植物地理

青藏高原高寒草地净初级生产力(NPP)时空分异

展开
  • 1. 中国科学院地理科学与资源研究所, 北京 100101;
    2. 中国科学院大学, 北京 100049;
    3. 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330028
张镱锂, 研究员, 中国地理学会会员(S110001007M)。从事综合自然地理、生物地理和土地变化研究。E-mail: zhangyl@igsnrr.ac.cn

收稿日期: 2012-10-08

  修回日期: 2013-05-18

  网络出版日期: 2013-09-05

基金资助

国家重点基础研究发展计划项目(2010CB951704); 中国科学院战略性先导科技专项(XDA05060704;XDB03030501) 资助

Spatial and temporal variability in the net primary production (NPP) of alpine grassland on Tibetan Plateau from 1982 to 2009

Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Key Lab of Poyang Lake Wetland and Watershed Research, Jiangxi Normal University, Nanchang 330028, China

Received date: 2012-10-08

  Revised date: 2013-05-18

  Online published: 2013-09-05

Supported by

Foundation National Basic Research Program of China, No.2010CB951704; Strategic Priority Research Program of the Chinese Academy of Sciences, No.XDA05060704; No.XDB03030501

摘要

基于1982-2009 年间的遥感数据和野外台站生态实测数据,利用遥感生产力模型(CASA模型) 估算青藏高原高寒草地植被净初级生产力(NPP),分别从地带属性(自然地带、海拔高程、经纬度)、流域、行政区域(县级) 等方面对其时空变化过程进行分析,阐述了1982 年以来青藏高原高寒草地植被NPP的时空格局与变化特征。结果表明:① 青藏高原高寒草地NPP多年均值的空间分布表现为由东南向西北逐渐递减;1982-2009 年间,青藏高原高寒草地的年均总NPP为177.2×1012 gC·yr-1,单位面积年均植被NPP为120.8 gC·m-2yr-1;② 研究时段内,青藏高原高寒草地年均NPP 在112.6~129.9 gC·m-2yr-1 间,呈波动上升的趋势,增幅为13.3%;NPP 增加的草地占草地总面积的32.56%、减少的占5.55%;③ 青藏高原多数自然地带内的NPP呈增加趋势,仅阿里山地半荒漠、荒漠地带NPP呈轻微减低趋势,其中高寒灌丛草甸地带和草原地带的NPP增长幅度明显大于高寒荒漠地带;年均NPP增加面积比随着海拔升高呈现"升高—稳定—降低"的特点,而降低面积比则呈现"降低—稳定—升高"的特征;④ 各主要流域草地年均植被NPP均呈现增长趋势,其中黄河流域增长趋势显著且增幅最大。植被NPP和盖度及生长季时空变化显示,青藏高原高寒草地生态系统健康状况总体改善局部恶化。

本文引用格式

张镱锂, 祁威, 周才平, 丁明军, 刘林山, 高俊刚, 摆万奇, 王兆锋, 郑度 . 青藏高原高寒草地净初级生产力(NPP)时空分异[J]. 地理学报, 2013 , 68(9) : 1197 -1211 . DOI: 10.11821/dlxb201309004

