1995, 43: 669-679.

[2]
Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of earth's ecosystems. Science, 1997, 277(5325): 494-499.

DOI

[3]
Yue T X, Fan Z M, Liu J Y. Scenarios of land cover in China. Global and Planetary Change, 2007, 55(4): 317-342.

DOI

[4]
Fan zemeng, Yue Tianxiang, Liu Jiyuan, et al. Spatial and temporal distribution of land cover scenairos in China. Acta Geographica Sinica, 2005, 60(6): 941-952.

[ 范泽孟, 岳天祥, 刘纪远, 等. 中国土地覆盖时空变化未来情景分析. 地理学报, 2005, 60(6): 941-952.]

[5]
Solomon A M. Transient response of forests to CO2 induced climate change: Simulation modeling experiments in eastern North America. Oecologia, 1986, 68(4): 567-579.

DOI PMID

[6]
Whittaker R H. Evolution and measurement of species diversity. Taxon, 1972, 21(2/3): 213-251.

DOI

[7]
Fan Z M, Li J, Yue T X, et al. Scenarios of land cover in Karst area of Southwestern China. Environmental Earth Sciences, 2015, 74(8): 6407-6420.

DOI

[8]
Belotelov N V, Bogatyrev B G, Kirilenko A P, et al. Modelling of time-dependent biome shifts under global climate changes. Ecological Modelling, 1996, 87(1-3): 29-40.

DOI

[9]
Hochstrasser T, Kröel-Dulay G, Peters D P C, et al. Vegetation and climate characteristics of arid and semi-arid grasslands in North America and their biome transition zone. Journal of Arid Environments, 2002, 51(1): 55-78.

DOI

[10]
Fan Z M, Li J, Yue T X. Land-cover changes of biome transition zones in Loess Plateau of China. Ecological Modelling, 2013, 252: 129-140.

DOI

[11]
Ichinose T, Otsubo K. Temporal structure of land use change in Asia. Journal of Global Environment Engineering, 2003, 9: 41-51.

[12]
Alcamo J, Kreileman G J J, Krol M S, et al. Modeling the global society-biosphere-climate system: Part 1: Model description and testing. Water Air & Soil Pollution, 1994, 76(1/2): 1-35.

[13]
Verburg P H, Veldkamp A, Fresco L O. Simulation of changes in the spatial pattern of land use in China. Applied Geography, 1999, 19(3): 211-233.

DOI

[14]
Verburg P H, Soepboer W, Veldkamp A, et al. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environmental Management, 2002, 30(3): 391-405.

PMID

[15]
Clarke K C, Hoppen S, Gaydos L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 1997, 24(2): 247-261.

DOI

[16]
He C Y, Shi P J, Chen J, et al. Developing land use scenario dynamics model by the integration of system dynamics model and cellular automata model. Science in China Series D: Earth Sciences, 2005, 48(11): 1979-1989.

DOI

[17]
Liu X P, Liang X, Li X, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 2017, 168: 94-116.

DOI

[18]
Fan Z M, Bai R Y, Yue T X. Scenarios of land cover in Eurasia under climate change. Journal of Geographical Sciences, 2020, 30(1): 3-17.

DOI

[19]
Fang Chuanglin. Progress and the future direction of research into urban agglomeration in China. Acta Geographica Sinica, 2014, 69(8): 1130-1144.

DOI

[ 方创琳. 中国城市群研究取得的重要进展与未来发展方向. 地理学报, 2014, 69(8): 1130-1144.]

[20]
Lu Dadao. Function orientation and coordinating development of subregions within the Jing-Jin-Ji urban agglomeration. Progress in Geography, 2015, 34(3): 265-270.

DOI

[ 陆大道. 京津冀城市群功能定位及协同发展. 地理科学进展, 2015, 34(3): 265-270.]

[21]
Fang Chuanglin, Zhou Chenghu, Gu Chaolin, et al. Theoretical analysis of interactive coupled effects between urbanization and eco-environment in mega-urban agglomerations. Acta Geographica Sinica, 2016, 71(4): 531-550.

DOI

[ 方创琳, 周成虎, 顾朝林, 等. 特大城市群地区城镇化与生态环境交互耦合效应解析的理论框架及技术路径. 地理学报, 2016, 71(4): 531-550.]

[22]
Fang Chuanglin. Theoretical foundation and patterns of coordinated development of the Beijing-Tianjin-Hebei urban agglomeration. Progress in Geography, 2017, 36(1): 15-24.

DOI

[ 方创琳. 京津冀城市群协同发展的理论基础与规律性分析. 地理科学进展, 2017, 36(1): 15-24.]

