遥感应用

农田景观空间异质性分析及遥感监测最优尺度选择——以三江平原为例

展开
  • 1. 中国科学院东北地理与农业生态研究所, 长春 130012;
    2. 中国科学院研究生院, 北京 100049;
    3. 空军航空大学, 长春130022;
    4. 哈尔滨师范大学, 哈尔滨 150025

收稿日期: 2011-07-19

  修回日期: 2011-10-17

  网络出版日期: 2012-03-20

基金资助

国家科技支撑计划重大项目课题(2009BADB3B01-05); 中国科学院知识创新项目(KZCX2-YW-Q10-1-3)

Agricultural Landscape Spatial Heterogeneity Analysis and Optimal Scale Selection: An Example Applied to Sanjiang Plain

Expand
  • 1. Northeast Institute of Geography and Agroecology, CAS, Changchun 130012, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Electrical and Electronic Teaching and Research Office, Aviation University of Air Force, Changchun 130022, China;
    4. Harbin Normal University, Harbin 150025, China

Received date: 2011-07-19

  Revised date: 2011-10-17

  Online published: 2012-03-20

Supported by

The National Key Technology R&D Program, No.2009BADB3B01-05; Knowledge Innovation Programs of the Chinese Academy of Sciences, No.KZCX2-YW-Q10-1-3

摘要

农情遥感监测需要高时间分辨率的遥感数据,目前这些数据大都为中低空间分辨率影像。在这些尺度下,像元内部往往是异质的,从而影响农情参数反演精度。因此分析和表达农田景观空间异质性和最优尺度选择对遥感农情监测质量的提高具有重要的应用价值。选取建三江农垦区四种典型农田景观为研究点,Landsat/TM NDVI为实验数据,利用实验变异函数对四种景观类型的各向空间异质性进行了分析, 而后通过变异函数模型拟合,定量分析了各个研究点的整体空间异质性,并在此基础上进行了研究区遥感监测最优尺度选择。研究表明:(1) 基于实验变异函数的结构分析方法,可定性地认识空间异质性的大小和方向,进而挖掘出其背后的自然和人为驱动因素。(2) 对实验变异函数进行拟合分析,可定量地刻画不同景观格局各自的空间异质性特性。此外,基于变异函数对空间异质性的定量表达,讨论了利用积分变程A结合Nyquist-Shannon采样定理进行最优尺度选择的方法。

本文引用格式

温兆飞, 张树清, 白静, 丁长虹, 张策 . 农田景观空间异质性分析及遥感监测最优尺度选择——以三江平原为例[J]. 地理学报, 2012 , 67(3) : 346 -356 . DOI: 10.11821/xb201203006

Abstract

Agricultural monitoring requires high temporal frequency data which are currently provided only by moderate spatial resolution sensors. At such moderate spatial resolutions, farmland that is heterogeneous within a pixel will be averaged and hence obscured. This would bias any non-linear estimation of crop growing processes (e.g., net primary productivity (NPP), leaf area index (LAI)). To modify this bias, a first approach is used to explicitly take into account the intra-pixel spatial heterogeneity in the retrieval algorithm. A second approach is to use the surface heterogeneity to disaggregate moderate spatial resolution estimates of land surface variable at a proper scale of spatial variation. Both approaches are required to quantify spatial heterogeneity,and a proper scale selection should be necessary for agricultural monitoring.To this ends, four typical landscape pattern sites in the Jiansanjiang Reclamation Area which is an important basin of commercial grain production in China, were selected and Landsat/TM NDVI image data were analyzed in this study. Based on the variogram analysis, some conclusions can be drawn. (1) Directional experiment variograms analysis can make clear how the human activates and natural factors affect the agricultural spatial heterogeneity qualitatively. For example, dry lands (including the landscape only with dry land and the landscape which is mosaic of dry land and paddy fields in this study) have the largest heterogeneity in North-South direction, while the landscape pattern which only have paddy fields have the largest heterogeneity in East-West direction. Based on this, we can demonstrate that spatial heterogeneity caused by human and natural factors can be examined deeply through variogram analysis. (2) The fitted variograms can present how different landscape patterns have their own spatial heterogeneity quantificationally. In this study, for example, the same type of land use can have lower heterogeneity as different types of land use landscape patterns have larger heterogeneity. (3) Through the variogram analysis of heterogeneity, a method used to select a proper scale (pixel size) for agricultural remote sensing monitoring is discussed.

