[1] Bridgland D R. River terrace systems in north-west Europe: An archive of environmental change, uplift and earlyhuman occupation. Quaternary Science Reviews, 2000, 19: 1293-1303.
[2] Bridgland D, Westaway R. Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon.Geomorphology, 2008, 98: 285-315.
[3] Vandenberghe J. Climate forcing of fluvial system development: An evolution of ideas. Quaternary Science Reviews,2003, 22: 2053-2060.
[4] Yang Jingchun, Li Youli. Geomorphology. Beijing: Peking University Press, 2001. [杨景春, 李有利. 地貌学原理. 北京:北京大学出版社, 2001.]
[5] Li Jijun, Fang Xiaomin, Ma Haizhou et al. Geomorphological and environmental evolution in the upper reaches of theYellow River during the late Cenozoic. Science in China: Series D, 1996, 26(4): 316-322. [李吉均, 方小敏, 马海洲等.晚新生代黄河上游地貌演化与青藏高原隆起. 中国科学: D辑, 1996, 26(4): 316-322.]
[6] Yang Jingchun, Tan Lihua, Li Youli et al. River terraces and neotectonic evolution at north margin of the QilianshanMountains. Quaternary Sciences, 1998, 18(3): 229-237. [杨景春, 谭利华, 李有利等. 祁连山北麓河流阶地与新构造演化. 第四纪研究, 1998, 18(3): 229-237.]
[7] Gu Zhaoyan, Xu Bing, Lv Yanwu et al. Tectonic geomorhologic evolution of Nujiang gorge: The primary results ofTCN dating on fluvial terraces. Quaternary Sciences, 2006, 26(2): 293-294. [顾兆炎, 许冰, 吕延武等. 怒江峡谷构造地貌的演化:阶地宇宙成因核素定年的初步结果. 第四纪研究, 2006, 26(2): 293-294.]
[8] Qiu Weili, Zhang Jiafu, Zhou Liping et al. Preliminary study of the terrace sequence of the Huanghe River in Hequarea, Shanxi, China. Quaternary Sciences, 2008, 28(4): 544-552. [邱维理, 张家富, 周力平等. 山西河曲黄河阶地序列初步研究. 第四纪研究, 2008, 28(4): 544-552.]
[9] Pan B, Su H, Hu Z et al. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River:Evidence from a 1.24 Ma terrace record near Lanzhou, China. Quaternary Science Reviews, 2009, 28(27/28):3281-3290.
[10] Seong Y B, Owen L A, Bishop M P et al. Rates of fluvial bedrock incision within an actively uplifting orogen:Central Karakoram Mountains, northern Pakistan. Geomorphology, 2008, 97: 274-286.
[11] Owen L A, Finkel R C, Ma H et al. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin,northern Tibet: A framework for examining the links between glaciation, lake level changes and alluvial fan formation.Quaternary International, 2006, 154/155: 73-86.
[12] Chen Yixin, Li Yingkui, Zhang Yue et al. Late Quaternary deposition and incision sequences of the Golmud River andtheir environmental implication. Quaternary Sciences, 2011, 31(2): 347-359. [陈艺鑫, 李英奎, 张跃等. 末次冰期以来格尔木河填充—切割及驱动机制初探. 第四纪研究, 2011, 31(2): 347-359.]
[13] Wu Y, Cui Z, Liu G et al. Quaternary geomorphological evolution of the Kunlun Pass area and uplift of theQinghai-Xizang (Tibet) Plateau. Geomorphology, 2001, 36: 203-216.
[14] Cui Zhijiu, Wu Yongqiu, Liu Gengnian et al. On Kunlun-Yellow River tectonic movement. Science in China: SeriesD, 1998, 28(1): 53-59. [崔之久, 伍永秋, 刘耕年等. 关于“昆仑—黄河运动”. 中国科学: D辑, 1998, 28(1): 53-59.]
[15] Li Changan, Yin Hongfu, Yu Wenqing. Evolution of drainage systems and its developing trend in connection withtectonic uplift of eastern Kunlun Mountains. Chinese Science Bulletin, 1999, 44(2): 211-213. [李长安, 殷鸿福, 于庆文. 东昆仑山构造隆升与水系演化及其发展趋势. 科学通报, 1999, 44(2): 211-213.]
[16] Wang An, Wang Guochan, Xiang Shuyuan. Characteristics of river terraces in north slope of Eastern Kunlun Mountains and their relationship with plateau uplift. Earth Science: Journal of China University of Geosciences, 2003,28(6): 675-679. [王岸, 王国灿, 向树元. 东昆仑山东段北坡河流阶地发育及其与构造隆升的关系. 地球科学: 中国地质大学学报, 2003, 28(6): 675-679.]
[17] Cao Kai, Wang Guocan, Wang An. The Analysis of the tectonics and the behavior of the longitudinal section ofKunlun River in East Kunlun. Earth Science: Journal of China University of Geosciences, 2007, 32(5): 713-721. [曹凯, 王国灿, 王岸. 东昆仑山昆仑河纵剖面形貌分析及构造涵义. 地球科学: 中国地质大学学报, 2007, 32(5):713-721.]
[18] Van der Woerd J, Tapponnier P, Ryerson F J et al. Uniform postglacial slip-rate along the central 600 km of theKunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology.Geophysical Journal International, 2002, 148: 356-388.
[19] Wu Zhenhan, Hu Daogong, Wu Zhonghai et al. Pressure ridges and their ages of the Xidatan strike-slip fault in SouthKunlun Mts. Geological Review, 2006, 52(1): 15-24. [吴珍汉, 胡道功, 吴中海等. 东昆仑南部西大滩断裂的地震鼓包及形成时代. 地质论评, 2006, 52(1): 15-24.]
