中国失踪人口的时空格局演变与形成机制
李钢(1979-), 男, 四川成都人, 教授, 博士生导师, 中国地理学会会员(S110009694M), 研究方向为人地关系与空间安全,灾害地理与犯罪地理,时空大数据与数字人文。E-mail: lig@nwu.edu.cn |
收稿日期: 2019-08-15
要求修回日期: 2020-08-23
网络出版日期: 2021-04-25
基金资助
国家自然科学基金项目(41871144)
教育部人文社会科学研究规划基金项目(16YJAZH028)
西北大学“仲英青年学者”计划(2016)
版权
Spatio-temporal pattern evolution and formation mechanism of missing person incidents in China
Received date: 2019-08-15
Request revised date: 2020-08-23
Online published: 2021-04-25
Supported by
National Natural Science Foundation of China(41871144)
Humanities and Social Science Foundation of Chinese Ministry of Education(16YJAZH028)
Tang Scholar Program of Northwest University(2016)
Copyright
人口失踪作为一种复杂的社会问题,给家庭和社会造成了严重危害。在尊重生命与保障人权的现实背景下,对失踪人口开展深入研究具有重要意义。利用“中国儿童失踪预警平台(CCSER)”数据,综合运用文本分析、数理统计、空间分析等方法,管窥了2015—2019年中国失踪人口的基本特征、时空格局演变与形成机制。结果表明:① 失踪人口中男性多于女性,高发年龄段由高到低依次为8~16岁、2~7岁、0~1岁和60~65岁;失踪类型由高到低依次为无意识失踪、主动失踪与被动失踪,失踪亚类由高到低依次为离家出走、走失、被拐卖、身患疾病、联系中断与家庭不和。② 时间上,失踪人口总数、性别与年龄变化均呈“驼峰”状,并以2017年为轴于两侧对称分布。空间上,总体为“低—高”和“高—低”集聚,广东、浙江和四川是人口失踪的高发省份。③ 人口失踪省内流动远高于跨省流动,省内流动以广东、四川、河南和江苏为最,跨省流动以“安徽—江苏”和“广西—广东”为主要路径。④ 人口失踪可用社会网络理论中的“强弱连接理论”来解释,其主要受人与社会网络关系的强度变化的影响。
李钢 , 薛淑艳 , 马雪瑶 , 周俊俊 , 徐婷婷 , 王皎贝 . 中国失踪人口的时空格局演变与形成机制[J]. 地理学报, 2021 , 76(2) : 310 -325 . DOI: 10.11821/dlxb202102005
The problem of missing persons brings about serious harm to their families and the society. An in-depth investigation of this issue is of great importance to protecting human lives and human rights. In this research, we collect the missing persons data during the period from 2015 to 2019 from the "China's Child Safety Emergency Response (CCSER)" platform. We use a series of techniques including text analysis, mathematical statistics, and spatial analysis to analyze the socio-demographic characteristics, evolution and formation mechanism of spatio-temporal patterns of missing persons in China. Major findings include: (1) The number of missing males is larger than that of missing females. The highest missing rate is found in people aged 8-16, followed by aged 2-7, aged 0-1, and aged 60-65. Three categories of missing persons are observed in the data, which are (in order of decreasing frequency): unconscious disappearance, active disappearance, and passive disappearance. Six sub-types of missing persons in a descending order by frequency are: running away from home, wandering away, abduction, physical or mental illness, losing track, and family dissension. (2) Hump-shaped curves are observed for temporal variations of the number, gender and age of missing persons, and the curves are symmetric about the year of 2017. The local spatial autocorrelation tests indicate that incidents of missing persons generally exhibit "low-high" and "high-low" clustering patterns. Provinces with a high incidence of missing persons are Guangdong, Zhejiang and Sichuan. (3) With respect to the spatial mobility of missing persons, intra-provincial mobility is more prevalent than inter-provincial mobility. Guangdong, Sichuan, Henan, and Jiangsu experience the highest intra-provincial mobility rate. Dominant paths of inter-provincial mobility are "Anhui-Jiangsu" route and "Guangxi-Guangdong" route. (4) The underlying mechanism of missing person incidents can be understood from the perspective of "strong and weak ties in social network". That is, the strentgth of people's social ties can impact the occurrence of missing persons.
