气候变化

MODIS BRDF/Albedo数据在中国温度模拟中的应用

展开
  • 1. 中国科学院地理科学与资源研究所, 北京100101;
    2. Department of Geography and Environment, Boston University, Boston, MA02215, 美国
张学珍(1981-), 男, 博士, 助理研究员, 主要从事地-气相互作用的数值模拟研究。E-mail: xzzhang@igsnrr.ac.cn

收稿日期: 2010-09-20

  修回日期: 2011-01-05

  网络出版日期: 2011-03-20

基金资助

全球变化研究国家重大科学研究计划(2010CB950903; 2010CB950102); 国家自然科学基金项目(41001122)

Application of MODIS BRDF/Albedo Dataset in the Regional Temperature Simulation of China

Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Department of Geography and Environment, Boston University, Boston, MA 02215, USA

Received date: 2010-09-20

  Revised date: 2011-01-05

  Online published: 2011-03-20

Supported by

China Global Change Research Program, No.2010CB950903; No.2010CB950102; National Natural Science Foundation of China, No.41001122

摘要

地表反照率直接影响地表辐射平衡,进而改变当地温度(2 m气温,下同),然后还可能通过大气平流过程影响下游地区的温度。为揭示利用实时更新的地表反照率替换WRF (Weather Research and Forecasting) 模式的静态地表反照率对中国大陆温度模拟结果的影响,本文进行了两组为期6 年(2002-2007 年) 的连续积分试验:控制试验(CT试验) 采用短波波段地表反照率,取自WRF模式推荐的地表参数数据集;敏感试验(MD试验) 采用分波段的(可见光和近红外) 地表反照率,取自MODIS BRDF/Albedo数据产品。试验结果表明,CT试验能够模拟中国温度的基本空间格局,但是模拟温度相对于观测温度有明显偏差,青藏高原南部的模拟温度偏低(负偏差),最大偏低幅度为1.03oC,出现在秋季,东部地区的模拟温度偏高(正偏差),最大偏高幅度达3.4oC,出现在春季;MD试验模拟结果的正、负偏差格局与CT试验基本相似,但是与CT试验相比,MD试验模拟的青藏高原南部温度的负偏差更大,最大为1.32oC,而模拟的东部地区温度的正偏差明显减小,最大为2.97oC,这说明MD试验比CT试验模拟的温度普遍偏低。在青藏高原,这主要归因于MD试验比CT试验的地表反照率大,使得地表净辐射少,地表感热少,致使温度偏低;在中国东部的黄淮海至江南丘陵区,这主要归因于MD试验中北方蒙古高原的地表反照率比CT试验的大,使得MD试验中该地区的地表净辐射少,地表感热少,温度低,然后通过南下冷平流过程致使位于其下游的黄淮海至江南丘陵区温度降低。

本文引用格式

张学珍, 郑景云, 何凡能, 王鐯森 . MODIS BRDF/Albedo数据在中国温度模拟中的应用[J]. 地理学报, 2011 , 66(3) : 356 -366 . DOI: 10.11821/xb201103008

Abstract

Surface albedo determines the surface radiation budget directly and causes a local radiation forcing, thus the local temperature (2 m temperature, the same below) could be modified; and then, through atmospheric advection, the temperature of lower reach would be impacted. To study the effects of using MODIS BRDF/Albedo in the regional climate simulation with WRF (Weather Research and Forecasting) model, we carried out two 6-year (2002-2007) simulations on climate of China with WRF model. The Control Run (CT) was forced by surface albedo derived from Static Surface Dataset suggested by WRF model; the MODIS Run (MD) was forced by spectral surface albedo derived from MODIS BRDF/Albedo dataset. The results show the CT run could reproduce the general spatial pattern of temperature with evident biases. In southern Tibetan Plateau, the CT's simulation is lower than observation, with the maximum biases of 1.03oC in autumn; while, in eastern China, the CT's simulation is higher than observation, with the maximum biases of 3.4oC in spring. MD's biases pattern is similar with CT run. However, the MD's cooling biases in southern Tibetan Plateau are larger than CT run, with the maximum biases of 1.32oC; the MD's warming biases in eastern China is lower than CT run, with the maximum biases of 2.97oC. The differences between the CT's biases and MD's biases demonstrate MD's simulation is generally lower than CT's simulation. On the Tibetan Plateau, the lower simulation from MD is attributed to local higher surface albedo. The higher surface albedo causes a less net solar radiation and then a less sense heat from surface to atmosphere bottom; as a consequence, the lower temperature happened. In eastern China, the lower temperature was attributed to colder airflow from north, which is caused by higher albedo and thus cooling effects occur on the Mongolia Plateau.