[20] Wang Duojie, Xu Xiaowei, Jia Yunhong et al. Preliminary study on paleoearthquakes and the characteristics along thesection of Dongdatan and Xidatan on Kusai Lake-Maqu Fault zone during Holocene period. Inland Earthquake, 1992, 6(2): 158-166. [王多杰, 徐小卫, 贾运鸿等. 库赛湖—玛曲断裂带东、西大滩段全新世活动特征及古地震的研究. 内陆地震, 1992, 6(2): 158-166.]
[21] Hu Daogong, Ye Peisheng, Wu Zhenhan et al. Research on Holocene paleoearthquakes on the Xidatan segment of theEast Kunlun fault zone in northern Tibet. Quaternary Sciences, 2006, 26(6): 1012-1020. [胡道功, 叶培盛, 吴珍汉等.东昆仑断裂带西大滩段全新世古地震研究. 第四纪研究, 2006, 26(6): 1012-1020.]
[22] Seismological Bureau of Qinghai Province, Institute of Crustal Dynamics Chinese Earthquake Administration. EasternKunlun Active Fault Zone. Beijing: Seismological Press, 1999. [青海省地震局, 中国地震局地壳应力研究所. 东昆仑活动断裂带. 北京: 地震出版社, 1999.]
[23] Fu B, Awata Y, Du J et al. Late Quaternary systematic stream offsets caused by repeated large seismic events alongthe Kunlun fault, northern Tibet. Geomorphology, 2005, 71: 278-292.
[24] Kidd W S F, Molnar P. Quaternary and active faulting observed on the 1985 Academia Sinica-Royal SocietyGeotraverse of Tibet. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and PhysicalSciences, 1988, 327: 337-363.
[25] Zhao Xitao, Zheng Mianping, Li Daoming. Dating of the Sanchahe Formation and development of Paleolake Kunlunin Golmud city, Qinghai Province. Quaternary Sciences, 2009, 29(1): 89-97. [赵希涛, 郑绵平, 李道明. 青海格尔木三岔河组年龄测定与昆仑古湖发育. 第四纪研究, 2009, 29(1): 89-97.]
[26] Wu Xihao, Qian Fang. The landform of the Golmud River drainage//The Editorial Committee on the Tibetan PlateauGeological Papers. Contributions to the Geology of the Tibetan Plateau 4: Quaternary Geology and Glaciology.Beijing: Geological Publishing House, 1982. 71-86. [吴锡浩, 钱方. 格尔木河水系河谷地貌//地质部青藏高原地质文集编委会. 青藏高原地质文集4: 第四纪地质·冰川. 北京: 地质出版社, 1982: 71-86.]
[27] Wang Shaoling, Bian Chunyu. The involutions and their palaeoclimatic significance in the Nachi Tai region along theQinghai-Xizhang Highway. Geographical Research, 1993, 12(1): 94-100. [王绍令, 边纯玉. 青藏公路纳赤台地区冻融褶皱及其古气候意义. 地理研究, 1993, 12(1): 94-100.]
[28] Wang A, Smith J A, Wang G et al. Late Quaternary river terrace sequences in the eastern Kunlun Range, northernTibet: A combined record of climatic change and surface uplift. Journal of Asian Earth Sciences, 2009, 34: 532-543.
[29] Wang Xulong, Lu Yanchou, Li Xiaoni. Luminescence dating of fine-grained quartz in Chinese loess: SimplifiedMultiple Aliquot Regenerative-dose (MAR) protocol. Seismology and Geology, 2005, 27(4): 615-623. [王旭龙, 卢演俦, 李晓妮. 细颗粒石英光释光测年: 简单多片再生法. 地震地质, 2005, 27(4): 615-623.]
[30] Lu Y, Wang X L, Wintle A G. A new OSL chronology for dust accumulation in the last 130,000 yr for the ChineseLoess Plateau. Quaternary Research, 2007, 67: 152-160.
[31] Aitken M J. An Introduction to Optical Dating. Oxford: Oxford University Press, 1998.
[32] Li Y, Liu G, Kong P et al. Cosmogenic nuclide constraints on glacial chronology in the source area of the UrumqiRiver, Tian Shan, China. Journal of Quaternary Science, 2011, 26(3): 297-304.
[33] Kohl C P, Nishiizumi K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides.Geochimica et Cosmochimica Acta, 1992, 56: 3583-3587.
[34] Lal D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth andPlanetary Science Letters, 1991, 104(2-4): 424-439.
[35] Stone J O. Air pressure and cosmogenic isotope production. Journal of Geophysical Research, 2000, 105(B10):23753-23759.
[36] Dunne J, Elmore D, Muzikar P. Scaling factors for the rates of production of cosmogenic nuclides for geometricshielding and attenuation at depth on sloped surfaces. Geomorphology, 1999, 27(1/2): 3-11.
[37] Gosse J C, Phillips F M. Terrestrial in situ cosmogenic nuclides: Theory and application. Quaternary Science Reviews,2001, 20: 1475-1560.
[38] Ohno M, Hamano Y. Global analysis of the geomagnetic field: time variation of the dipole moment and thegeomagnetic pole in the Holocene. Journal of Geomagnetism and Geoelectricity, 1993, 45(11/12): 1455-1466.
[39] Guyodo Y, Valet J. Global changes in intensity of the Earth's magnetic field during the past 800 kyr. Nature, 1999,399: 249-252.
[40] Li Y, Li D. Basin wide erosion rates in the central and northern Tibetan Plateau estimated using in-situ produced 10Beconcentrations from river sediments. Association of American Geographers, Seattle, WA, 2011.