Abstract

Using NOAA AVHRR NDVI data (8 km spatial resolution) from 1982-2000, as well as SPOT VGT data (1 km spatial resolution) and observation data from 1998-2009, the CASA model was applied to analyze the spatial-temporal characteristics of alpine grassland NPP change on the Tibetan Plateau (TP). This study will help to evaluate the health status of the alpine grassland ecosystem and is of great importance to studies on sustainable development of pasture on the plateau, as well as to research on the national ecological security shelter function of the Tibetan Plateau. Spatial statistical analysis is carried out based on physio-geographical zonality (natural zone, altitude, latitude and longitude), river basin, and administrative areas at a county level. Data processing was completed on an ENVI 4.8 platform while spatial analysis and mapping were completed on an ArcGIS 9.3 and ANUSPLINE platform. The analysis of the spatial-temporal pattern and change in characteristics of alpine grassland NPP showed that: (1) the alpine grassland NPP gradually decreased from southeast to northwest on the TP, which corresponded with the gradients of precipitation and temperature. The average annual total NPP in alpine grassland on the TP is 177.2×1012 gC·yr-1, and the average annual NPP is 120.8 gC·m-2yr-1, from 1982 to 2009. (2) The annual alpine grassland NPP on the TP has a fluctuating and increasing tendency, ranging from 114.7 gC·m-2yr-1 in 1982, to 129.9 gC·m-2yr-1 in 2009, with a 13.3% increase; the alpine grassland showing a significantly increasing tendency of NPP is above 32% of the total, while the alpine grassland that shows a remarkably decreased tendency of NPP is 5.55%. (3) A notable change of annual NPP existed in alpine grassland: (a) NPP increased in most of the natural zones on the TP, and showed a slightly decreasing trend, except for the Ngari montane desert-steppe and desert zone, where the increasing tendency of NPP was stronger in a high-cold shrub-meadow zone, high-cold meadow steppe zone and high-cold steppe zone, than that in the high-cold desert zone; (b) The vertical variations in annual NPP are significantly different, including an "increasing-steady-decreasing" trend in area percentage with a significant increase and a "decreasing-steady-increasing" trend with a significant decrease, as altitude rises; (c) The variations of annual NPP in latitude and longitude have a relationship with the vegetation distribution. The variations in annual NPP in basins present a growing tendency, with the Yellow River Basin being the most remarkable. The relationship between NPP and vegetation coverage suggests that there was a benign trend in the quality of alpine meadow ecosystem and significant regional differences on the TP.