[23]
Ouyang Xiao, Zhu Xiang. Spatio-temporal characteristics of urban land expansion in Chinese urban agglomerations. Acta Geographica Sinica, 2020, 75(3): 571-588.

[ 欧阳晓, 朱翔. 中国城市群城市用地扩张时空动态特征. 地理学报, 2020, 75(3): 571-588.]

[24]
Chen Yu, Jin Fengjun, Lu Yuqi, et al. Development history and accessibility evolution of land transportation network in Beijing-Tianjin-Hebei region. Acta Geographica Sinica, 2017, 72(12): 2252-2264.

[ 陈娱, 金凤君, 陆玉麒, 等. 京津冀地区陆路交通网络发展过程及可达性演变特征. 地理学报, 2017, 72(12): 2252-2264.]

[25]
Fan Jie. The Integrated Regional Planning in the Metropolis Region: Beijing, Tianjin and Hebei. Beijing: Beijing: Science Press, 2008.

[ 樊杰. 京津冀都市圈区域综合规划研究. 北京: 科学出版社, 2008.]

[26]
Chen Jie, Lu Feng. Location advantage and accessibility evaluation on Beijing-Tianjin-Hebei metropolitan area. Geography and Geo-Information Science, 2008, 24(2): 53-56.

[ 陈洁, 陆锋. 京津冀都市圈城市区位与交通可达性评价. 地理与地理信息科学, 2008, 24(2): 53-56.]

[27]
Wang Liwei, Feng Changchun. Spatial expansion pattern and its driving dynamics of Beijing-Tianjin-Hebei metropolitan region: Based on nighttime light data. Acta Geographica Sinica, 2016, 71(12): 2155-2169.

DOI

[ 王利伟, 冯长春. 转型期京津冀城市群空间扩展格局及其动力机制: 基于夜间灯光数据方法. 地理学报, 2016, 71(12): 2155-2169.]

[28]
Wang Haijun, Zhang Bin, Liu Yaolin, et al. Multi-dimensional analysis of urban expansion patterns and their driving forces based on the center of gravity-GTWR model: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Acta Geographica Sinica, 2018, 73(6): 1076-1092.

DOI

[ 王海军, 张彬, 刘耀林, 等. 基于重心-GTWR模型的京津冀城市群城镇扩展格局与驱动力多维解析. 地理学报, 2018, 73(6): 1076-1092.]

[29]
Zhu Erjuan. Production upgrading and integration in the process of the integration of Beijing-Tianjin-Hebei. Economic Geography, 2009, 29(6): 881-886.

[ 祝尔娟. 京津冀一体化中的产业升级与整合. 经济地理, 2009, 29(6): 881-886.]

[30]
Zhao N, Jiao Y M, Ma T, et al. Estimating the effect of urbanization on extreme climate events in the Beijing-Tianjin-Hebei region, China. Science of the Total Environment, 2019, 688: 1005-1015.

DOI

[31]
Zhang Lixia, Chen Xiaolong, Xin Xiaoge. Short commentary on CMIP6 scenario model intercomparison project(ScenarioMIP). Climate Change Research, 2019, 15(5): 519-525.

[ 张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述. 气候变化研究进展, 2019, 15(5): 519-525.

[32]
Su B D, Huang J L, Mondal S K, et al. Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmospheric Research, 2021, 250: 105375. DOI: 10.1016/j.atmosres.2020.105375.

DOI

[33]
Fu Jingying, Jiang Dong, Huang Yaohuan. Population dataset of 1 km×1 km in China. Acta Geographica Sinica, 2014, 69(plus): 41-44.

[ 付晶莹, 江东, 黄耀欢. 中国公里网格人口分布数据集. 地理学报, 2014, 69(S): 41-44.]

[34]
Huang Yaohuan, Jiang Dong, Fu Jingying. GDP dataset of 1 km×1 km in China. Acta Geographica Sinica, 2014, 69(Suppl.): 45-48.

[ 黄耀欢, 江东, 付晶莹. 中国公里网格GDP分布数据集. 地理学报, 2014, 69(S): 45-48.]

[35]
Jiang Tong, Zhao Jing, Jing Cheng, et al. National and provincial population projected to 2100 under the shared socioeconomic pathways in China. Climate Change Research, 2017, 13(2): 128-137.

[ 姜彤, 赵晶, 景丞, 等. IPCC共享社会经济路径下中国和分省人口变化预估. 气候变化研究进展, 2017, 13(2): 128-137.]

[36]
Jiang Tong, Zhao Jing, Cao Lige, et al. Projection of national and provincial economy under the shared socioeconomic pathways in China. Climate Change Research, 2018, 14(1): 50-58.