Key words: missing persons; spatio-temporal pattern; formation mechanism; China
表1 2015—2019年中国失踪人口的失踪类型与失踪亚类占比Tab. 1 Types and sub-types of missing persons in China from 2015 to 2019 |
失踪类型 | 被动失踪 | 主动失踪 | 无意识失踪 | 无法判断 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
失踪亚类 | 被拐卖 | 家庭不和 | 离家出走 | 身患疾病 | 联系中断 | 走失 | ||||
占比(%) | 18.05 | 1.06 | 25.49 | 7.82 | 1.43 | 22.78 | 23.38 |
表 2 2015—2019年中国失踪人口不同失踪亚类的找回占比和流动情况Tab. 2 The finding rate and mobility of sub-types of missing persons in China from 2015 to 2019 |
失踪亚类 | 被拐卖 | 家庭不和 | 离家出走 | 身患疾病 | 联系中断 | 走失 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
占比(%) | 排名 | 占比(%) | 排名 | 占比(%) | 排名 | 占比(%) | 排名 | 占比(%) | 排名 | 占比(%) | 排名 | ||||||
找回占比 | 23.48 | 3 | 1.21 | 5 | 34.41 | 1 | 6.07 | 4 | 1.21 | 5 | 29.15 | 2 | |||||
省内流动 | 94.83 | 2 | 83.33 | 5 | 93.53 | 3 | 90 | 4 | 66.6 | 6 | 96.98 | 1 | |||||
跨省流动 | 5.17 | 5 | 16.67 | 2 | 6.47 | 4 | 10 | 3 | 33.4 | 1 | 3.02 | 6 |
[1] |
[ 裘树祥, 马跃忠. “失踪”本质及失踪人口的公安治理. 中国人民公安大学学报(社会科学版), 2015,31(5):143-149.]
|
[2] |
|
[3] |
|
[4] |
|
[5] |
[ 崔雯. 网络公益寻亲的传播机制研究: 基于宝贝回家寻子网的个案分析[D]. 合肥: 安徽大学, 2019.]
|
[6] |
|
[7] |
[ 郭丹丹. 论人员失踪的刑事追查机制[D]. 苏州: 苏州大学, 2014.]
|
[8] |
[ 武丹, 刘涛, 段晓旗. 儿童拐卖的空间分布分析及其驱动因素研究. 遥感信息, 2017,32(1):134-142.]
|
[9] |
[ 王会娟. 我国拐卖儿童犯罪的时空特征与影响因素研究[D]. 西安: 西北大学, 2017.]
|
[10] |
[ 李钢, 谭然, 王会娟, 等. 中国拐卖儿童犯罪的地理特征研究. 地理科学, 2017,37(7):1049-1058.]
|
[11] |
[ 李钢, 谭然, 王会娟, 等. 中国拐卖儿童犯罪时空格局演变及其影响因素. 人文地理, 2018,33(2):26-34.]
|
[12] |
[ 谭然. 地理学视角下的中国拐卖儿童犯罪研究: 基于成功寻亲案例的分析[D]. 西安: 西北大学, 2018.]
|
[13] |
|
[14] |
[ 李钢, 王莺莺, 杨兰, 等. 拐入侧视域下我国拐卖儿童犯罪的时空格局. 陕西师范大学学报(自然科学版), 2019,47(3):95-102.]
|
[15] |
|
[16] |
[ 秦雨薇. 关于离家出走儿童的被害预防研究. 湖南警察学院学报, 2018,30(4):24-30.]
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
[ 何庆龙. 云、贵、川三省拐卖妇女罪研究[D]. 贵阳: 贵州大学, 2018.]
|
[24] |
[ 黄忠良, 翁文国, 翟彬旭. 我国拐卖妇女犯罪特点及治理策略: 基于1038份裁判文书的分析. 中国人民公安大学学报(社会科学版), 2019,33(5):19-27.]
|
[25] |
|
[26] |
|
[27] |
|
[28] |
[ 李钢, 王会娟, 谭然, 等. 中国拐卖儿童犯罪的时空特征与形成机制: 基于“成功案例”的管窥. 地理研究, 2017,36(12):2505-2520.]
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
[ 程连生, 马丽. 北京城市犯罪地理分析. 人文地理, 1997,12(2):7-12.]
|
[37] |
[ 柳林, 姜超, 周素红, 等. 城市入室盗窃犯罪的多尺度时空格局分析: 基于中国H市DP半岛的案例研究. 地理研究, 2017,36(12):2451-2464.]
|
[38] |
[ 李扬, 刘慧, 金凤君, 等. 北京市人口老龄化的时空变化特征. 中国人口·资源与环境, 2011,21(11):131-138.]
|
[39] |
|
[40] |
|
[41] |
[ 龙开胜, 赵亚莉, 张鸿辉, 等. 中国生态地租空间分异及其影响因素分析. 地理学报, 2012,67(8):1125-1136.]
|
[42] |
[ 宋丽娜. 熟人社会的性质. 中国农业大学学报(社会科学版), 2009,26(2):118-124.]
|
[43] |
|
[44] |
|
[45] |
|
/
〈 |
|
〉 |