上海城市热岛与热浪协同作用及其影响因子
敖翔宇(1988-), 女, 江西萍乡人, 博士生, 工程师, 研究方向为城市气象。E-mail: aoxy@simets.cn |
收稿日期: 2018-04-10
要求修回日期: 2019-07-18
网络出版日期: 2019-09-25
基金资助
上海市科委项目(17DZ1205300)
上海市科委项目(19YF1443900)
国家自然科学基金项目(41775019)
上海市气象局面上项目(MS201803)
版权
Synergistic interaction between urban heat island and heat waves and its impact factors in Shanghai
Received date: 2018-04-10
Request revised date: 2019-07-18
Online published: 2019-09-25
Supported by
Project of Science and Technology Commission of Shanghai Municipality(17DZ1205300)
Project of Science and Technology Commission of Shanghai Municipality(19YF1443900)
National Natural Science Foundation of China(41775019)
Project of Scientific and Technological Development of the Shanghai Meteorological Service(MS201803)
Copyright
在全球变暖的背景下,热浪变得更加频繁。城市地区由于城市热岛效应在热浪事件中承受更大的风险。然而城市热岛与热浪之间的相互作用还少有研究。利用2016-2017年两个夏季(6-8月)上海城、郊气象站逐时气温、风速、相对湿度资料、城区徐家汇和郊区奉贤涡动相关通量观测资料对比分析了热浪和非热浪期间城市热岛强度的差异,并利用一个平流扩散解析模型揭示了城市热岛与热浪相互作用的物理机制。结果表明,热浪期间的城市热岛强度相比非热浪期间明显增强,且白天增强大于夜间,显示出城市热岛与热浪之间的协同效应。热浪期间城、郊相对湿度比值相对非热浪期间明显减小,表明热浪期间城区地表相对郊区变得更干,从而抑制了蒸发作用,加剧了城市热岛强度;平均风速也明显减小,平流降温效应减弱,对城市热岛强度起正反馈效应。热浪期间城区净辐射通量的增加大于郊区,使城区获得更大地表辐射输入;由于城区更少的植被覆盖和更多的不透水下垫面,热浪期间城区潜热通量略有降低,而郊区明显增加;城区感热通量增幅则大于郊区,这种感热和潜热通量分配的改变也加剧了城市热岛强度。本研究对城市如何应对加剧的热风险具有重要的科学指示意义。
敖翔宇 , 谈建国 , 支星 , 过霁冰 , 陆一闻 , 刘冬韡 . 上海城市热岛与热浪协同作用及其影响因子[J]. 地理学报, 2019 , 74(9) : 1789 -1802 . DOI: 10.11821/dlxb201909007
Under the background of global warming, heat waves are expected to be more frequent and long lasting. Cities endure greater risk under heat wave events because of the pre-existing urban heat island. However, research on the interaction between heat wave and urban heat island is still lacking. Based on hourly data of air temperature, wind speed, relatively humidity, and eddy covariance energy flux data from Shanghai urban (XJH) and rural site (FX) during two summers (June-August) in 2016-2017, the difference of urban heat island (UHI) between heat wave (HW) and non-heat wave (NHW) conditions is analysed. In addition, an advection-diffusion analytical model has been used to unravel the mechanism of the interaction between UHI and HW. Results show that the UHI intensity is obviously enhanced during HWs, and the enhancement is stronger during daytime than that of nighttime, which indicates the synergistic effect between UHI and HW. The relative humidity ratio of urban and suburban areas during HWs significantly decreases compared with NHW conditions, indicating the urban surface becomes even drier than suburban areas during HWs that suppresses evaporation and intensifies UHI intensity. The mean wind speed also has an obvious decrease, leading to weaker advection cooling effect, which has a positive effect on UHI intensity. The increase of net radiation at the urban site is larger than that of the suburban site during HWs so that urban area receives more radiation input. Due to low vegetation cover and more impervious surfaces, the latent heat flux at the urban site has a slight decrease while it has an obvious increase at the suburban site. The increase of the urban sensible heat flux is larger than that of the suburban site. This change of the partition between sensible and latent heat flux also exacerbates the UHI intensity. This study has important implications for cities to cope with intensified thermal risks.
