基于协同区位商的北京城市职住要素空间关联
孟斌(1971-), 男, 安徽肥东人, 博士, 教授, 硕士生导师, 中国地理学会会员(S1100001017M), 主要从事城市地理和地理信息科学研究。E-mail: mengbin@buu.edu.cn |
收稿日期: 2019-03-19
修回日期: 2021-04-19
网络出版日期: 2021-08-25
基金资助
国家自然科学基金项目(41671165)
国家自然科学基金项目(51878052)
北京联合大学科研项目(ZK40202001)
版权
Spatial correlation analysis of residential and employment elements in Beijing based on collaborative location quotient
Received date: 2019-03-19
Revised date: 2021-04-19
Online published: 2021-08-25
Supported by
National Natural Science Foundation of China(41671165)
National Natural Science Foundation of China(51878052)
The Academic Research Projects of Beijing Union University(ZK40202001)
Copyright
就业地和居住地是城市居民工作以及生活的主要场所,同样也是城市空间结构最重要的组成要素,写字楼与居民楼空间关联性研究对深刻理解职住关系有着至关重要的作用。利用协同区位商方法,对北京市写字楼与居民楼空间关联总体特征和局域空间关联格局进行分析。研究表明:① 协同区位商作为一种测量点要素之间联系的方法,能够很好的应用到职住关系的研究中,对丰富职住关系度量指标体系也具有非常重要的意义。② 对北京市的实证分析结果显示,北京市写字楼与居民楼全局协同区位商值小于1,空间关联性较差,表明职住要素的空间联系总体较弱。③ 局域协同区位商的分析表明,北京写字楼与居民楼局域空间关联格局差异明显,不仅不同区域两者空间关联性强弱差别显著,而且不同价位的居民楼和写字楼展现出不同的空间关联特征。④ 北京职住要素空间关联性深受写字楼、居民楼本身布局的影响,其主要影响因素还需要进一步全面分析,加强此领域研究,将有助于城市规划中职住要素的合理空间布局。
孟斌 , 高丽萍 , 李若倩 . 基于协同区位商的北京城市职住要素空间关联[J]. 地理学报, 2021 , 76(6) : 1380 -1393 . DOI: 10.11821/dlxb202106005
Places of employment and residence are the main spaces in which urban residents work and live, as well as key elements of the urban spatial structure. Hence, thorough investigations of the spatial correlations of office and residential buildings are of great significance for the understanding of the spatial relationships of urban elements, especially that of job-housing relationships. In this study, the objects of the research were office and residential buildings in Beijing, China, and the global and local characteristics of the spatial relationships between job-housing elements were investigated using the collaborative location quotient method. The results demonstrate that: (1) The co-location quotient, a method used to measure the spatial correlations of point elements of a survey, can be effectively applied in studies of job-housing relationships, and contributes indicators and a method for the measurement of job-housing relationships. (2) The empirical analysis reveals that the global co-location quotient (GCLQ) of office and residential buildings in Beijing is below 1, indicating relatively weak spatial correlations of the job-housing elements in the city, which is consistent with the increasing job-housing separation. Overall, residential buildings are more attracted by office buildings, suggesting that the location selection of residential buildings is affected by the local distribution of office buildings, whereas the local distribution of office buildings is barely a consideration for the location selection of residential buildings. (3) The results of the local co-location quotient (LCLQ) demonstrate that the local relationships of office and residential buildings in Beijing vary significantly in space. As the distance from the urban center increases, the LCLQ of residential buildings to office buildings decreases, while the LCLQ of office buildings to residential buildings increases. Moreover, the spatial relationships of urban job-housing elements in the north and south areas of Beijing, the dividing line of which is Chang'an Avenue, are significantly different; the spatial correlation of office and residential buildings in the north area is relatively strong, while that in the south area is relatively weak (i.e., the distribution of residential buildings is independent of that of office buildings). Additionally, the result show that the spatial relationships of office and residential buildings are related to their prices. (4) Recently, researchers have turned from studies of the urban hierarchical structure based on theories of "the space of places" to studies of the trends of "the space of flows", namely population flow, logistics flow, and information flow. This study shares a similar logic, as it investigates the urban spatial structure from the perspective of elemental correlation. This research is of great significance for the understanding of the functional zones of living, working, recreation, and transportation in cities, and relevant studies will contribute to the reasonable spatial layout of job-housing elements in urban planning.