[ 姜彤, 赵晶, 曹丽格, 等. 共享社会经济路径下中国及分省经济变化预测. 气候变化研究进展, 2018, 14(1): 50-58.]

[37]
Fan Zemeng, Zhang Xuan, Li Jing, et al. Transition trends of land-cover in national nature reserves of China. Acta Geographica Sinica, 2012, 67(12): 1623-1633.

[ 范泽孟, 张轩, 李婧, 等. 国家级自然保护区土地覆盖类型转换趋势. 地理学报, 2012, 67(12): 1623-1633.]

[38]
Fan Zemeng, Huang Yan, Yue Tianxiang. Scenarios simulation of vascular plant species abundance distribution on Qinghai-Tibet Plateau. Acta Geographica Sinica, 2018, 73(1): 164-176.

DOI

[ 范泽孟, 黄言, 岳天祥. 青藏高原维管植物物种丰富度分布的情景模拟. 地理学报, 2018, 73(1): 164-176.]

[39]
Liu Jiyuan, Zhang Zengxiang, Xu Xinliang, et al. Spatial patterns and driving forces of land use change in China in the early 21st century. Acta Geographica Sinica, 2009, 64(12): 1411-1420.

[ 刘纪远, 张增祥, 徐新良, 等. 21世纪初中国土地利用变化的空间格局与驱动力分析. 地理学报, 2009, 64(12): 1411-1420.]

[40]
Zhang X, Liu L Y, Chen X D, et al. GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth System Science Data, 2021, 13(6): 2753-2776.

DOI

[41]
Yue T X, Du Z P, Song D J, et al. A new method of surface modeling and its application to DEM construction. Geomorphology, 2007, 91(1/2): 161-172.

DOI

[42]
Yue T X, Fan Z M, Liu J Y, et al. Scenarios of major terrestrial ecosystems in China. Ecological Modelling, 2006, 199(3): 363-376.

DOI

[43]
Fan Z M, Fan B, Yue T X. Terrestrial ecosystem scenarios and their response to climate change in Eurasia. Science China Earth Sciences, 2019, 62(10): 1607-1618.

DOI

[44]
Yue T X. Surface Modelling: High Accuracy and High Speed Methods. New York: CRC Press, 2011.

[45]
Yue T X, Zhao N, Fan Z M, et al. CMIP5 downscaling and its uncertainty in China. Global and Planetary Change, 2016, 146: 30-37.

DOI

[46]
Yue T X, Zhao N, Liu Y, et al. A fundamental theorem for eco-environmental surface modelling and its applications. Science China-Earth Sciences, 2020, 63(8): 1092-1112.

DOI

[47]
Holdridge L R. Determination of world plant formations from simple climatic data. Science, 1947, 105(2727): 367-368.

PMID

[48]
Yue T X, Fan Z M, Liu J Y. Changes of major terrestrial ecosystems in China since 1960. Global and Planetary Change, 2005, 48(4): 287-302.

DOI

[49]
Zhao P J. Planning for social inclusion: The impact of socioeconomic inequities on the informal development of farmland in suburban Beijing. Land Use Policy, 2016, 57: 431-443.

DOI

[50]
Yue W Z, Qiu S S, Xu H, et al. Polycentric urban development and urban thermal environment: A case of Hangzhou, China. Landscape and Urban Planning, 2019, 189: 58-70.

DOI

[51]
Gu Chaolin, Guan Weihua, Liu Helin. Chinese urbanization 2050: SD modeling and process simulation. Science China: Terrae, 2017, 47(7): 818-832.

[ 顾朝林, 管卫华, 刘合林. 中国城镇化2050: SD模型与过程模拟. 中国科学: 地球科学, 2017, 47(7): 818-832.]

[52]
Wang Kaiyong, Ding Jun, Wang Fuyuan. Influence of the implementation of the universal two-child policy on demographic structure and population spatial distribution in China. Progress in Geography, 2016, 35(11): 1305-1316.

DOI

[ 王开泳, 丁俊, 王甫园. 全面二孩政策对中国人口结构及区域人口空间格局的影响. 地理科学进展, 2016, 35(11): 1305-1316.]

[53]
Li Xiaoyong, Kuang Wenhui. Spatio-temporal trajectories of urban land use change during 1980-2015 and future scenario simulation in Beijing-Tianjin-Hebei urban agglomeration. Economic Geography, 2019, 39(3): 187-194, 200.

[ 李孝永, 匡文慧. 京津冀1980—2015年城市土地利用变化时空轨迹及未来情景模拟. 经济地理, 2019, 39(3): 187-194, 200.]

文章导航

/