水文地貌与第四纪

末次冰盛期后格尔木河下切的时空变化及其构造意义

展开
  • 1. 北京大学城市与环境学院,北京 100871;
    2. Department of Geography, University of Tennessee, Knoxville, TN 37996, USA
陈艺鑫(1982-), 男, 辽宁辽阳人, 博士生, 主要从事地貌学与第四纪地质学研究。E-mail: chenyixin@pku.edu.cn

收稿日期: 2011-06-20

  修回日期: 2011-08-31

  网络出版日期: 2011-11-20

基金资助

国家自然科学基金项目(40571014; 40971002); 国家重点基础研究发展规划项目(973 项目) (2005CB422001)资助

Fluvial Incision Process and Its Tectonic Implications of Golmud River since Last Glaciation Maximum

Expand
  • 1. College of Urban and Environmental Sciences, Peking University, Beijing 100871, China;
    2. Department of Geography, University of Tennessee, Knoxville, TN 37996, USA

Received date: 2011-06-20

  Revised date: 2011-08-31

  Online published: 2011-11-20

Supported by

National Natural Science Foundation of China, No.40571014; No.40971002; National BasicResearch Program of China (973 Program), No.2005CB422001

摘要

格尔木河河谷中发育有四级河流阶地,均形成于末次冰盛期之后。阶地的形成由构造抬升驱动,四级阶地代表的河流下切过程反映了四次阶段性构造抬升。以三岔河和纳赤台为代表的中游河段,四次河流阶段性下切速率分别为16~13 ka BP (T4-T3),3.33~9.33 mm/a;13~11 ka BP (T3-T2),5.5~12 mm/a;11~5 ka BP (T2-T1),0.33~1 mm/a;5 ka BP (T1 至今),0.6~0.8 mm/a,下切速率自T4 至T1 先增快后减慢。上游小南川河段5 ka BP以来的平均下切速率为4 mm/a,显著大于三岔河和纳赤台河段,同期河流溯源侵蚀速率也较快,表明小南川局部地区全新世中期抬升强烈,应为西大滩断裂强烈活动所致。受区域性构造活动差异影响,格尔木河河流阶地在局部地区出现变形,其中在三岔河和最老冲积扇扇顶存在两个下切幅度和速度高峰值,而纳赤台河段下切和缓。表明控制昆仑河和野牛沟发育的昆仑河—野牛沟断裂、山前的红石沟断裂自末次冰盛期以来持续活动。其中,昆仑河—野牛沟断裂16~13 ka BP活动速率较快,到13~11 ka BP达到最快,11 ka BP后减慢,与河流中下游整体构造活动趋势一致。

本文引用格式

陈艺鑫, 张梅, 李川川, 李英奎, 刘耕年 . 末次冰盛期后格尔木河下切的时空变化及其构造意义[J]. 地理学报, 2011 , 66(11) : 1540 -1550 . DOI: 10.11821/xb201111010

Abstract

The Golmud River originates from the Kunlun Mountains and drains into the Qaidam Basin on northern Tibetan Plateau. The Golmud River valley has experienced intensive tectonic movements since the Last Glacial Maximum, which deeply influenced the geomorphologic evolution of the river. In addition, well-developed fluvial terraces and sediments are preserved in the river valley and provide vital information for studying the environmental evolution in detail. Four terraces developed in the river valley since the Last Glacial Maximum, which may be responses to four tectonic uplift events. In Nachitai and Sanchahe sections, the incision rates of the four terraces are 9.33-3.33 mm/a (T4-T3, 16-13 ka BP), 12-5.5 mm/a (T3-T2, 13-11 ka BP), 1.0-0.33 mm/a (T2-T1, 11-5 ka BP) and 0.8-0.6 mm/a (T1, since 5 ka BP), respectively. The incision rate increased from 16-11 ka BP, and then it has been decreasing since 11 ka, which implies the tectonic uplift processes. The average incision rate of Xiaonanchuan since 5 ka BP is 4 mm/a. The rate is larger than that of Sanchahe and Nachitai, indicating that the tectonic uplift is more intensive in this region. The longitudinal section of the terraces indicates that the rates and depths of incision were the largest in Sanchahe section (62 m, 3.88 mm/a) and on the piedmont (46 m, 2.88 mm/a), while it was mild in Nachitai section (26 m, 1.61 mm/a). The deformation of the terraces suggests that the Yeniugou fault at Sanchahe and the Hongshigou fault on the piedmont have been active since the Last Glacial. The Kunlun river fault is a thrust fault, and its uplift rates started to rise at 16-13 ka BP, and peaked during 13-11 ka BP, and decreased after 11 ka BP.