参考文献

[1] Ma Yutang. Some microclimatic effects of reclamation. Acta Meteorologica Sinica, 1982, 40(3): 353-341. [马玉堂. 垦荒干小气候效应. 气象学报, 1982, 40(3): 353-341.]

[2] Chapin F S, Sturm M, Serreze M C et al. Role of land-surface changes in Arctic summer warming. Science, 2005, 310 (5748): 657-660, doi: 10.1126/science.1117368.

[3] Nair U S, Ray D K, Wang J et al. Observational estimates of radiative forcing due to land use change in southwest Australia. J. Geophys. Res., 2007, 112, D09117, doi: 10.1029/2006JD007505.

[4] Myhre G, Myhre A. Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes. J. Climate, 2003, 16(10): 1511-1524.

[5] Betts A K, Ball J H. Albedo over the boreal forest. J. Geophys. Res., 1997, 102 (D24): 28901-28909.

[6] Baldocchi D, Kelliher F M, Black T A et al. Climate and vegetation controls on boreal zone energy exchange. Global Change Biol., 2000, 6 (suppl. 1): 69-83.

[7] Leung L R, Qian Y. Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 2009, 36, L03820, doi: 10.1029/2008GL036445.

[8] Shi Xiaokang, Wen Jun, Tian Hui et al. Application of MODIS albedo data in the simulation of land surface and rainfall processes over the Yellow River water source region. Chinese Journal of Atmospheric Sciences, 2009, 33(6): 1187-1200. [史小康, 文军, 田辉等. MODIS 反照率产品在模拟黄河源区陆面过程和降水中的应用. 大气科学, 2009, 33(6): 1187-1200.]

[9] Zhang N, Gao Z, Wang X et al. Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theor. Appl. Climatol., 2010, doi: 10.1007/s00704-010-0263-1.

[10] Lucht W, Schaaf C B, Strahler A H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE T. Geosci. Remote, 2000, 38(2): 977-998.

[11] Gao F, Schaaf C B, Strahler A H et al. MODIS bidirectional reflectance distribution function and albedo climate modeling grid products and the variability of albedo for major global vegetation types. J. Geophys. Res., 2005, 110, D01104, doi: 10.1029/2004JD005190.

[12] Liang S, Fang H, Chen M et al. Validating MODIS land surface reflectance and albedo products: Methods and preliminary results. Remote Sens. Environ., 2002, 83: 149-162.

[13] Wang Kaicun, Liu Jingmiao, Zhou Xiuji et al. Retrieval of the surface albedo under clear sky over China and its characteristics analysis by using MODIS satellite data. Chinese Journal of Atmospheric Sciences, 2004, 28(6): 941-952. [王开存, 刘晶淼, 周秀骥等. 利用MODIS 卫星资料反演中国地区晴空地表短波反照率及其特征分析. 大气科学, 2004, 28(6): 941-952.]

[14] Salomon J, Schaaf C B, Strahler A H et al. Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the aqua and terra platforms. IEEE T. Geosci. Remote, 2006, 44(6): 1555-1565.

[15] Collins W D et al. Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/ TN-464+STR, 2004, 214 pp., Natl. Cent. for Atmos. Res., Boulder, Colo.

[16] Hong S-Y, Dudhia J, Chen S-H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon.Weather Rev., 2004, 132: 103-120.

[17] Grell G A, Devenyi D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 2002, 29(14), doi: 10.1029/2002GL015311, 2002.

[18] Hong S-Y, Pan H-L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Weather Rev., 1996, 124: 2322-2339.

[19] Chen F, Dudhia J. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system (Part I): Model description and implementation. Mon.Weather Rev., 2001, 129: 569-585.

[20] Xu Y, Gao X J, Shen Y et al. A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci., 2009, 26(4): 763-772, doi: 10.1007/s00376-009-9029-z.

[21] Wallace J M, Hobbs P V. Atmosphere Science: An Introductory Survey. Academic Press, 2006, 465.

[22] Fang Xiuqi, Zhang Xuezhen, Dai Yujuan et al. Regionalization of winter temperature change over the mainland of China during 1951-2005. Scientia Geographica Sinica, 2010, 30(4): 571-576. [方修琦, 张学珍, 戴玉娟等. 1951-2005 年中国冬季温度变化过程的区域差异. 地理科学, 2010, 30(4): 571-576.]
文章导航

/