表1 居民楼被写字楼吸引的全局协同区位商Tab. 1 GCLQ of residential buildings attracted by office buildings |
带宽 | 写字楼 | ||
---|---|---|---|
1 | 10 | 25 | |
居民楼 | 0.7579 | 0.8457 | 0.9041 |
注:所有的协同区位商值在0.001的置信水平下显著。 |
表2 写字楼被居民楼吸引的全局协同区位商Tab. 2 GCLQ of office buildings attracted by residential buildings |
带宽 | 居民楼 | ||
---|---|---|---|
1 | 10 | 25 | |
写字楼 | 0.6284 | 0.7691 | 0.8216 |
注:所有的协同区位商值在0.001的置信水平下显著。 |
表3 三大区域居民楼被写字楼吸引的全局协同区位商Tab. 3 GCLQ of residential buildings attracted by office buildings in three major areas |
带宽 | 写字楼 | |||
---|---|---|---|---|
1 | 10 | 25 | ||
居民楼 | 核心区 | 0.6265 | 0.6418 | 0.6324 |
拓展区 | 0.6071 | 0.7343 | 0.7874 | |
周边区域 | 0.2148 | 0.2669 | 0.2836 |
注:所有的协同区位商值在0.001的置信水平下显著。 |
表4 三大区域写字楼被居民楼吸引的全局协同区位商Tab. 4 GCLQ of office buildings attracted by residential buildings in three major areas |
写字楼 | 居民楼 | |||
---|---|---|---|---|
核心区 | 拓展区 | 周边区域 | ||
带宽 | 1 | 0.4008 | 0.5745 | 0.2634 |
10 | 0.5993 | 0.7592 | 0.2945 | |
25 | 0.7292 | 0.8507 | 0.2721 |
注:所有的协同区位商值在0.001的置信水平下显著。 |
[1] |
[ 宋金平, 王恩儒, 张文新, 等. 北京住宅郊区化与就业空间错位. 地理学报, 2007,62(4):387-396.]
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
[ 周江评. “空间不匹配”假设与城市弱势群体就业问题: 美国相关研究及其对中国的启示. 现代城市研究, 2004,19(9):8-14.]
|
[10] |
[ 孟斌. 北京城市居民职住分离的空间组织特征. 地理学报, 2009,64(12):1457-1466.]
|
[11] |
[ 孙斌栋, 李南菲, 宋杰洁, 等. 职住平衡对通勤交通的影响分析: 对一个传统城市规划理念的实证检验. 城市规划学刊, 2010(6):55-60.]
|
[12] |
[ 周素红, 刘玉兰. 转型期广州城市居民居住与就业地区位选择的空间关系及其变迁. 地理学报, 2010,65(2):191-201.]
|
[13] |
[ 刘志林, 王茂军, 柴彦威. 空间错位理论研究进展与方法论评述. 人文地理, 2010,25(1):1-6.]
|
[14] |
[ 刘望保, 翁计传. 西方“空间不匹配”假说研究进展及其对中国城市的启示. 规划师, 2008,24(1):91-94.]
|
[15] |
[ 孟晓晨, 吴静, 沈凡卜. 职住平衡的研究回顾及观点综述. 城市发展研究, 2009,16(6):23-28, 35.]
|
[16] |
[ 张学波, 窦群, 赵金丽, 等. 职住空间关系研究的比较述评与展望. 世界地理研究, 2017,26(1):32-44.]
|
[17] |
[ 刘志林, 张艳, 柴彦威. 中国大城市职住分离现象及其特征: 以北京市为例. 城市发展研究, 2009,16(9):110-117.]
|
[18] |
[ 张艳, 柴彦威. 基于居住区比较的北京城市通勤研究. 地理研究, 2009,28(5):1327-1340.]
|
[19] |
[ 贾晓朋, 孟斌, 张媛媛. 北京市不同社区居民通勤行为分析. 地域研究与开发, 2015,34(1):55-59, 70.]
|
[20] |
[ 孟斌, 于慧丽, 郑丽敏. 北京大型居住区居民通勤行为对比研究: 以望京居住区和天通苑居住区为例. 地理研究, 2012,31(11):2069-2079.]
|
[21] |
[ 刘望保, 侯长营. 转型期广州市城市居民职住空间与通勤行为研究. 地理科学, 2014,34(3):272-279.]
|
[22] |
[ 周素红, 闫小培. 城市居住—就业空间特征及组织模式: 以广州市为例. 地理科学, 2005,25(6):664-670.]
|
[23] |
[ 孙斌栋, 潘鑫, 宁越敏. 上海市就业与居住空间均衡对交通出行的影响分析. 城市规划学刊, 2008(1):77-82.]
|
[24] |
[ 郑思齐, 曹洋. 居住与就业空间关系的决定机理和影响因素: 对北京市通勤时间和通勤流量的实证研究. 城市发展研究, 2009,16(6):29-35.]
|
[25] |
[ 孟斌, 郑丽敏, 于慧丽. 北京城市居民通勤时间变化及影响因素. 地理科学进展, 2011,30(10):1218-1224.]
|
[26] |
|
[27] |
[ 张洪, 时浩楠. 安徽省旅游资源与旅游经济的空间错位研究. 地域研究与开发, 2015,34(4):80-83, 115.]
|
[28] |
|
[29] |
|
[30] |
[ 高鑫, 修春亮, 魏冶. 城市地理学的“流空间”视角及其中国化研究. 人文地理, 2012,27(4):32-36, 160.]
|
[31] |
[ 杨延杰, 尹丹, 刘紫玟, 等. 基于大数据的流空间研究进展. 地理科学进展, 2020,39(8):1397-1411.]
|
/
〈 |
|
〉 |