图2 上海城区徐家汇(XJH)和郊区奉贤(FX)站通量观测塔(a, b)与通量塔周边1 km范围下垫面覆盖及源区印痕分布(c, d) (等值线代表源区贡献率从里到外分别为:50%、70%和80%)Fig. 2 Flux towers at urban XJH site and suburban FX site (a, b); land cover characteristics within 1 km around sites overlaid with the cumulative flux source area (footprint) (c, d), contours represent the percentage of the source area (from inner to outer ring: 50%, 70% and 80%, respectively) |
表1 上海城区徐家汇(XJH)和郊区奉贤(FX)站1 km范围内平均建筑高度及下垫面覆盖率Tab. 1 Mean building heights and land cover fractions within 1 km around urban XJH and suburban FX sites |
通量站 | 建筑高度(m) | 不透水面(%) | 建筑(%) | 树木(%) | 草地(%) | 裸土(%) | 水体(%) |
---|---|---|---|---|---|---|---|
XJH | 36 | 62 | 23 | 4 | 10 | 0 | 1 |
FX | 6 | 20 | 14 | 10 | 53 | 2 | 1 |
表2 2016-2017年夏季上海热浪事件日期及持续天数Tab. 2 Heat wave periods during summer 2016-2017 in Shanghai |
编号 | 日期 | 持续天数(d) |
---|---|---|
1 | 2016年7月20日-2016年7月30日 | 11 |
2 | 2016年8月13日-2016年8月21日 | 9 |
3 | 2017年7月5日-2017年7月8日 | 4 |
4 | 2017年7月11日-2017年7月28日 | 18 |
图4 热浪与非热浪期间上海城、郊平均2 m气温(a)、平均城市热岛强度以及标准差平均日变化曲线(b)Fig. 4 Mean diurnal variations of 2 m air temperature at the urban (XJH) and suburban (FX) sites (a)and the urban heat island index (UHII) under heat wave (HW) and non-heat wave (NHW) conditions (b). The error bars denote the standard deviation. |
图7 热浪与非热浪期间上海城、郊向下短波辐射(K↓)(a)、向上短波辐射通量(K↑)(b)、以及热浪与非热浪之差(ΔK↓,ΔK↑)的平均日变化特征(c, d)Fig. 7 Mean diurnal variations of the (a) downward (K↓) and (b) upward short wave radiation flux (K↑) at the urban (XJH) and suburban (FX) sites and (c, d) their difference between HW and NHW conditions. The error bars denote the standard deviation. |
图8 热浪与非热浪期间上海城、郊向下长波辐射(L↓)(a)、向上长波辐射通量(L↑)(b)、以及热浪与非热浪之差的平均日变化特征(c, d)Fig. 8 Mean diurnal variations of the (a) downward (L↓)and (b) upward long wave radiation flux (L↑) at the urban (XJH) and suburban (FX) site and (c, d) their difference between heat wave (HW) and non-heat wave (NHW) conditions, the error bars denote the standard deviation |
图10 热浪与非热浪期间上海城、郊感热(K↓,QH)(a)、潜热通量(QE)(b)、以及热浪与非热浪之差(ΔQH,ΔQE)的平均日变化特征(c, d)Fig. 10 Mean diurnal variations of the (a) sensible heat(QH) and (b) latent heat flux (QE) at the urban (XJH) and suburban (FX) sites and (c, d) their difference between HW and NHW conditions. The error bars denote the standard deviation |
[1] |
|
[2] |
|
[3] |
[ 谈建国, 黄家鑫 . 热浪对人体健康的影响及其研究方法. 气候与环境研究, 2004,9(4):680-686.]
|
[4] |
[ 陈倩, 丁明军, 杨续超 , 等. 长江三角洲地区高温热浪人群健康风险评价. 地球信息科学学报, 2017,19(11):1475-1484.]
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
[ 陈敏, 耿福海, 马雷鸣 , 等. 近138年上海地区高温热浪事件分析. 高原气象, 2013,32(2):597-607.]
|
[10] |
[ 曹畅, 李旭辉, 张弥 , 等. 中国城市热岛时空特征及其影响因子的分析. 环境科学, 2017,38(10):3987-3997.]
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
[ 彭保发, 石忆邵, 王贺封 , 等. 城市热岛效应的影响机理及其作用规律: 以上海市为例. 地理学报, 2013,68(11):1461-1471.]
|
[16] |
|
[17] |
|
[18] |
[ 刘越,
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
[ 岳文泽, 徐建华 . 上海市人类活动对热环境的影响. 地理学报, 2008,63(3):247-256.]
|
[30] |
[ 苗峻峰 . 城市热岛和海风环流相互作用的数值模拟研究进展. 大气科学学报, 2014,37(4):521-528.]
|
[31] |
[ 顾问, 张晶, 谈建国 , 等. 上海夏季海风锋及其触发对流的时空分布和环流背景分析. 热带气象学报, 2017,33(5):644-653.]
|
[32] |
|
[33] |
|
[34] |
[ 朱明佳, 赵谦益, 刘绍民 , 等. 农田下垫面观测通量的变化特征及其气候学足迹分析. 地球科学进展, 2013,28(12):1313-1325.]
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
/
〈 |
|
〉 |