寒区旱区研究

天山北麓河流纵剖面与基岩侵蚀模型特征分析

展开
  • 1. 北京大学城市与环境学院,北京100871;
    2. 北京大学地理科学中心地表过程分析与模拟教育部重点实验室,北京100871
赵洪壮(1974-),男,汉,山东莱州人,在读博士生,研究方向为基于GIS/RS 技术的地貌和环境演变建模及可 视化。E-mail: zhaohongzhuang@pku.edu.cn

收稿日期: 2008-12-10

  修回日期: 2009-03-03

  网络出版日期: 2009-05-25

基金资助

国家自然科学基金项目(40571013)

The Longitudinal Profiles of the Ten Rivers in North Tianhan Mountains and Their Tectonic Significance

Expand
  • 1. College of Urban and Environmental Sciences,Peking University,Beijing 100871,China;
    2. MOE Laboratory for Earth Surface Processes,Department of Geography,Peking University,Beijing 100871,China

Received date: 2008-12-10

  Revised date: 2009-03-03

  Online published: 2009-05-25

Supported by

National Natural Science Foundation of China,No.40571013

摘要

本文提取分析天山北麓10 条河流的纵剖面, 通过函数拟合纵剖面形态特征, 同时运用 基岩侵蚀力模型来研究河流纵剖面形态的发育演化过程, 来揭示河流纵剖面的发育与构造活 动之间的内在关系。研究表明: 天山北麓河流地貌地形发育阶段处于河流侵蚀作用强烈的前 均衡状态时期。塔西河的纵剖面凹曲度最大, 向东西两侧河流凹曲度依次降低, 乌鲁木齐河 与四棵树河凹曲度最小, 河流的凹曲度(θ) 和河道坡度(KS) 的数值分布规律与所对应构造部 位晚更新世以来的抬升速率和地壳缩短速度相一致, 排除时间、气候因素和基岩性质影响因 素后, 发现晚更新世以来天山北麓河流纵剖面形态变化主要受构造抬升作用的影响。

本文引用格式

赵洪壮,李有利,杨景春,吕红华 . 天山北麓河流纵剖面与基岩侵蚀模型特征分析[J]. 地理学报, 2009 , 64(5) : 563 -570 . DOI: 10.11821/xb200905005

Abstract

In this paper we carry out a study on the longitudinal profile of the 10 rivers in the north Tianshan Mountains, by fitting the characteristics of the river longitudinal profile using four function patterns, and analyzing the evolution process of the 10 rivers' longitudinal profile based on the stream-power incision model. We reveal the relationships between the evolution process of the river and the tectonic activity. Our study indicates that the concavity index of the Taxihe River is the greatest one among the 10 rivers, and the concavity indexes of the other rivers become small one by one in turn on both sides, so the concavity indexes of the Urumqi River and the Sikeshuhe River are the least ones comparatively. The evolution phase of the river topographic form is the pre-steady-state topography. Consequent analysis reveals that the upward-convex features of the profiles and slope-area plots can be explained by the elevation of the bedrock profile getting higher and higher and the uplift being beyond the incision around the target area.

参考文献


[1] Shi Xingmin, Li Youli, Yang Jingchun et al. Response of the foreland of the Manas River to the tectonic movement in Xinjiang Uygur Autonomous Region. Acta Geologica Sinica, 2008, 82(2): 281-288.
[史兴民, 李有利, 杨景春等. 新疆 玛纳斯河山前地貌对构造活动的响应. 地质学报, 2008, 82(2): 281-288.]

[2] Yang Xiaoping, Deng Qidong, Zhang Peizhen et al. Fold deformation along the Tugulu reverse fault-fold zone since Late Pleistocence, north Tianshan. Research on Active Fault, 1995, (4): 46-62.
[杨晓平, 邓起东, 张培震等. 利用阶地变形 资料研究北天山吐谷鲁逆断裂- 背斜带晚更新世以来的褶皱变形特征. 活动断裂研究, 1995, (4): 46-62.]

[3] Zheng Wentao, Yang Jingchun, Duan Fengjun. A study on the relation between deformation of river terraces and neotectonic activity for the Wuwei basin. Seismology and Geology, 2000, 22(3): 318-328.
[郑文涛, 杨景春, 段锋军. 武 威盆地晚更新世河流阶地变形与新构造活动. 地震地质, 2000, 22(3): 318-328.]

[4] Shi Xingmin, Yang Jingchun, Li Youli et al. Deformation of manas river terraces and neotectonics in northern front of the Tianshan Mountains. Acta Scientiarum Naturalium Universitatis Pekinensis, 2004, 40(6): 971-978.
[史兴民, 杨景春, 李有利等. 天山北麓玛纳斯河流阶地变形与新构造运动. 北京大学学报(自然科学版), 2004, 40(6): 971-978.]

[5] Farr T G, Rosen P A, Caro E et al. The shuttle radar topographic mission. Review of Geophysics, 2007, 45: 1-33.

[6] Rabus B, Eineder M, Roth A et al. The shuttle radar topography mission: A new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry & Remote Sensing, 2003, 57: 241-262.

[7] Burbank D W, Anderson R S. Tectonic geomorphology. Malden, Mass.: Blackwell Science, 2001, 274.