参考文献

[1] Bridgland D R. River terrace systems in north-west Europe: An archive of environmental change, uplift and earlyhuman occupation. Quaternary Science Reviews, 2000, 19: 1293-1303.



[2] Bridgland D, Westaway R. Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon.Geomorphology, 2008, 98: 285-315.



[3] Vandenberghe J. Climate forcing of fluvial system development: An evolution of ideas. Quaternary Science Reviews,2003, 22: 2053-2060.



[4] Yang Jingchun, Li Youli. Geomorphology. Beijing: Peking University Press, 2001. [杨景春, 李有利. 地貌学原理. 北京:北京大学出版社, 2001.]



[5] Li Jijun, Fang Xiaomin, Ma Haizhou et al. Geomorphological and environmental evolution in the upper reaches of theYellow River during the late Cenozoic. Science in China: Series D, 1996, 26(4): 316-322. [李吉均, 方小敏, 马海洲等.晚新生代黄河上游地貌演化与青藏高原隆起. 中国科学: D辑, 1996, 26(4): 316-322.]



[6] Yang Jingchun, Tan Lihua, Li Youli et al. River terraces and neotectonic evolution at north margin of the QilianshanMountains. Quaternary Sciences, 1998, 18(3): 229-237. [杨景春, 谭利华, 李有利等. 祁连山北麓河流阶地与新构造演化. 第四纪研究, 1998, 18(3): 229-237.]



[7] Gu Zhaoyan, Xu Bing, Lv Yanwu et al. Tectonic geomorhologic evolution of Nujiang gorge: The primary results ofTCN dating on fluvial terraces. Quaternary Sciences, 2006, 26(2): 293-294. [顾兆炎, 许冰, 吕延武等. 怒江峡谷构造地貌的演化:阶地宇宙成因核素定年的初步结果. 第四纪研究, 2006, 26(2): 293-294.]



[8] Qiu Weili, Zhang Jiafu, Zhou Liping et al. Preliminary study of the terrace sequence of the Huanghe River in Hequarea, Shanxi, China. Quaternary Sciences, 2008, 28(4): 544-552. [邱维理, 张家富, 周力平等. 山西河曲黄河阶地序列初步研究. 第四纪研究, 2008, 28(4): 544-552.]



[9] Pan B, Su H, Hu Z et al. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River:Evidence from a 1.24 Ma terrace record near Lanzhou, China. Quaternary Science Reviews, 2009, 28(27/28):3281-3290.



[10] Seong Y B, Owen L A, Bishop M P et al. Rates of fluvial bedrock incision within an actively uplifting orogen:Central Karakoram Mountains, northern Pakistan. Geomorphology, 2008, 97: 274-286.



[11] Owen L A, Finkel R C, Ma H et al. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin,northern Tibet: A framework for examining the links between glaciation, lake level changes and alluvial fan formation.Quaternary International, 2006, 154/155: 73-86.



[12] Chen Yixin, Li Yingkui, Zhang Yue et al. Late Quaternary deposition and incision sequences of the Golmud River andtheir environmental implication. Quaternary Sciences, 2011, 31(2): 347-359. [陈艺鑫, 李英奎, 张跃等. 末次冰期以来格尔木河填充—切割及驱动机制初探. 第四纪研究, 2011, 31(2): 347-359.]