参考文献

[1] Melillo J M, Mcguire A D, Kicklighter D W et al. Global climate change and terrestrial net primary production. Nature, 1993, 363(6426): 234-240.
[2] Running S W, Nemani R R, Heinsch F A et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience, 2004, 54(6): 547-560.
[3] Shvidenko A Z, Schepashchenko D G, Vaganov E A et al. Net primary production of forest ecosystems of Russia: A new estimate. Doklady Earth Sciences, 2008, 421: 1009-1012.
[4] Crabtree R, Potter C, Mullen R et al. A modeling and spatial-temporal analysis framework for monitoring environmental change using NPP as an ecosystem indicator. Remote Sensing of Environment, 2009, 113(7): 1486-1496.
[5] Piao S, Ciais P, Lomas M et al. Contribution of climate change and rising CO2 to terrestrial carbon balance in East Asia: A multi-model analysis. Global and Planetary Change, 2011, 75: 133-142.
[6] Zhao M, Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 2010, 329(5994): 940.
[7] Cramer W, Kicklighter D W, Bondeau A et al. Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Global Change Biology, 1999, 5(S1): 1-15.
[8] Del Grosso S, Parton W, Stohlgren T et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology, 2008, 89(8): 2117-2126.
[9] Nemani R R, Keeling C D, Hashimoto H et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300(5625): 1560-1563.
[10] Zhou Caiping, Ouyang Hua, Cao Yu et al. Estimation of net primary productivity in middle reaches of Yarlung Zangbo River and its two tributaries. Chinese Journal of Applied Ecology, 2008, 19(5): 1071-1076. [周才平, 欧阳华, 曹宇等. "一江两河"中部流域植被净初级生产力估算. 应用生态学报, 2008, 19(5): 1071-1076.]
[11] Zhang Yili, Li Bingyuan, Zheng Du. A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 2002, 21(1): 1-8. [张镱锂, 李炳元, 郑度. 论青藏高原范围与面积. 地理研究, 2002, 21(1): 1-8.]
[12] Sun Honglie, Zheng Du, Yao Tandong et al. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geographica Sinica, 2012, 67(1): 3-12. [孙鸿烈, 郑度, 姚檀栋等. 青藏高原国家生态安 全屏障保护与建设. 地理学报, 2012, 67(1): 3-12.]
[13] Zhou Caiping, Ouyang Hua, Wang Qinxue et al. Estimation of net primary productivity in Tibetan Plateau. Acta Geographica Sinica, 2004, 59(1): 74-79. [周才平, 欧阳华, 王勤学等. 青藏高原主要生态系统净初级生产力的估算. 地理学报, 2004, 59(1): 74-79.]
[14] Piao S, Fang J, He J. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Climatic Change, 2006, 74(1): 253-267.
[15] Gao Qingzhu, Wan Yunfeng, Li Yu'e et al. Grassland net primary productivity and its spatio-temporal distribution in Northern Tibet: A study with CASA model. Chinese Journal of Applied Ecology, 2007, 18(11): 2526-2532. [高清竹, 万 运帆, 李玉娥等. 基于CASA 模型的藏北地区草地植被净第一性生产力及其时空格局. 应用生态学报, 2007, 18 (11): 2526-2532.]
[16] Guo Xiaoyin, He Yong, Shen Yongping et al. Analysis of the terrestrial NPP based on the MODIS in the source regions of Yangtze and Yellow rivers from 2000 to 2004. Journal of Glaciology and Geocryology, 2006, 28(4): 512-518. [郭晓寅, 何勇, 沈永平等. 基于MODIS 资料的2000-2004 年江河源区陆地植被净初级生产力分析. 冰川 冻土, 2006, 28(4): 512-518.]
[17] Qin Siguo, Zhong Guohui, Wang Jingsheng. The influence of climate patterns on grassland NPP and the study on livestock carrying capacity in Nagqu. Journal of Arid Land Resources and Environment, 2010, 7: 159-164. [秦泗国, 钟 国辉, 王景升. 那曲草地气候格局对草地NPP 的影响及载畜量研究. 干旱区资源与环境, 2010, 7: 159-164.]
[18] Liu Jianfeng, Xiao Wenfa, Guo Mingchun et al. Pattern analysis of net primary productivity of China terrestrial vegetation using 3-PGS model. Scientia Silvae Sinicae, 2011, 47(5): 16-22. [刘建锋, 肖文发, 郭明春等. 基于3-PGS 模型的中国陆地植被NPP格局. 林业科学, 2011, 47(5): 16-22.]
[19] Zhao Guoshuai. Estimation of net primary productivity in Qinghai Province with LUE Model [D]. Harbin: Northeast Forestry University, 2011. [赵国帅. 基于光能利用率模型的青海植被净初级生产力模拟研究[D]. 哈尔滨: 东北林业 大学, 2011.]
[20] Du Jiaqiang, Shu Jianmin, Zhang Linbo. Responses of natural vegetation in Huangnan Prefecture of Qinghai to climate change: A study based on NPP. Chinese Journal of Ecology, 2010, (6): 1094-1102. [杜加强, 舒俭民, 张林波. 基于NPP的黄南州自然植被对气候变化的响应. 生态学杂志, 2010, (6): 1094-1102.]
[21] Gao Zhuqing, Wan Yunfan, Li Yu'e et al. Trends of grassland NPP and its response to human activity in northern Tibet. Acta Ecologica Sinica, 2007, 27(11): 336-341. [高清竹, 万运帆, 李玉娥等. 藏北高寒草地NPP 变化趋势及其 对人类活动的响应. 生态学报, 2007, 27(11): 4612-4619.
[22] Ke Jinhu, Piao Shilong, Fang Jingyun. NPP and its spatio-temporal patterns in the Yangtze River watershed. Acta Phytoecologica Sinica, 2003, 27(6): 764-770. [柯金虎, 朴世龙, 方精云. 长江流域植被净第一性生产力及其时空格局 研究. 植物生态学报, 2003, 27(6): 764-770.]