[8] Seidl M A, Dietrich W E. The problem of channel erosion into bedrock in functional geomorphology. Schmidt K H, Ploey J De. Catena, 1992, 23(suppl.): 101-124.

[9] Whipple K X, Hancock G S, Anderson R A. River incisions into bedrock: Mechanics and relative efficacy of plucking abrasion, and cavitations. Geological Society of America Bulletin, 2000, 112(3): 490-503.

[10] Whipple K X, Tucker G E. Implications of sediment-flux dependent river incision models for landscape evolution. Geophysics Res., 2002, 107: 2039.

[11] Snyder N P, Whipple K X, Tucker G E et al. Importance of a stochastic distribution of floods and erosion thresholds in the bedrock river incision problem. Geophysics Res., 2003, 108(B2): 2117.

[12] R觔doane M, Dumitriu D. Geomorphologic evolution of longitudinal river profiles in the Carpathians. Geomorphology, 2003, 50: 293-306.

[13] Zhang Huiping, Zhang Peizhen, Wu Qinglong et al. Characteristics of the Huanghe River longitudinal profiles around Xunhua-guide area (NE Tibet) and their tectonic significance. Quaternary Sciences, 2008, 28(2): 300-309.
[张会平, 张 培震, 吴庆龙等. 循化—贵德地区黄河水系河流纵剖面形态特征及其构造意义. 第四纪研究, 2008, 28(2): 300-309.]

[14] Hack J T. Studies of longitudinal stream profile in Virginia and Maryland. U.S Geol Survey Prof Paper, 1957, 294(B): 45-95.

[15] Hack J T. Stream-profile analysis and stream-gradient index. U.S. Geol. Surv, J. Res, 1973, 1: 421-429.

[16] Shepherd R G. Regression Analysis of River Profile. Journal of Geology, 1973, 93: 377-384.

[17] Snow R S, Slingerland R L. Mathematical modeling of graded river profile. Journal of Geology, 1987, 95: 15-33.

[18] Ohmori H. Change in the mathematical function type describing the longitudinal profile of a river through an evolutionary process. Journal of Geology, 1991, 99: 97-110.

[19] Whipple K X. Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth and Planetary Sciences, 2004, 32: 151-185.

[20] Chen Yanjie, Song Guocheng, Chen Zhaonan. Stream-power incision model for non-steady state orogens. Chinese Science Bulletin, 2006, 51(7): 865-869.
[陈彦桀, 宋国城, 陈昭男. 非均衡山脉的河流水力侵蚀模型. 科学通报, 2006, 51(7): 865-869.]

[21] United States Geological Survey. Shuttle radar topography mission documentation: SRTM Topo. http://edcftp.cr.usgs.gov/pub/data/srtm/Documentation/SRTM-Topo.txt. 2003.

[22] Li Weihong, Chen Yaning, Hao Xingming et al. Response of the river in the northern frontland of Tianshan to the change of the climate. Science in China (Series D), 2006, 36(S2): 39-44.
[李卫红, 陈亚宁, 郝兴明等. 新疆天山北坡 河川径流对气候变化的响应研究: 以头屯河为例. 中国科学(D 辑: 地球科学), 2006, 36(S2): 39-44.]

[23] Nan Feng, Li Youli, Shi Xingmin. Relation ship of the fluctuations of stream discharge of the Manas River and climatic changes. Research of Soil and Water Conservation, 2003, 10(3): 59-61.
[南峰, 李有利, 史兴民. 新疆玛纳斯 河水量波动与气候变化之间的关系. 水土保持研究, 2003, 10(3): 59-61.]

[24] Li Jinyi, Wang Kezhou, Li Yaping et al. Geomorphological features, crustal composition and geological evolution of the Tianshan Mountains. Geological Bulletin of China, 2006, 25(8): 895-906.
[李锦轶, 王克卓, 李亚萍等. 天山山脉 地貌特征、地壳组成与地质演化. 地质通报, 2006, 25(8): 895-906.]

[25] Zhou Feng. Study of the fault and fold system in southern margin of Junggar Basin. West China Petroleum Geosciences, 2006, 2(3): 281-285.
[周锋. 准噶尔盆地南缘断裂与褶皱体系研究. 中国西部油气地质, 2006, 2(3): 281-285.]

[26] Deng Qidong, Feng Xianyue, Zhang Peizhen et al. Active Tectonics of the Tianshan Mountains. Beijing: Seismology Press, 2000. 1-399.
[邓起东, 冯先岳, 张培震等. 天山活动构造. 北京: 地震出版社, 2000. 1-399.]

[27] Snyder N, Whipple K, Tucker G et al. Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geological Society of America Bulletin, 2000, 112: 1250-1263.

[28] Guo Zhaojie, Deng Songtao, Wei Guoqi et al. Comparative study of the foreland thrust belts of South and North Tianshan and implications for hydrocarbon accumulation. Earth Science Frontiers, 2007, 14(4): 123-131.
[ 郭召杰, 邓 松涛, 魏国齐等. 天山南北缘前陆冲断构造对比研究及其油气藏形成的构造控制因素分析. 地学前缘, 2007, 14(4): 123-131.]

文章导航

/