[13] Wu Y, Cui Z, Liu G et al. Quaternary geomorphological evolution of the Kunlun Pass area and uplift of theQinghai-Xizang (Tibet) Plateau. Geomorphology, 2001, 36: 203-216.



[14] Cui Zhijiu, Wu Yongqiu, Liu Gengnian et al. On Kunlun-Yellow River tectonic movement. Science in China: SeriesD, 1998, 28(1): 53-59. [崔之久, 伍永秋, 刘耕年等. 关于“昆仑—黄河运动”. 中国科学: D辑, 1998, 28(1): 53-59.]



[15] Li Changan, Yin Hongfu, Yu Wenqing. Evolution of drainage systems and its developing trend in connection withtectonic uplift of eastern Kunlun Mountains. Chinese Science Bulletin, 1999, 44(2): 211-213. [李长安, 殷鸿福, 于庆文. 东昆仑山构造隆升与水系演化及其发展趋势. 科学通报, 1999, 44(2): 211-213.]



[16] Wang An, Wang Guochan, Xiang Shuyuan. Characteristics of river terraces in north slope of Eastern Kunlun Mountains and their relationship with plateau uplift. Earth Science: Journal of China University of Geosciences, 2003,28(6): 675-679. [王岸, 王国灿, 向树元. 东昆仑山东段北坡河流阶地发育及其与构造隆升的关系. 地球科学: 中国地质大学学报, 2003, 28(6): 675-679.]



[17] Cao Kai, Wang Guocan, Wang An. The Analysis of the tectonics and the behavior of the longitudinal section ofKunlun River in East Kunlun. Earth Science: Journal of China University of Geosciences, 2007, 32(5): 713-721. [曹凯, 王国灿, 王岸. 东昆仑山昆仑河纵剖面形貌分析及构造涵义. 地球科学: 中国地质大学学报, 2007, 32(5):713-721.]



[18] Van der Woerd J, Tapponnier P, Ryerson F J et al. Uniform postglacial slip-rate along the central 600 km of theKunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology.Geophysical Journal International, 2002, 148: 356-388.



[19] Wu Zhenhan, Hu Daogong, Wu Zhonghai et al. Pressure ridges and their ages of the Xidatan strike-slip fault in SouthKunlun Mts. Geological Review, 2006, 52(1): 15-24. [吴珍汉, 胡道功, 吴中海等. 东昆仑南部西大滩断裂的地震鼓包及形成时代. 地质论评, 2006, 52(1): 15-24.]



[20] Wang Duojie, Xu Xiaowei, Jia Yunhong et al. Preliminary study on paleoearthquakes and the characteristics along thesection of Dongdatan and Xidatan on Kusai Lake-Maqu Fault zone during Holocene period. Inland Earthquake, 1992, 6(2): 158-166. [王多杰, 徐小卫, 贾运鸿等. 库赛湖—玛曲断裂带东、西大滩段全新世活动特征及古地震的研究. 内陆地震, 1992, 6(2): 158-166.]



[21] Hu Daogong, Ye Peisheng, Wu Zhenhan et al. Research on Holocene paleoearthquakes on the Xidatan segment of theEast Kunlun fault zone in northern Tibet. Quaternary Sciences, 2006, 26(6): 1012-1020. [胡道功, 叶培盛, 吴珍汉等.东昆仑断裂带西大滩段全新世古地震研究. 第四纪研究, 2006, 26(6): 1012-1020.]



[22] Seismological Bureau of Qinghai Province, Institute of Crustal Dynamics Chinese Earthquake Administration. EasternKunlun Active Fault Zone. Beijing: Seismological Press, 1999. [青海省地震局, 中国地震局地壳应力研究所. 东昆仑活动断裂带. 北京: 地震出版社, 1999.]



[23] Fu B, Awata Y, Du J et al. Late Quaternary systematic stream offsets caused by repeated large seismic events alongthe Kunlun fault, northern Tibet. Geomorphology, 2005, 71: 278-292.



[24] Kidd W S F, Molnar P. Quaternary and active faulting observed on the 1985 Academia Sinica-Royal SocietyGeotraverse of Tibet. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and PhysicalSciences, 1988, 327: 337-363.