[23] Zhang Zuxun, Liao Mingsheng. The development and application of NOAA/AVHRR. Foreign Surveying and Mapping, 1994, (4): 36-39. [张祖勋, 廖明生. NOAA/AVHRR 的进展与应用. 国外测绘, 1994, (4): 36-39.]
[24] Stow D A, Hope A, Mcguire D et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sensing of Environment, 2004, 89(3): 281-308.
[25] Tucker C J, Pinzon J E, Brown M E et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 2005, 26(20): 4485-4498.
[26] Xiao Qianguang, Chen Weiying. Estimating the net primary productivity in China using meteorological satellite data. Acta Botanica Sinica, 1996, 38(1): 35-39. [肖乾广, 陈维英. 用NOAA 气象卫星的AVHRR 遥感资料估算中国的净 第一性生产力. 植物学报, 1996, 38(1): 35-39.]
[27] Zhang Wei. Research of land use/cover classification and carbon stocks: A case study on Tibetan Plateau [D]. Beijing: Graduate University of Chinese Academy of Sciences, 2007. [张玮. 土地利用/覆被分类与碳储量研究: 以青藏高原为 例[D]. 北京: 中国科学院研究生院, 2007.]
[28] Potter C S, Randerson J T, Field C B et al. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7(4): 811-841.
[29] Potter C. Predicting climate change effects on vegetation, soil thermal dynamics, and carbon cycling in ecosystems of interior Alaska. Ecological Modelling, 2004, 175(1): 1-24.
[30] Sellers P J, Los S O, Tucker C J et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. Journal of Climate, 1996, 9(4): 706-737.
[31] Hutchinson M F. A new objective method for spatial interpolation of meteorological variables from irregular networks applied to the estimation of monthly mean solar radiation, temperature, precipitation and windrun. CSIRO Division of Water Resources Tech, 1989, 89(5): 95-104.
[32] Luo Tianxiang, Li Wenhua, Luo Ji et al. A comparative study on biological production of major vegetation types on the Tibetan Plateau. Acta Ecologica Sinica, 1999, 19(6): 823-831. [罗天祥, 李文华, 罗辑等. 青藏高原主要植被类型 生物生产量的比较研究. 生态学报, 1999, 19(6): 823-831.]
[33] Zheng Du. Natural region system research of Tibetan Plateau. Science in China: Series D, 1996, 26(4): 336-341.
[34] Zhang Chao, Zheng Jun, Zhang Shanghong et al. Extraction of hydrological information from digital elevation model with ArcGis 9.0. Water Resources and Hydropower Engineering, 2005, 36(11): 1-4. [张超, 郑钧, 张尚弘等. ArcGis 9.0 中基于DEM的水文信息提取方法. 水利水电技术, 2005, 36(11): 1-4.]
[35] Ding Mingjun, Zhang Yili, Liu Linshan et al. Temporal and spatial distribution of grassland coverage change in Tibetan Plateau since 1982. Journal of Natural Resources, 2010, 25(12): 2114-2122. [丁明军, 张镱锂, 刘林山等. 1982-2009 年青藏高原草地覆盖度时空变化特征. 自然资源学报, 2010, 25(12): 2114-2122.]
[36] Ding M J, Zhang Y L, Sun X M, et al. Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. Chin Sci Bull, 2013,58(3):396-405.
[37] Du Jun, Hu Jun, Zhang Yong et al. Responses of net primary production to climatic changes over Tibet Plateau from 1971 to 2005. Journal of Nanjing Institute of Meteorology, 2008, 31(5): 738-743. [杜军, 胡军, 张勇等. 西藏植被净初 级生产力对气候变化的响应. 南京气象学院学报, 2008, 31(5): 738-743.]
[38] Zhang Hezhen, Lu Hongya, Hong Jianchang et al. Climate change and its effect on steppe animal husbandry in Northwest Tibet. Arid Zone Research, 2013, 30(2): 308-314. [张核真, 路红亚, 洪健昌等. 藏西北地区气候变化及其 对草地畜牧业的影响. 干旱区研究, 2013, 30(2): 308-314.]
[39] The Environmental Protection Bureau Office of Qinghai Province. State Council officially approved Three-Rivers as a National Nature Reserve. Journal of Qinghai Environment, 2003, (1): 42. [青海省环境保护局办公室. 国务院正式批准 三江源为国家级自然保护区. 青海环境, 2003, (1): 42.]
[40] State Council Information Office. Tibetan Ecological Construction and Environment Protection, 2003. [国务院新闻办 公室. 《西藏的生态建设与环境保护》白皮书, 2003.]
[41] The Ecological Protection and Construction of Three-Rivers Nature Reserve Editorial Board. The Ecological Protection and Construction of Three-Rivers Nature Reserve. Xining: Qinghai People's Publishing House, 2007. [三江 源自然保护区生态保护与建设编辑委员会. 三江源自然保护区生态保护与建设. 西宁: 青海人民出版社, 2007.]
[42] The People's Government of Qinghai Province. About further implementation of ecological protection and construction in the Three-Rivers Nature Reserve according to The People's Government of Qinghai Province Certain Opinions. [青 海省人民政府. 青海省人民政府关于进一步实施好三江源自然保护区生态保护和建设工程的若干意见, 2009.]
[43] Shao Quanqin, Fan Jiangwen et al. Integrated Monitoring and Assessment of Ecosystem in the Source Regions of Three Rivers, China. Beijing: Science Press, 2012. [邵全琴, 樊江文等. 三江源区生态系统综合监测与评估. 北京: 科 学出版社, 2012.]
文章导航

/