参考文献

[1] Meng Jihua, Wu Bingfang, Li Qiangzi et al. Research advances and outlook of crop monitor ing with remote sensing at field level. Remote Sensing Information, 2010, (3): 122-128. [蒙继华, 吴炳方, 李强子等. 农田农情参数遥感监测进展及应用展望. 遥感信息, 2010, (3): 122-128.]
[2] Friedl M A. Examining the Effects of Sensor Resolution and Sub-pixel Heterogeneity on Spetral Vegetation Indices: Implications for Biophysical Modeling. Boca Raton: Lewis Publishers, 1997.
[3] Weiss M, Baret F, Myneni R B et al. Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie, 2000, 20(1): 3-22.
[4] Garrigues S, Allard D, Baret F et al. Quantifying spatial heterogeneity at the landscape scale using variogram models. Remote Sensing of Environment, 2006, 103(1): 81-96.
[5] Garrigues S, Allard D, Baret F et al. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sensing of Environment, 2006, 105(4): 286-298.
[6] Ming Dongping, Wang Qun, Yang Jianyu. Spatial scale of remote sensing image and selection of optimal spatial resolution. Journal of Remote Sensing, 2008, 12(4): 529-537. [明冬萍, 王群, 杨建宇. 遥感影像空间尺度特性与最佳空间分辨率选择. 遥感学报, 2008, 12(4): 529-537.]
[7] Merlin O, Chehbouni A, Kerr Y H et al. A downscaling method for distributing surface soil moisture within a microwave pixel: Application to the Monsoon '90 data. Remote Sensing of Environment, 2006, 101(3): 379-389.
[8] Csillag F, Kabos S. Wavelets, boundaries, and the spatial analysis of landscape pattern. Ecoscience, 2002, 9(2): 177-190.
[9] Lyons T J, Halldin S. Surface heterogeneity and the spatial variation of fluxes. Agricultural and Forest Meteorology, 2004, 121(3/4): 153-165.
[10] Kolasa J, Rollo C. Ecological Heterogeneity. New York: Springer-Verlag, 1991.
[11] Li Habin, Wang Zhengquan, Wang Qingcheng. Theory and methodology of spatial heterogeneity quantification. Chinese Journal of Applied Ecology, 1998, 9(6): 651-657. [李哈滨, 王政权, 王庆成. 空间异质性定量研究理论与方法. 应用生态学报, 1998, 9(6): 651-657.]
[12] Garrigues S, Allard D, Baret F et al. Multivariate quantification of landscape spatial heterogeneity using variogram models. Remote Sensing of Environment, 2008, 112(1): 216-230.
[13] Wan Li. Variogram-based quantitative analysis of the spatial heterogeneity. Statistics and Decision, 2006, (2): 26-27. [万丽. 基于变异函数的空间异质性定量分析. 统计与决策, 2006, (2): 26-27.]
[14] Curran P J. The semivariogram in remote sensing: An introduction. Remote Sensing of Environment, 1988, 24: 493-507.
[15] Woodcock C E, Strahler A H, Jupp D L B. The use of variograms in remote sensing: II. Real digital images. Remote Sensing of Environment, 1988, 25(3): 349-379.
[16] Oliver M A, Shine J A, Slocum K R. Using the variogram to explore imagery of two different spatial resolutions. International Journal of Remote Sensing, 2005, 26(15): 3225-3240.
[17] Woodcock C E, Strahler A H. The factor of scale in remote sensing. Remote Sensing of Environment, 1987, 21(3): 311-332.
[18] Atkinson P M, Aplin P. Spatial variation in land cover and choice of spatial resolution for remote sensing. International Journal of Remote Sensing, 2004, 25(18): 3687-3702.