[25] Zhao Xitao, Zheng Mianping, Li Daoming. Dating of the Sanchahe Formation and development of Paleolake Kunlunin Golmud city, Qinghai Province. Quaternary Sciences, 2009, 29(1): 89-97. [赵希涛, 郑绵平, 李道明. 青海格尔木三岔河组年龄测定与昆仑古湖发育. 第四纪研究, 2009, 29(1): 89-97.]



[26] Wu Xihao, Qian Fang. The landform of the Golmud River drainage//The Editorial Committee on the Tibetan PlateauGeological Papers. Contributions to the Geology of the Tibetan Plateau 4: Quaternary Geology and Glaciology.Beijing: Geological Publishing House, 1982. 71-86. [吴锡浩, 钱方. 格尔木河水系河谷地貌//地质部青藏高原地质文集编委会. 青藏高原地质文集4: 第四纪地质·冰川. 北京: 地质出版社, 1982: 71-86.]



[27] Wang Shaoling, Bian Chunyu. The involutions and their palaeoclimatic significance in the Nachi Tai region along theQinghai-Xizhang Highway. Geographical Research, 1993, 12(1): 94-100. [王绍令, 边纯玉. 青藏公路纳赤台地区冻融褶皱及其古气候意义. 地理研究, 1993, 12(1): 94-100.]



[28] Wang A, Smith J A, Wang G et al. Late Quaternary river terrace sequences in the eastern Kunlun Range, northernTibet: A combined record of climatic change and surface uplift. Journal of Asian Earth Sciences, 2009, 34: 532-543.



[29] Wang Xulong, Lu Yanchou, Li Xiaoni. Luminescence dating of fine-grained quartz in Chinese loess: SimplifiedMultiple Aliquot Regenerative-dose (MAR) protocol. Seismology and Geology, 2005, 27(4): 615-623. [王旭龙, 卢演俦, 李晓妮. 细颗粒石英光释光测年: 简单多片再生法. 地震地质, 2005, 27(4): 615-623.]



[30] Lu Y, Wang X L, Wintle A G. A new OSL chronology for dust accumulation in the last 130,000 yr for the ChineseLoess Plateau. Quaternary Research, 2007, 67: 152-160.



[31] Aitken M J. An Introduction to Optical Dating. Oxford: Oxford University Press, 1998.



[32] Li Y, Liu G, Kong P et al. Cosmogenic nuclide constraints on glacial chronology in the source area of the UrumqiRiver, Tian Shan, China. Journal of Quaternary Science, 2011, 26(3): 297-304.



[33] Kohl C P, Nishiizumi K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides.Geochimica et Cosmochimica Acta, 1992, 56: 3583-3587.



[34] Lal D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth andPlanetary Science Letters, 1991, 104(2-4): 424-439.



[35] Stone J O. Air pressure and cosmogenic isotope production. Journal of Geophysical Research, 2000, 105(B10):23753-23759.



[36] Dunne J, Elmore D, Muzikar P. Scaling factors for the rates of production of cosmogenic nuclides for geometricshielding and attenuation at depth on sloped surfaces. Geomorphology, 1999, 27(1/2): 3-11.



[37] Gosse J C, Phillips F M. Terrestrial in situ cosmogenic nuclides: Theory and application. Quaternary Science Reviews,2001, 20: 1475-1560.



[38] Ohno M, Hamano Y. Global analysis of the geomagnetic field: time variation of the dipole moment and thegeomagnetic pole in the Holocene. Journal of Geomagnetism and Geoelectricity, 1993, 45(11/12): 1455-1466.



[39] Guyodo Y, Valet J. Global changes in intensity of the Earth's magnetic field during the past 800 kyr. Nature, 1999,399: 249-252.



[40] Li Y, Li D. Basin wide erosion rates in the central and northern Tibetan Plateau estimated using in-situ produced 10Beconcentrations from river sediments. Association of American Geographers, Seattle, WA, 2011.
文章导航

/