[19] Atkinson P M, Curran P J. Defining an optimal size of support for remote sensing investigations. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(3): 768-776.
[20] Bai Yanche, Wang Jinfeng. Exploring the scale effect in thematic classification of remotely sensed data:the statistical separability-based method. Remote Sensign Technology and Application, 2004, 19(6): 443-449. [柏延臣, 王劲峰. 基于统计可分性的遥感数据专题分类尺度效应分析. 遥感技术与应用, 2004, 19(6): 443-449.]
[21] Statistical Yearbook of Farm Jiansanjiang. Heilongjiang Province Sanjiang Farm Statistical Yearbook Editorial Department, 2002. [建三江农垦统计年鉴. 黑龙江省建三江农垦统计年鉴编辑部, 2002.]
[22] Records of Jiansanjiang Farm. Jiansanjiang Branc, 2004. [建三江农垦志. 建三江分局, 2004.]
[23] Zhang Xixiang, Wu Jianping. Sanjiang Nature Reserve, Natural Resources Research. Harbin: Northeast Forestry University Press, 2003. [张喜祥, 吴建平. 三江自然保护区自然资源研究. 哈尔滨: 东北林业大学出版社, 2003.]
[24] Solutions I V I. Atmospheric Correction Module: QUAC and FLAASH User's Guide, 2009.
[25] Deng Shubin. ENVI Remote Sensing Image Processing. Beijing: Science Press, 2010. [邓书斌. ENVI遥感图像处理方法. 北京: 科学出版社, 2010.]
[26] Zhang Renduo. Spatial Variation of the Theory and Application. Beijing: Science Press, 2005. [张仁铎. 空间变异理论及应用. 北京: 科学出版社, 2005.]
[27] Tarnavsky E, Garrigues S, Brown M E. Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products. Remote Sensing of Environment, 2008, 112(2): 535-549.
[28] Curran P J, Atkinson P M. Geostatistics and remote sensing. Progress in Physical Geography, 1998, 22(1): 61-78.
[29] Woodcock C E, Strahler A H, Jupp D L B. The use of variograms in remote sensing: I. Scene models and simulated images. Remote Sensing of Environment, 1988, 25(3): 323-348.
[30] Li Xiaowen, Cao Chunxiang, Chang Chaoyi. The first law of geography and spatial-temporal proximity. Chinese Jounal of Nature, 2006, 29(2): 69-71. [李小文, 曹春香, 常超一. 地理学第一定律与时空邻近度的提出. 自然杂志, 2006, 29(2): 69-71.]
[31] Chilès J, Delfiner P. Geostatistics: Modeling Spatial Uncertainty. New York: John Wiley and Sons, 1999.
[32] Webster R. Quantitative spatial analysis of soil in the field. Advances in Soil Science, 1985, 3(1): 1-70.
[33] Johnston K, Hoef J M V, Krivoruchko K et al. Using ArcGIS Geostatistical Analyst. ESRI Press, 2001.
[34] Matheron G. Principles of geostatistics. Economic Geology, 1963, 58: 1246-1266.
[35] Wang Zhengquan. Geostatistics and Its Application in Ecology. Beijing: Science Press, 1999. [王政权. 地统计学及其在生态学中的应用. 北京: 科学出版社, 1999.]
[36] Pannatier Y. VARIOWIN: Software for Spatial Data Analysis in 2D. New York: Springer-Verlag, 1996.
[37] Lantuéjoul C. Geostatistical Simulation: Models and Algorithms. Berlin: Springer-Verlag, 2002.
[38] Schowengerdt R A. Remote Sensing: Models and Methods for Image Processing. San Diego: Academic Press, 2007.
[39] Fu Qiang. Different ridge cultivation on soybean yield to the impact of research. Heilongjiang Agricultural Sciences, 2011, (4): 29-31. [符强. 不同垄向栽培对大豆产量影响的研究. 黑龙江农业科学, 2011, (4): 29-31.]
[40] Shannon C. Communication in the presence of noise. Proc. Institute of Radio Engineers, 1949, 37(1): 10-21.
文章导航

/